JP2000160210A - Production of particulate - Google Patents

Production of particulate

Info

Publication number
JP2000160210A
JP2000160210A JP10334023A JP33402398A JP2000160210A JP 2000160210 A JP2000160210 A JP 2000160210A JP 10334023 A JP10334023 A JP 10334023A JP 33402398 A JP33402398 A JP 33402398A JP 2000160210 A JP2000160210 A JP 2000160210A
Authority
JP
Japan
Prior art keywords
high polymer
fine particles
gold
polymer
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334023A
Other languages
Japanese (ja)
Inventor
Masahiro Izumoto
政博 巖本
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP10334023A priority Critical patent/JP2000160210A/en
Publication of JP2000160210A publication Critical patent/JP2000160210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily execute production by mixing aurate chloride and a protective high polymer having amino groups at the terminal or side chain of a molecule or both thereof under heating and dispersing gold particulates into the wax-like protective high polymer at room temperature. SOLUTION: This protective high polymer is preferably an oligomer of which the skeleton consists of polyethylene glycol, polyvinyl alcohol, etc., and has a melting point or softening point of 40 to 100 deg.C. The average molecular weight thereof is about 500 to 5000. The aurate chloride and the protective high polymer are agitated under heating and mixing at 50 to 150 deg.C for 10 to 60 minutes within a vessel, the atmosphere of which is substituted with dry air at room temperature. The desired particulates may thus be obtained. The resulted particulate dispersed high polymer is waxy at room temperature and melts when heated at 50 to 70 deg.C. If the high polymer contains an acidic component, such as hydrochloric acid, the concentration of gold may be increased with respect to the protective high polymer by adding an alkaline component, such as sodium hydroxide, for neutralizing the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微粒子の製造方法に
係り、詳しくは還元反応を利用した簡便な微粒子の製造
方法に関する。
The present invention relates to a method for producing fine particles, and more particularly, to a simple method for producing fine particles utilizing a reduction reaction.

【0002】[0002]

【従来の技術】従来における微粒子を調製する場合、細
分化法(breaking−downprocess)
と成長法(building−up process)
がある。ナノサイズの微粒子を調整する場合、一般に成
長法が用いられる。成長法はイオン、原子、分子から核
生成と粒成長の二つの過程によって液相中あるいは気相
中で微粒子を調製する方法である。例えば、液相中で微
粒子を調製する場合には、水溶液に塩化金酸などの化合
物を溶かした後、水溶液中に還元剤を入れて金イオンを
還元反応によって微粒子化していた。
2. Description of the Related Art Conventionally, when preparing fine particles, a breaking-down process is used.
And growing-up process
There is. When preparing nano-sized fine particles, a growth method is generally used. The growth method is a method of preparing fine particles in a liquid phase or a gas phase by two processes of nucleation and grain growth from ions, atoms and molecules. For example, when preparing fine particles in a liquid phase, a compound such as chloroauric acid is dissolved in an aqueous solution, and then a reducing agent is added to the aqueous solution to reduce the gold ions into fine particles by a reduction reaction.

【0003】上記液相法において、水素化触媒などに用
いられる粒径1μm以下の金属微粒子分散溶液は、金属
塩溶液から還元反応によって得られる。一般に金属微粒
子は疎水性であり、溶液中では速やかに凝集するが、金
属イオンの還元時に保護作用をもつ親水性高分子などを
くわえると、これが生成した微粒子の周りを保護し、粒
子同士の凝集、つまり二次粒子を形成しない安定な金属
微粒子分散液が調節できる。溶媒、還元剤(水素化ホウ
素ナトリウム、クエン酸、アルコール等)、金属塩、保
護剤(ポリビニルピロリドン、ポリビニルアルコール、
ポリビニルエーテル等)の4つの原料が金属微粒子分散
液の調製に使用されている。
In the above liquid phase method, a metal fine particle dispersion having a particle size of 1 μm or less used for a hydrogenation catalyst or the like is obtained by a reduction reaction from a metal salt solution. Generally, metal fine particles are hydrophobic and aggregate quickly in a solution.However, when a hydrophilic polymer or the like that has a protective action during reduction of metal ions is added, it protects around the generated fine particles and aggregates each other. That is, a stable dispersion of fine metal particles that does not form secondary particles can be adjusted. Solvent, reducing agent (sodium borohydride, citric acid, alcohol, etc.), metal salt, protective agent (polyvinyl pyrrolidone, polyvinyl alcohol,
Four raw materials such as polyvinyl ether) are used for preparing a metal fine particle dispersion.

【0004】一方、気相中で微粒子を調製する方法の場
合には、1)蒸発して得られた金属の微粒子を基板に付
着させ、得られた微粒子を基板から剥ぎ取る、2)蒸発
して得られた金属の微粒子を界面活性剤の蒸気に触れさ
せ、金属微粒子を落としてコロイドとする、3)蒸発し
て得られた金属の微粒子をオイル上に捕捉して粒成長を
起こさせないように集める、などの方法がある。
On the other hand, in the case of a method of preparing fine particles in a gas phase, 1) fine particles of metal obtained by evaporation are adhered to a substrate, and the obtained fine particles are peeled off from the substrate. The fine metal particles obtained by the above process are exposed to the vapor of a surfactant to drop the fine metal particles into a colloid. 3) The fine metal particles obtained by evaporation are captured on oil so as not to cause grain growth. And collect them.

【0005】更に、他の方法として、特公平6−995
85号公報に、高分子材料を融解後、これにより生じた
物を急速固化した熱力学的に非平衡状態とした高分子層
の表面に金属層を密着させた後、この高分子層を平衡状
態になるまで緩和させることで、該金属層を微粒子化し
た金属そして/あるいはその酸化物を高分子層内に分散
させる方法が開示されている。
Further, as another method, Japanese Patent Publication No. 6-995
No. 85 discloses that after melting a polymer material, a metal layer is brought into close contact with the surface of a thermodynamically non-equilibrium polymer obtained by rapidly solidifying the resulting material and then equilibrating the polymer layer. A method is disclosed in which a metal and / or an oxide thereof in which the metal layer is finely dispersed are dispersed in a polymer layer by relaxing the metal layer until the metal layer is relaxed.

【0006】[0006]

【発明が解決しようとする課題】しかし、溶液中で微粒
子を作製する方法では、溶液中には金微粒子以外の還元
剤のような不純物が存在する問題があり、またそのまま
では金微粒子は不安定であり、通常、安定化させるため
に界面活性剤等を加えていた。また、微粒子の高濃度化
には不向きであることも問題であった。
However, in the method of producing fine particles in a solution, there is a problem that impurities such as a reducing agent other than the fine gold particles are present in the solution. Usually, a surfactant or the like is added for stabilization. Another problem is that it is not suitable for increasing the concentration of fine particles.

【0007】一方、気相中で微粒子を作製する方法の場
合でも、1)では微粒子を分散させて他の用途に使用す
ることはできないこと、2)では固体にすると凝集して
再度分散できない、3)ではコロイドとして安定化でき
ないので凝集してしまう問題があった。更に、高分子層
内に微粒子化した金属そして/あるいは金属酸化物を分
散させる方法では、微粒子の濃度を高めることが困難で
あった。
On the other hand, even in the method of producing fine particles in the gas phase, 1) cannot disperse the fine particles and use them for other purposes. 2) If they are solid, they cannot be dispersed again. In the case of 3), there is a problem that the particles are aggregated because they cannot be stabilized as a colloid. Furthermore, it is difficult to increase the concentration of the fine particles by the method of dispersing the finely divided metal and / or metal oxide in the polymer layer.

【0008】本発明は、このような問題点を改善するも
のであり、特定の官能基をもった保護高分子を使用し、
還元剤を使用せずに残留不純物を減らした簡便な方法で
微粒子を作製することができる微粒子の製造方法を提供
する。
The present invention has been made to solve the above problems, and uses a protective polymer having a specific functional group,
Provided is a method for producing fine particles, which can produce fine particles by a simple method in which residual impurities are reduced without using a reducing agent.

【0009】[0009]

【課題を解決するための手段】即ち、本願請求項1の発
明は、塩化金酸と、分子の末端あるいは側鎖もしくはこ
れらの両方にアミノ基を有する保護高分子とを加熱混合
することにより、金微粒子を室温でロウ状の保護高分子
中に分散させてなる微粒子の製造方法にある。
That is, the invention of claim 1 of the present application is to heat and mix chloroauric acid and a protective polymer having an amino group at a terminal or a side chain of the molecule or at both of them. The present invention relates to a method for producing fine particles obtained by dispersing gold fine particles in a wax-like protective polymer at room temperature.

【0010】本願請求項2の発明は、保護高分子がポリ
エチレンオキサイド末端ジアミンである微粒子の製造方
法にある。
[0010] The invention of claim 2 of the present application resides in a method for producing fine particles wherein the protective polymer is a diamine terminated with polyethylene oxide.

【0011】本願請求項3の発明は、アルカリ成分を添
加して中和してなる微粒子の製造方法にある。
The invention of claim 3 of the present application resides in a method for producing fine particles which is neutralized by adding an alkali component.

【0012】上記の方法で作製した微粒子分散高分子で
は、水、アルコールに可溶である低融点の高分子マトリ
クス中にナノサイズの金微粒子を分散させたものであ
り、室温でロウ状の物質である。このため、保存時に
は、固体内に微粒子を閉じ込めこの微粒子の凝集・沈殿
を防ぎ、必要に応じて融解、溶解させて用いることがで
きる。また、還元剤を用いておらず、還元反応後、残留
不純物がなく、また簡便な作製方法のため低コストで作
製でき、更には溶媒を用いておらず微粒子の高濃度化に
適している。
The fine particle-dispersed polymer prepared by the above-mentioned method is obtained by dispersing nano-sized fine gold particles in a low-melting polymer matrix soluble in water and alcohol, and is a waxy substance at room temperature. It is. Therefore, at the time of storage, the fine particles are confined in a solid to prevent aggregation and precipitation of the fine particles, and can be used by melting and dissolving as necessary. In addition, since no reducing agent is used, there is no residual impurity after the reduction reaction, and the production method is simple, and can be produced at low cost. Further, no solvent is used, which is suitable for increasing the concentration of fine particles.

【0013】[0013]

【発明の実施の形態】上記保護高分子は、分子の末端そ
して/あるいは側鎖にアミノ基(−NH2 )の官能基を
有するもので、その骨格にはポリエチレングリコール、
ポリビニルアルコール等からなり、その融点あるいは軟
化点は40〜100°Cである。オリゴマーの平均分子
量も特に制限はないが、500〜5,000程度であ
る。上記官能基は特に金微粒子を形成する金原子と共有
結合や配位結合を形成しやすく、粒成長を抑制し、微粒
子の分散性を高めることになる。
BEST MODE FOR CARRYING OUT THE INVENTION The above-mentioned protective polymer has a functional group of an amino group (-NH 2 ) at the terminal and / or side chain of the molecule.
It is made of polyvinyl alcohol or the like, and its melting point or softening point is 40 to 100 ° C. The average molecular weight of the oligomer is not particularly limited, but is about 500 to 5,000. The functional group particularly easily forms a covalent bond or a coordination bond with a gold atom forming gold fine particles, suppresses grain growth, and enhances the dispersibility of the fine particles.

【0014】中でも、骨格としてポリエチレングリコー
ル、ポリビニルアルコールを有する分子量が1000〜
4000の高分子あるいはオリゴマーは、水あるいは水
と混合できるアルコール類に可溶であり、微粒子分散液
を製造することができる。
Among them, those having polyethylene glycol or polyvinyl alcohol as a skeleton have a molecular weight of 1,000 to 1,000.
4000 polymers or oligomers are soluble in water or alcohols that can be mixed with water, and can produce a fine particle dispersion.

【0015】上記塩化金酸と保護高分子とは、室温で乾
燥空気に置換したグローブボックス内で10〜60分
間、温度50〜150℃で加熱混合しながら攪拌するこ
とにより、目的物を得ることができる。上記保護高分子
と塩化金酸との混合比率は、保護高分子100重量部に
対して塩化金酸を0.1〜2.0重量部添加する。2.
0重量部を越えると、粒成長が抑えきれなるなる可能性
が高い。
The chloroauric acid and the protective polymer are stirred in a glove box replaced with dry air at room temperature for 10 to 60 minutes while heating and mixing at a temperature of 50 to 150 ° C. to obtain the desired product. Can be. The mixing ratio of the above protective polymer and chloroauric acid is such that 0.1 to 2.0 parts by weight of chloroauric acid is added to 100 parts by weight of the protective polymer. 2.
If the amount exceeds 0 parts by weight, there is a high possibility that the grain growth cannot be completely suppressed.

【0016】ここにおいて、保護高分子と塩化金酸との
反応機構では、金イオンと保護高分子との錯形成が起こ
り、還元剤により金イオンが金原子に還元され、金原子
の凝集が起こり1〜100nmのナノサイズの微粒子に
成長する。粒成長でナノサイズの大きさに止まるのは、
錯形成していた高分子が周りを保護し、成長を阻止する
ためと考えられる。
Here, in the reaction mechanism between the protective polymer and the chloroauric acid, complex formation between the gold ion and the protective polymer occurs, and the reducing agent reduces the gold ions to gold atoms, causing aggregation of the gold atoms. It grows into nano-sized fine particles of 1 to 100 nm. The only thing that stops at nano size by grain growth is
It is thought that the complexed polymer protects the surroundings and prevents the growth.

【0017】得られた微粒子分散高分子は、室温でロウ
状であり、50〜70℃で加熱すると溶融する。また、
アミノ基(−NH2 )を有する保護高分子を使用する場
合、塩酸のような酸性成分を含んでいるときには、これ
を中和する水酸化ナトリウム、水酸化カリウム等のよう
なアルカリ成分を添加すれば、保護高分子に対して金濃
度を高めることができる。得られたものが液状体であれ
ば、加熱して水分を除去しロウ状にすることができる。
また、水素化ホウ素ナトリウム、硫酸第一鉄、塩化第一
鉄のような還元剤を添加していないため、微粒子分散高
分子は不必要な物質を含んでいない。
The obtained fine particle-dispersed polymer is waxy at room temperature and melts when heated at 50 to 70 ° C. Also,
When a protective polymer having an amino group (—NH 2 ) is used, when an acidic component such as hydrochloric acid is contained, an alkaline component such as sodium hydroxide or potassium hydroxide for neutralizing the acidic component is added. Thus, the gold concentration can be increased with respect to the protective polymer. If the obtained substance is a liquid, it can be heated to remove water to form a wax.
Further, since a reducing agent such as sodium borohydride, ferrous sulfate and ferrous chloride is not added, the fine particle-dispersed polymer does not contain unnecessary substances.

【0018】このようにして得られた微粒子分散高分子
は、導電性高分子、導電性ペーストを初めとして、微粒
子化金属の極めて大きい触媒活性をもち、しかも高分子
あるいはオリゴマーが被覆した形状になっているため安
定に保持された触媒、微粒子化したことで大きなメモリ
容量が期待される磁気メモリ、光もしくは熱等の刺激に
よって高分子あるいはオリゴマーを前記微粒子の間の構
造、距離が変化することを利用する光もしくは熱応答
材、高分子あるいはオリゴマーの種類を適当に選定する
ことによって透明でしかも固有の色を示すことから液晶
カラー表示などの光学材、微粒子によって粉末金属の焼
結温度が低下することを利用する焼結促進剤及び接合
材、微粒子の比熱容量が大きいことを利用する微粒子複
合物による熱交換膜、大容量コンデンサ材、各種ガスセ
ンサなどに適用される。
The thus obtained fine particle-dispersed polymer has a very large catalytic activity of finely divided metal, including conductive polymers and conductive pastes, and has a shape coated with a polymer or oligomer. A catalyst that is held stably, a magnetic memory that is expected to have a large memory capacity by being made into fine particles, and a polymer or oligomer that changes the structure and distance between the fine particles due to stimulation such as light or heat. The sintering temperature of the powdered metal is reduced by the optical material such as liquid crystal color display and fine particles because it is transparent and shows a unique color by appropriately selecting the kind of light or heat responsive material, polymer or oligomer to be used. A sintering accelerator and a bonding material utilizing the heat exchange membrane of a fine particle composite utilizing a large specific heat capacity of the fine particles, Capacitor material, is applied to a variety of gas sensors.

【0019】[0019]

【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例1〜5、比較例1〜2 分子の末端をジアミノ化した平均分子量2000(GP
C測定による)のポリエチレンオキサイド(ゼネラルサ
イエンスコーポレイション社製)3gに塩化金酸・四水
和物(HAuCl4・4H2O)を所定量加えた後、ホッ
トプレートスターラーで約100°Cで、約30分間加
熱攪拌して室温でロウ状の微粒子分散高分子を得た。表
1に配合と配合剤を加熱攪拌する前の色、加熱攪拌した
直後の生成物の色、そして加熱攪拌10日後の生成物の
色をそれぞれ示す。
Next, the present invention will be described in more detail with reference to specific examples. Examples 1 to 5 and Comparative Examples 1 and 2 The average molecular weight of diamino-terminated molecules was 2000 (GP
After adding a predetermined amount of polyethylene oxide (General Science Corporation Ltd.) 3 g to chloroauric acid tetrahydrate (HAuCl 4 · 4H 2 O) of the C measurement), at about 100 ° C on a hot plate stirrer, about The mixture was heated and stirred for 30 minutes to obtain a wax-like fine particle-dispersed polymer at room temperature. Table 1 shows the color of the compound and the compounding agent before heating and stirring, the color of the product immediately after heating and stirring, and the color of the product after 10 days of heating and stirring, respectively.

【0020】また、実施例3に示す配合物の加熱攪拌前
の生成物と加熱攪拌後の生成物の可視吸収スペクトルを
測定した結果を図1に示す。この結果、540nm付近
に金微粒子の表面プラズモンに起因する極大ピ−クが観
察され、また図2は加熱攪拌後の生成物を電子顕微鏡に
より観察した結果を示すものであり、この結果粒径8.
1〜31.9nm(平均粒径17.5nm)の金微粒子
が確認できた。
FIG. 1 shows the results of measuring the visible absorption spectra of the product of Example 3 before heating and stirring and the product after heating and stirring. As a result, a maximum peak due to the surface plasmon of the fine gold particles was observed at around 540 nm. FIG. 2 shows the result of observing the product after heating and stirring by an electron microscope. .
Gold fine particles of 1 to 31.9 nm (average particle diameter of 17.5 nm) were confirmed.

【0021】[0021]

【表1】 [Table 1]

【0022】この結果、実施例では、加熱攪拌後の生成
物は金微粒子が高分子中に分散しているが、塩化金酸の
添加量が所定量より多くなると加熱攪拌直後の生成物に
おいては不透明で沈殿物を含んだ溶液になり、生成物の
色から判断すると、金微粒子が生成していないことが判
る。即ち、金イオンと保護高分子のみで金微粒子が生成
し、これは末端をジアミノ化したポリエチレンオキサイ
ドが溶媒、還元剤、保護高分子の役割をしていることが
判る。
As a result, in the examples, the product after heating and stirring has gold fine particles dispersed in the polymer, but when the amount of chloroauric acid added exceeds a predetermined amount, the product immediately after heating and stirring becomes The solution became opaque and contained a precipitate, and judging from the color of the product, it was found that no fine gold particles were formed. That is, it can be understood that gold fine particles are formed only by the gold ion and the protective polymer, and the polyethylene oxide whose terminal is diaminated serves as a solvent, a reducing agent, and a protective polymer.

【0023】比較例3〜7 所定量のポリエチレングルコール(平均分子量100
0)に塩化金酸・四水和物(HAuCl4・4H2O)を
所定量加えた後、ホットプレートスターラーで約100
°Cで、約30分間加熱攪拌した。その配合と配合剤を
加熱攪拌する前の色、加熱攪拌した直後の生成物の色、
そして加熱攪拌10日後の生成物の色をそれぞれ表2に
示す。尚、比較例3の加熱攪拌前のサンプルと加熱攪拌
後の生成物の可視吸収スペクトルを測定した結果を図3
に示す。
Comparative Examples 3 to 7 A predetermined amount of polyethylene glycol (average molecular weight 100
0), a predetermined amount of chloroauric acid tetrahydrate (HAuCl 4 .4H 2 O) was added thereto, and the mixture was heated to about 100 with a hot plate stirrer.
The mixture was heated and stirred at 30 ° C. for about 30 minutes. The color of the compound and the compounding agent before heating and stirring, the color of the product immediately after heating and stirring,
Table 2 shows the colors of the products after 10 days of heating and stirring. The results of measuring the visible absorption spectra of the sample of Comparative Example 3 before heating and stirring and the product after heating and stirring are shown in FIG.
Shown in

【0024】[0024]

【表2】 [Table 2]

【0025】いずれも場合にも、加熱攪拌した直後の生
成物の色、そして加熱攪拌10日後の生成物の色から判
断すると、金微粒子が生成していないことが判る。
In each case, judging from the color of the product immediately after heating and stirring and the color of the product 10 days after heating and stirring, it can be seen that no fine gold particles were formed.

【0026】比較例8〜11 所定量の分子の末端をジアミノ化した平均分子量200
0(GPC測定による)のポリエチレンオキサイド(ゼ
ネラルサイエンスコーポレイション社製)に塩化白金酸
・六水和物(H2PtCl6・6H2O)もしくは硝酸銀
(AgNO3)を所定量加えた後、ホットプレートスタ
ーラーで約100°Cで、約30分間加熱攪拌した。そ
の配合と配合剤を加熱攪拌する前の色、加熱攪拌した直
後の生成物の色、そして加熱攪拌10日後の生成物の色
をそれぞれ表3に示す。
Comparative Examples 8 to 11 A predetermined amount of a molecule having an average molecular weight of 200 by diamination of the terminal of the molecule.
0 After adding a predetermined amount of polyethylene oxide chloroplatinic acid hexahydrate in (General Science Corporation Ltd.) (H 2 PtCl 6 · 6H 2 O) or silver nitrate (AgNO 3) of (measured by GPC), a hot plate The mixture was heated and stirred at about 100 ° C. for about 30 minutes with a stirrer. Table 3 shows the color of the compound and the compound before heating and stirring, the color of the product immediately after heating and stirring, and the color of the product after 10 days of heating and stirring.

【0027】[0027]

【表3】 [Table 3]

【0028】塩化白金酸や硝酸銀を使用しても、加熱攪
拌した直後の生成物の色、そして加熱攪拌10日後の生
成物の色から判断すると、微粒子が生成しておらず、塩
化金酸が有効な金属塩であることが判る。
Even if chloroplatinic acid or silver nitrate was used, judging from the color of the product immediately after heating and stirring and the color of the product after 10 days from heating and stirring, no fine particles were formed, and chloroauric acid was not found. It turns out that it is an effective metal salt.

【0029】実施例6〜12 乾燥空気を置換したグローブブックス内で分子の末端を
ジアミノ化した平均分子量2000(GPC測定によ
る)のポリエチレンオキサイド(ゼネラルサイエンスコ
ーポレイション社製)に所定量の塩化金酸・四水和物
(HAuCl4・4H2O)を加えた後、また0.1Nの
水酸化ナトリウムを金イオンと同モル数添加してホット
プレート付マグネティックスターラーで約100°C
で、約60分間加熱攪拌して微粒子分散高分子を得た。
表4に配合と配合剤を加熱攪拌する前の色、加熱攪拌し
た直後の生成物の色、そして加熱攪拌10日後の生成物
の色をそれぞれ結果を示す。
Examples 6 to 12 A predetermined amount of chloroauric acid was added to polyethylene oxide (manufactured by General Science Corporation) having an average molecular weight of 2,000 (determined by GPC) in which the terminal of the molecule was diaminated in glove books in which dry air had been replaced. After adding tetrahydrate (HAuCl 4 .4H 2 O), 0.1N sodium hydroxide is added in the same mole number as gold ion, and the temperature is about 100 ° C. with a magnetic stirrer equipped with a hot plate.
The mixture was heated and stirred for about 60 minutes to obtain a fine particle-dispersed polymer.
Table 4 shows the results of the color of the compound and the compound before heating and stirring, the color of the product immediately after heating and stirring, and the color of the product after 10 days of heating and stirring, respectively.

【0030】[0030]

【表4】 [Table 4]

【0031】この結果、生成物が塩酸を含んでいるた
め、中和剤として水酸化ナトリウムを添加して中和する
ことにより、保護高分子に対して塩化金酸の添加量が多
くなっても金微粒子が生成している。
As a result, since the product contains hydrochloric acid, it is neutralized by adding sodium hydroxide as a neutralizing agent, so that even if the amount of chloroauric acid added to the protective polymer becomes large, Gold fine particles are generated.

【0032】[0032]

【発明の効果】以上のように、本願各請求項の発明は、
塩化金酸と、分子の末端あるいは側鎖もしくはこれらの
両方にアミノ基を有する保護高分子とを加熱混合するこ
とにより、金微粒子を室温でロウ状の保護高分子中に分
散させてなる微粒子の製造方法にあり、作製した微粒子
分散高分子においては水、アルコールに可溶である低融
点の高分子マトリクス中にナノサイズの金微粒子を分散
させたものであり、室温でロウ状の物質である。このた
め、保存時には、固体内に微粒子を閉じ込めこの微粒子
の凝集・沈殿を防ぎ、必要に応じて融解、溶解させて用
いることができる。また、還元剤を用いておらず、還元
反応後、残留不純物がなく、また簡便な作製方法のため
低コストで作製でき、更には溶媒を用いておらず微粒子
の高濃度化に適している。また、アルカリ成分を添加し
て中和することにより、保護高分子に対して金濃度を高
めることができる。
As described above, the invention of each claim of the present application is:
By heating and mixing chloroauric acid and a protective polymer having an amino group at a terminal or a side chain of the molecule or both of them, the fine particles obtained by dispersing the gold fine particles in a wax-like protective polymer at room temperature are obtained. In the manufacturing method, in the prepared fine particle dispersed polymer, nano-sized gold fine particles are dispersed in a low-melting polymer matrix soluble in water and alcohol, and it is a waxy substance at room temperature. . Therefore, at the time of storage, the fine particles are confined in a solid to prevent aggregation and precipitation of the fine particles, and can be used by melting and dissolving as necessary. In addition, since no reducing agent is used, there is no residual impurity after the reduction reaction, and the production method is simple, and can be produced at low cost. Further, no solvent is used, which is suitable for increasing the concentration of fine particles. In addition, by adding an alkali component to neutralize, the concentration of gold in the protective polymer can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における加熱攪拌前のサンプルと加熱
攪拌後の生成物の可視吸収スペクトルを測定した結果を
示す。
FIG. 1 shows the results of measuring the visible absorption spectra of a sample before heating and stirring and a product after heating and stirring in this example.

【図2】本実施例に係る加熱攪拌後の生成物を電子顕微
鏡により観察した結果を示す写真図である。
FIG. 2 is a photograph showing the result of observing a product after heating and stirring according to the present example by an electron microscope.

【図3】比較例における加熱攪拌前のサンプルと加熱攪
拌後の生成物の可視吸収スペクトルを測定した結果を示
す。
FIG. 3 shows the results of measuring the visible absorption spectra of a sample before heating and stirring and a product after heating and stirring in a comparative example.

フロントページの続き Fターム(参考) 4G065 AB10Y AB17Y AB29Y BA07 BA13 BB07 CA11 CA13 DA04 4G075 AA27 BB05 BB08 BD16 CA02 CA53 ED08 4K017 AA03 BA02 CA08 DA01 DA09 EH18 FB07 Continued on the front page F term (reference) 4G065 AB10Y AB17Y AB29Y BA07 BA13 BB07 CA11 CA13 DA04 4G075 AA27 BB05 BB08 BD16 CA02 CA53 ED08 4K017 AA03 BA02 CA08 DA01 DA09 EH18 FB07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化金酸と、分子の末端あるいは側鎖も
しくはこれらの両方にアミノ基を有する保護高分子とを
加熱混合することにより、金微粒子を室温でロウ状の保
護高分子中に分散させてなることを特徴とする微粒子の
製造方法。
1. Gold particles are dispersed in a wax-like protective polymer at room temperature by heating and mixing chloroauric acid and a protective polymer having an amino group at the terminal of the molecule or at a side chain or at both of them. A method for producing fine particles, characterized by comprising the steps of:
【請求項2】 保護高分子がポリエチレンオキサイド末
端ジアミンである請求項1記載の微粒子の製造方法。
2. The method for producing fine particles according to claim 1, wherein the protective polymer is a polyethylene oxide-terminated diamine.
【請求項3】 アルカリ成分を添加してなる請求項1ま
たは2記載の微粒子の製造方法。
3. The method for producing fine particles according to claim 1, wherein an alkali component is added.
JP10334023A 1998-11-25 1998-11-25 Production of particulate Pending JP2000160210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334023A JP2000160210A (en) 1998-11-25 1998-11-25 Production of particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334023A JP2000160210A (en) 1998-11-25 1998-11-25 Production of particulate

Publications (1)

Publication Number Publication Date
JP2000160210A true JP2000160210A (en) 2000-06-13

Family

ID=18272647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334023A Pending JP2000160210A (en) 1998-11-25 1998-11-25 Production of particulate

Country Status (1)

Country Link
JP (1) JP2000160210A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018080A1 (en) * 2000-08-03 2002-03-07 Upepo & Maji Inc. Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
WO2002020200A1 (en) * 2000-09-08 2002-03-14 Japan Science And Technology Corporation Finely particulate functional metal and finely particulate functional semiconductor each with dispersion stability and process for producing the same
KR20050049272A (en) * 2003-11-21 2005-05-25 김영근 Preparing method of gold aqueous solution
JP2007523067A (en) * 2004-01-28 2007-08-16 サイトイミューン サイエンシズ インコーポレイテッド Functionalized colloidal metal compositions and methods
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
CN103512855A (en) * 2013-09-27 2014-01-15 湖南大学 Reduced glutathione detection method
US8785202B2 (en) 2001-04-30 2014-07-22 Cytimmune Sciences, Inc. Colloidal metal compositions and methods
JP2018053361A (en) * 2016-09-16 2018-04-05 大日本塗料株式会社 Suspension of gold nanoparticles with reduced amounts of quaternary ammonium cation and/or gold and/or silver halides on the surface

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018080A1 (en) * 2000-08-03 2002-03-07 Upepo & Maji Inc. Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
WO2002020200A1 (en) * 2000-09-08 2002-03-14 Japan Science And Technology Corporation Finely particulate functional metal and finely particulate functional semiconductor each with dispersion stability and process for producing the same
US8785202B2 (en) 2001-04-30 2014-07-22 Cytimmune Sciences, Inc. Colloidal metal compositions and methods
KR20050049272A (en) * 2003-11-21 2005-05-25 김영근 Preparing method of gold aqueous solution
JP2007523067A (en) * 2004-01-28 2007-08-16 サイトイミューン サイエンシズ インコーポレイテッド Functionalized colloidal metal compositions and methods
JP4833862B2 (en) * 2004-01-28 2011-12-07 サイトイミューン サイエンシズ インコーポレイテッド Functionalized colloidal metal compositions and methods
EP2329902A1 (en) 2004-06-25 2011-06-08 Mitsubishi Materials Corporation Metal colloid particles, metal colloid and use of the colloid
US8709296B2 (en) 2004-06-25 2014-04-29 Mitsubishi Materials Corporation Metal colloidal particles, metal colloid and use of metal colloid
CN103512855A (en) * 2013-09-27 2014-01-15 湖南大学 Reduced glutathione detection method
JP2018053361A (en) * 2016-09-16 2018-04-05 大日本塗料株式会社 Suspension of gold nanoparticles with reduced amounts of quaternary ammonium cation and/or gold and/or silver halides on the surface

Similar Documents

Publication Publication Date Title
US6103868A (en) Organically-functionalized monodisperse nanocrystals of metals
JP5077941B2 (en) Core-shell type cerium oxide fine particles or dispersion containing the same and method for producing them
Mayer et al. Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Teranishi et al. Size control of palladium nanoparticles and their crystal structures
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
EP3810320A1 (en) Nanoreactors for the synthesis of porous crystalline materials
EP0914244A1 (en) Organically-functionalized monodisperse nanocrystals of metals
Wikander et al. Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods
JPH09507826A (en) Novel polymer conductive aluminosilicate material, element containing the material and manufacturing method thereof
CN110200821A (en) A kind of l-menthol slow-release material and preparation method thereof based on graphene quantum dot
JP2000160210A (en) Production of particulate
JP2002529362A (en) Water-soluble nanostructured metal oxide colloid and method for producing the same
JP4144856B2 (en) Method for producing silver powder comprising ultrathin plate-like silver particles
JP5826688B2 (en) Metal fine particle dispersed composite and method for producing the same
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Taneja et al. Synthesis of nanomaterials by chemical route
JP2004183009A (en) Method of producing metal fine particle
KR101378470B1 (en) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
Mares-Briones et al. Bimetallic Ag@ Pt core-shell nanoparticles and their catalytic activity by a green approach
JP3973236B2 (en) Method for producing monodisperse noble metal powder
EP2175988A1 (en) Process for producing finely divided, high-surface-area materials coated with inorganic nanoparticles, and also use thereof
JP2006265713A (en) Method for producing metal acicular body-containing metal particulate
JP2000281797A (en) Preparation of fine particle
JP2002256308A (en) Method for manufacturing fine noble-metal particle