JPH0469556A - Defect inspecting method for glass container - Google Patents

Defect inspecting method for glass container

Info

Publication number
JPH0469556A
JPH0469556A JP18134190A JP18134190A JPH0469556A JP H0469556 A JPH0469556 A JP H0469556A JP 18134190 A JP18134190 A JP 18134190A JP 18134190 A JP18134190 A JP 18134190A JP H0469556 A JPH0469556 A JP H0469556A
Authority
JP
Japan
Prior art keywords
light
defect
glass
value
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18134190A
Other languages
Japanese (ja)
Other versions
JPH0750040B2 (en
Inventor
Tsutomu Takizawa
滝沢 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP2181341A priority Critical patent/JPH0750040B2/en
Publication of JPH0469556A publication Critical patent/JPH0469556A/en
Publication of JPH0750040B2 publication Critical patent/JPH0750040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To automatically inspect a defect of glass container, dark-color container, etc., whose surface is bloomed according to the quantities of photodetection of respective photodetecting elements. CONSTITUTION:A glass bottle 3 is mounted on a rotary table and rotates on its axis. A light source device 1 is so arranged as to project projection light 2 containing infrared rays on the barrel wall part 3a of the bottle 3. A photodetector is arranged perpendicularly on a screen 5 and consists of many infrared- ray photodetecting elements Pi. Output electric signals 8 of the respective elements Pi based upon transmitted light 7 are inputted to an analog processing circuit Ai, whose output signal 10 is processed by a computer 9. The bottle 3 to be inspected is mounted on the rotary table and when the bottle 3 reaches a specific rotating speed, an inspection signal 20 is inputted to the computer 9. At the same time, the circuit Ai and computer 9 operate and whether or not there is the defect is decided in the computer 9. Consequently, the defect generated in the barrel wall part of the glass container, dark-color glass container, etc., whose surface is bloomed can be inspected automatically.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は9表面をブルーム処理されたガラス容器や濃色
ガラス容器等の、可視光線では検査が困難なガラス容器
の胴壁部に発生した焼傷、気泡。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for detecting defects that occur on the body wall of glass containers that are difficult to inspect with visible light, such as glass containers whose surfaces have been bloom-treated or dark-colored glass containers. Burns, bubbles.

ガラス中の異物(石)等の欠陥を検査する方法に関する
This invention relates to a method for inspecting defects such as foreign objects (stones) in glass.

ここにブルーム(b l oom)処理とは、生理的食
塩水を収納するリンゲル瓶などについて0食塩水中にガ
ラス中のNaイオンが溶出しないように亜硫酸ガスによ
り表面近くのNaイオンを硫化ナトリウムの微粒子とし
て析出させる処理をいい、ブルーム処理されtc表面は
、擦りガラス状に、若しくは葡萄の皮の表面のように、
白っぽくなっている。また濃色ガラスとは、可視光線の
透過率が低く1黒く見えるガラスをいう。
Here, Bloom treatment is used to remove Na ions near the surface using sulfur dioxide gas to prevent Na ions in the glass from eluting into the saline solution, such as Ringer bottles used to store physiological saline. The bloom-treated TC surface has a frosted glass-like appearance or a grape skin surface.
It's whitish. Dark-colored glass refers to glass that has low visible light transmittance and appears black.

(従来の技術) ガラス容器の胴壁部に発生した焼傷等の欠陥を自動検査
する手段が、特公昭57 365374#!f公報、実
開昭60− + 83854号公報および特開昭63−
109352号公報等に記載されている。これらはいづ
れも透明なガラス容器の光透過性、または表面平滑なガ
ラス容器の光反射性を利用した6のであって、入射した
光を散乱する表面を有するブルーム処理されたガラス容
器や可視光線の透過率の悪い濃色ガラス容器に対して適
用することはできない。
(Prior Art) A means for automatically inspecting defects such as burn marks occurring on the body wall of a glass container is disclosed in Japanese Patent Publication No. 57 365374#! F Publication, Utility Model Publication No. 1983-+83854, and Japanese Patent Application Publication No. 1983-
It is described in Publication No. 109352 and the like. These all take advantage of the light transmittance of transparent glass containers or the light reflectivity of glass containers with smooth surfaces6, and include bloom-treated glass containers with surfaces that scatter incident light and visible light rays. It cannot be applied to dark-colored glass containers with poor transmittance.

ブルーム処理されたガラス容器の欠陥検査法として、従
来従業されたものはなかった。
There has been no known defect inspection method for bloom-treated glass containers.

〈発明が解決しようとする課題) 本発明は9表面をブルーム処理されt(ガラス容器や濃
色ガラス容器等の、可視光線では検査が困難なガラス容
器の胴壁部に発生した欠陥を、自動的に検査する方法を
提供することを目的とする。
<Problems to be Solved by the Invention> The present invention automatically detects defects occurring in the body wall of glass containers whose surfaces are bloom-treated (glass containers, dark-colored glass containers, etc.) that are difficult to inspect with visible light. The purpose is to provide a method for visually inspecting

(課題を解決するtこめの手段) 本発明のガラス容器の欠陥検査方法は1表面をブルーム
処理されtζガラス容器や濃色ガラス容器等の欠陥検査
方法であって、該ガラス容器を軸心の周りに回転させな
がら、赤外線を含み、平行性の比較的高い発散投射光を
該容器に投射し、該軸心に平行に配設された。多数の赤
外線受光素子の列よりなる受光器によって、該容器を透
過しtこ該投射光を受光し、各受光素子の受光量に基づ
いて欠陥を判別することを特徴とする。
(More Means for Solving the Problems) The method for inspecting defects in glass containers of the present invention is a method for inspecting defects in tζ glass containers, dark-colored glass containers, etc. whose surfaces are bloom-treated, and the glass containers are While rotating around the container, a diverging projection light containing infrared radiation and having relatively high parallelism was projected onto the container and was disposed parallel to the axis. The method is characterized in that the projected light transmitted through the container is received by a light receiver consisting of a row of a large number of infrared light receiving elements, and defects are determined based on the amount of light received by each light receiving element.

上記の各受光素子の受光量に基づく欠陥の判別は、複数
の欠陥のない基準ガラス容器を用いて各受光素子毎Pi
に金目1文字、マークなどの非欠陥凹凸部が無い部分を
透過した光の受光量に基づく信号値E〈1)を記憶し、
各基準ガラス容器のうちの該信号値E(1)の最低値E
 (i)winを求めこれに一定の比率にを掛けた値E
 (i)minx にを各受光素子の判断基準値として
設定し、被検査ガラス容器を透過した光の各受光素子の
受光量に基づく信号値と該判断基準値を比較し、非欠陥
凹凸部以外の部分について、該信号値が該判断基準値よ
り低いとき欠陥有りと判断して行うことが好ましい。
Defects can be determined based on the amount of light received by each light-receiving element as described above by using a plurality of defect-free reference glass containers.
A signal value E<1) based on the amount of light transmitted through a part without non-defect uneven parts such as gold marks or marks is stored in
The lowest value E of the signal value E(1) of each reference glass container
(i) Find the win and multiply it by a certain ratio E
(i) minx is set as the judgment reference value for each light receiving element, and the signal value based on the amount of light transmitted through the glass container to be inspected received by each light receiving element is compared with the judgment reference value. It is preferable to determine that there is a defect when the signal value is lower than the determination reference value.

(作用) 通常の可視光は散乱のため、ブルーム処理されたガラス
容器を透過し難いが、赤外線は一般に波長が長いので、
微細なブルーム粒子よりなるブルーム処理層を透過し易
く、従ってブルーム処理されたガラス容器を透過し易い
、特に第1図に示すように、波長が1.8μm以上の近
赤外域にある赤外線では、ブルーム処理されたガラス容
器の透過率が透明ガラス容器の透過率とほぼ等しくなり
(Function) Ordinary visible light is difficult to pass through bloom-treated glass containers due to scattering, but infrared light generally has a long wavelength, so
Infrared rays in the near-infrared region with a wavelength of 1.8 μm or more easily pass through the bloom-treated layer made of fine bloom particles, and therefore easily pass through the bloom-treated glass container, as shown in Figure 1. The transmittance of bloom-treated glass containers is almost equal to that of transparent glass containers.

ブルーム処理層の影響を受けな(なる。It is not affected by the bloom processing layer.

しかし波長が2.5μmを越えると、ガラス自体の透過
率が減少する。従って1.8〜2.5μmの範囲で感度
を有する赤外線受光素子1例えばPbS受光素子を用い
ることによって、ブルーム処理層の影響を実質的に受け
ることなくガラス容器の欠陥検査を行う仁とができる。
However, when the wavelength exceeds 2.5 μm, the transmittance of the glass itself decreases. Therefore, by using an infrared light-receiving element 1, such as a PbS light-receiving element, which has sensitivity in the range of 1.8 to 2.5 μm, it is possible to inspect glass containers for defects without being substantially affected by the bloom treatment layer. .

濃色ガラス容器についてもほぼ同様のことがいえる。Much the same can be said for dark-colored glass containers.

なお第1図において131および32はそれぞれ、ブル
ーム処理されたガラス容器、およびブルム処理されない
点以外は同様の透明ガラス容器の透過率と波長の関係を
示す。
In FIG. 1, reference numerals 131 and 32 indicate the relationship between the transmittance and wavelength of a bloom-treated glass container and a transparent glass container that is similar except that it is not bloom-treated.

受光器は、ガラス容器の軸心に平行に配設されtこ、多
数の赤外線受光素子の列よりなっており。
The light receiver is arranged parallel to the axis of the glass container and consists of a row of many infrared light receiving elements.

ガラスN R?rを軸心の周りに回転させながら、赤外
線を含み、平行性の比較的高い発散投射光をこの容器に
投射するので、ガラス容器のほぼ全周にわたり、各受光
素子の受光量に基づいてその欠陥を検出することができ
る。
Glass NR? r is rotated around the axis and a relatively highly parallel diverging projection light containing infrared rays is projected onto this container. Defects can be detected.

しかしながら合口や欠陥等の無い部分でも、肩部のよう
にカーブして入射光に対し角度を持つガラス面を光が通
過すると透過光量は減少するしまtc肉厚分布の悪いガ
ラス面を通過した場合は透過光量分布が悪くなり暗い部
分が出てくる。
However, even if there are no gaps or defects, if light passes through a glass surface that is curved and has an angle to the incident light, such as a shoulder, the amount of transmitted light will decrease.When passing through a glass surface with poor wall thickness distribution In this case, the transmitted light amount distribution deteriorates and dark areas appear.

リンゲル類等のガラス容器には1合口〈割型の合わせ目
に対応する部分)、計量マーク(第2図の記号6参照)
および計量値を示す数字などの文字等の欠陥と関係のな
い凹凸部、すなわち非欠陥凹凸部が存在する。また前述
のように1合口や文字、欠陥の無い部分で62肩部のよ
うにカーブして入射光に対し角度を持つガラス面や肉厚
分布の悪い面を光が通過すると透過光量は減少する。従
って合口や文字、欠陥の無い部分の受光量の判断値は、
′!/数の良品の合口や文字、欠陥の無い部分の透過光
量より少なく設定する必要がある。
Glass containers such as ringers have one opening (corresponding to the seam of the split mold) and a measuring mark (see symbol 6 in Figure 2).
There are also irregularities unrelated to defects, such as letters such as numbers indicating measurement values, that is, non-defect irregularities. In addition, as mentioned above, when light passes through a glass surface that curves at an angle to the incident light, such as a 62 shoulder, or a surface with a poor thickness distribution, the amount of transmitted light decreases in areas without defects such as openings, letters, etc. . Therefore, the judgment value for the amount of light received at abutments, letters, and areas without defects is:
′! It is necessary to set the amount of light to be smaller than the amount of light transmitted through the openings, characters, and parts of non-defective products.

このlζめの手段として、複数の1通常は4〜5個の、
欠陥のない基準ガラス容器を用いて、各受光素子P】毎
に非欠陥凹凸部が無い部分を透過した光の受光量に基づ
く信号値E(i)を記憶する。
As a means for this lζ, a plurality of 1, usually 4 to 5,
Using a defect-free reference glass container, a signal value E(i) is stored for each light receiving element P based on the amount of light received that has passed through a portion with no defect-free unevenness.

この信号値E(1)は、各基準ガラス容器毎に僅かに異
なるので、それらのうちの最低信号値E(i)akin
を求める。
Since this signal value E(1) is slightly different for each reference glass container, the lowest signal value E(i) akin
seek.

本来もっと多数の基準ガラス容器において最低信号値E
(i)minを求めるべきであるが、それにはかなりの
手間を要するので、基準ガラス容器の数を比較的少数に
止め、その代わり一定の係数K(通常は0.8〜0.9
)を最低信号値E (i )minにt卦けた値E (
i )minx にを、各信号値E(i)の最低値とみ
なし、Cの値を各受光素子Piの判断基準値として設定
する。
The lowest signal value E in a larger number of standard glass containers
(i) Min should be determined, but since this requires considerable effort, the number of reference glass containers should be kept relatively small, and instead a constant coefficient K (usually 0.8 to 0.9
) is the lowest signal value E (i )min multiplied by t, E (
i) minx is regarded as the lowest value of each signal value E(i), and the value of C is set as the judgment reference value for each light receiving element Pi.

投射光の平行性は比較的高いので、各受光素子Piの受
光量は、各受光素子Piに対応する高さレベルにある環
状胴壁部部分を透過した透過光にほば基づくものである
。そして各受光素子Piの非欠陥部分を透過した光の受
光量は、各受光素子Pi毎の受光特性の差、各環状胴壁
部部分の肉厚あるいは軸方向の勾配や曲面等の差に基づ
く光透過性の差、および光源レンズに基づく高さ方向の
透過光量分布の差等によって、各々値を若干具にする。
Since the parallelism of the projected light is relatively high, the amount of light received by each light receiving element Pi is mostly based on the transmitted light transmitted through the annular body wall portion located at the height level corresponding to each light receiving element Pi. The amount of light transmitted through the non-defective portion of each light receiving element Pi is based on the difference in light receiving characteristics of each light receiving element Pi, the thickness of each annular body wall portion, or the difference in axial slope, curved surface, etc. Each value will vary slightly depending on the difference in light transmittance and the difference in the distribution of transmitted light amount in the height direction based on the light source lens.

従って各受光素子Piの判断基準値は互いに若干具なる
Therefore, the judgment reference values of each light receiving element Pi are slightly different from each other.

欠陥や合口1文字が通過するときの受光量は欠陥や合口
3文字による散乱のため、正常部が通過するときの受光
量よりも小さい、従って判断基準値を各受光素子Pi毎
に定めた後、被検査ガラス容器を透過した光の各受光素
子Piの受光量に基づく信号値と1判断基準値E (i
 )minx にを比較し、この信号値が判断基準値E
 (i )minx Kより低いとき、 欠陥か1合口
2文字等の非欠陥凹凸部が受光禦子前に存在しtζこと
が分かる。
The amount of light received when one character passes through a defect or abutment is smaller than the amount of light received when a normal part passes due to scattering by the defect or three characters. , a signal value based on the amount of light received by each light receiving element Pi and a judgment reference value E (i
)minx, and this signal value is the judgment reference value E.
(i) When minx is lower than K, it can be seen that a non-defect uneven part such as a defect or 1 abutment 2 characters exists in front of the light receiving element tζ.

このような非欠陥凹凸部が欠陥として検出されるのを防
ぐため、各受光素子からの信号を判断した結果について
、受光素子P】の順番に判断結果を縦に並べ、かつ時間
毎の結果を横に並へて画像にし1合口1文字や計量線等
出現パターンが決まっているものはその規則性と画像の
特徴から判断して欠陥とは見做さず、上記パターン以外
のものがあった場合、欠陥あつと判断することによりガ
ラス容器の欠陥を判別することができる。
In order to prevent such non-defective irregularities from being detected as defects, the results of determining the signals from each light-receiving element are arranged vertically in the order of the light-receiving element P, and the results are analyzed for each time. When images are lined up horizontally and have a fixed appearance pattern, such as one character per opening or a measurement line, judging from their regularity and image characteristics, they are not considered defects, but there are patterns other than those mentioned above. In this case, the defect in the glass container can be determined by determining that the glass container is defective.

(実施例) 第2図、第3図において、lは光源装置、2は投射光、
3はブルーム処理されtこガラス瓶である。光源装置1
は、赤外線を含む光線1a’を発する。タングステン 
フィラメントなどよりなる点光源1a、および光線1a
’を平行性の比較的高い1発散性の投射光2にするため
のコンデンサ、レンズ1bを備えている。
(Example) In FIGS. 2 and 3, l is a light source device, 2 is a projection light,
3 is a bloom-treated glass bottle. Light source device 1
emits a light beam 1a' containing infrared radiation. tungsten
A point light source 1a made of a filament, etc., and a light beam 1a
' is provided with a condenser and a lens 1b for converting the projected light 2 into divergent projection light 2 with relatively high parallelism.

ガラス瓶3は回転台4の上に載置され1回転台4がモー
タ(図示さねない)により回転することにより、軸心の
周りに回転させられるようになっている。光源装置1は
、投射光2がガラス瓶3の胴!!!部3aを投射するよ
うに配設されている。
The glass bottle 3 is placed on a rotary table 4, and is rotated around its axis by rotating the rotary table 4 by a motor (not shown). The light source device 1 projects light 2 onto the body of a glass bottle 3! ! ! It is arranged so as to project the portion 3a.

ガラス瓶3の胴壁部3aに対して、光源装置】の反対側
の、胴壁部3aと若干離れた位置にスクリーン5が配設
されている。スクリーン5上には、光源1日とガラス瓶
3の軸心を通る平面にほぼ沿って、鉛直方向に配設され
た受光器Pが設けられている。受光器p i、を多数の
(n個の)1本実施例の場合128個の赤外線受光素子
Piによって構成されている。赤外線受光素子Piは好
ましくはPbS素子よりなるが、Ge太陽電池よりなる
6のであってしよい。
A screen 5 is disposed at a position slightly apart from the body wall 3a of the glass bottle 3, on the opposite side of the light source device. A light receiver P is disposed on the screen 5 in a vertical direction substantially along a plane passing through the light source and the axis of the glass bottle 3. The photoreceiver p i is constituted by a large number (n) of 128 infrared light receiving elements Pi in this embodiment. The infrared receiving element Pi is preferably made of a PbS element, but may also be made of a Ge solar cell.

透過光7に基づ(各受光素子Piの出力電気信号8は、
各受光素子Pi毎に設けられたアナログ処理回路AIに
入力し、アナログ処理回路Aiの出力信号10はコンピ
ュータ9によって処理されるように構成されている。
Based on the transmitted light 7 (the output electrical signal 8 of each light receiving element Pi is
The signal is input to an analog processing circuit AI provided for each light receiving element Pi, and the output signal 10 of the analog processing circuit Ai is configured to be processed by a computer 9.

赤外線受光素子PifJSPbS素子よりなる場合、P
bS素子は電気抵抗型であるため、第4図に示すように
、受光によって生じた電気抵抗の変化を定電圧源1例え
ば電池11によって電流信号8に変える。
When the infrared light receiving element is composed of a PifJSPbS element, P
Since the bS element is of an electrical resistance type, the change in electrical resistance caused by light reception is converted into a current signal 8 by a constant voltage source 1, for example, a battery 11, as shown in FIG.

アナログ処理回路Aiには第4図に示すように、プリア
ンプ+2.電圧増幅器13および比較器14が直列に配
設されている。またコンピュタ9より出力されたデジタ
ル信号16をアナログ信号17に変換して比較器14の
十端子に入力するためのディジタル・アナログ(D/A
)変換器15が設けられている。
As shown in FIG. 4, the analog processing circuit Ai includes a preamplifier +2. A voltage amplifier 13 and a comparator 14 are arranged in series. Further, a digital/analog (D/A
) A converter 15 is provided.

赤外線受光素子Piよりの電流信号8は、プリアンプ1
2によって電圧信号に変換された後、電圧増幅器13に
入力して増幅されて比較器14の一端子に入力して、D
/A変換器15よりの入力信号17と比較される。
The current signal 8 from the infrared light receiving element Pi is sent to the preamplifier 1.
After being converted into a voltage signal by D 2, it is input to a voltage amplifier 13 where it is amplified and input to one terminal of a comparator 14.
It is compared with the input signal 17 from the /A converter 15.

肉眼検査により気泡などの欠陥がないことが確認された
。第1の基準ガラス瓶3を回転台4に載せ、正常部を通
過した光が受光素子に入力するのを確認しながら1手で
僅かな回転、停止を繰返して、停止のさいにコンピュー
タ9から大きい方(若しくは小さい方)から順番にD/
A変換器15にデータ信号16を送り、比較器14の出
力信号10が変化したときのD/A変換器15のデータ
を当該受光素子Piからの信号値E(i)とし、これを
現在値としてコンピュータ9に記憶する。
Visual inspection confirmed that there were no defects such as air bubbles. Place the first reference glass bottle 3 on the turntable 4, and repeat slight rotation and stop with one hand while checking that the light that has passed through the normal part enters the light receiving element. D/ in order from the smaller one (or the smaller one)
A data signal 16 is sent to the A converter 15, and the data of the D/A converter 15 when the output signal 10 of the comparator 14 changes is set as the signal value E(i) from the light receiving element Pi, and this is set as the current value. It is stored in the computer 9 as .

第2の基準ガラスびん3について6同様の処理を行い、
得られtc現在値を第1の基準ガラス瓶3のそれと比較
し、小さい方をMIN、値として設定する。
6 Perform the same process on the second reference glass bottle 3,
The obtained current tc value is compared with that of the first reference glass bottle 3, and the smaller one is set as the MIN value.

第3以降の基準ガラス瓶3についても同様の処理を行い
、 MIN、値と比較し、 MIN、値を更新して最低
値E(i)+inを定める。この最低値E (i )w
inにK(好ましくは0.8〜0.9の間の所定値)を
掛けtこ値E (i )+tnx にを判断基準値とし
て、各アナログ処理回路A1のD/A変換器15毎にセ
ットする。
The same process is performed for the third and subsequent reference glass bottles 3, and the MIN value is compared with the MIN value, and the MIN value is updated to determine the minimum value E(i)+in. This minimum value E (i)w
For each D/A converter 15 of each analog processing circuit A1, multiply in by K (preferably a predetermined value between 0.8 and 0.9) and use the value E (i) + tnx as a criterion value. set.

以上の準備が済んだ後、検査は次のようにして行われる
After the above preparations are completed, the inspection is performed as follows.

被検査ガラス瓶3を回転中の回転台4に載置すると、「
びん有り」信号19がコンピュータ9に入力し、ガラス
瓶3が所定回転数に達すると検査信号20がコンピュー
タ9に入力する。検査信号20の入力と同時に各アナロ
グ処理回路Aiおよびコンピュータ9が動作して、各受
光素子Piに対応する高さレベルの環状部分毎に欠陥の
有無がコンビコータ9内において判別される。
When the glass bottle 3 to be inspected is placed on the rotating turntable 4, "
A "bottle present" signal 19 is input to the computer 9, and when the glass bottle 3 reaches a predetermined rotational speed, an inspection signal 20 is input to the computer 9. Simultaneously with the input of the inspection signal 20, each analog processing circuit Ai and the computer 9 operate, and the presence or absence of a defect is determined in the combination coater 9 for each annular portion at the height level corresponding to each light receiving element Pi.

この場合第5図に示すように、気泡や凹凸部は光の散乱
のtcめ、正常部に比べて受光素子Piの出力信号値が
低く、即ちその部分に基づ(信号値E(i)が判断基準
値であるE (i )minx Kより小さいため比較
器14より信号10 を出力して。
In this case, as shown in FIG. 5, the output signal value of the light-receiving element Pi is lower in bubbles and uneven parts than in normal parts due to light scattering (tc), that is, based on that part (signal value E(i) Since E(i)minxK is smaller than the judgment reference value, the comparator 14 outputs a signal 10.

図では黒色部として現れる。It appears as a black part in the figure.

第5図において、横軸は時間を示し、ガラス瓶3の1回
転に1925単位時間かかっていることが示される。縦
軸は受光器Pの高さに当り、数字は各受光素子Piの番
号を示す。
In FIG. 5, the horizontal axis indicates time, and it is shown that one rotation of the glass bottle 3 takes 1925 units of time. The vertical axis corresponds to the height of the light receiver P, and the numbers indicate the number of each light receiving element Pi.

第5図はコンピュータ9で画像処理されたブタをプリン
トアウトした画面に基づくものであって、22および2
3の黒色部分はそれぞれ1合口および計量線1文字の非
欠陥凹凸部に対応する部分であり、記号24の黒色部分
は気泡に基づ(部分である。各部分が2回現われるのは
、光源装置l側にきtこ時とその反対側にきtこ時の2
回、受光素子Piが透過光7を受光するからである。
FIG. 5 is based on a printout of a pig that has been image-processed by computer 9, and is based on 22 and 2
The black parts of 3 correspond to the non-defect uneven parts of 1 joint and 1 character of the measurement line, respectively, and the black parts of symbol 24 are based on air bubbles.The reason why each part appears twice is due to the light source. 2 when the device is turned on the L side and when it is turned on the opposite side.
This is because the light receiving element Pi receives the transmitted light 7 twice.

非欠陥凹凸部に基づく黒色部22.23は1その出現模
様がほぼ定まっているから、これをコンピュータ9に記
憶させて非欠陥部として消去するそして欠陥部に基づく
黒色部24で面積が所定以」二に大きいのものが検出さ
れた時、コンピュータ9は「びんリジェクト信号」21
を出力する。また黒色部24の形状によって、それが気
泡によるものか等を判別することができる。
Since the appearance pattern of the black parts 22 and 23 based on non-defect uneven parts is almost fixed, this is stored in the computer 9 and erased as a non-defect part. ” When the second largest one is detected, the computer 9 sends a “bottle reject signal” 21
Output. Also, depending on the shape of the black part 24, it can be determined whether it is caused by air bubbles or the like.

なお基準ガラス瓶で信号処理する場合、水平に連続して
黒色部が出現する部分1例えば瓶3の肩部3b(第3図
参照)は、対応する受光素子Pのアナログ処理回路Ai
の比較器14へのD/A変11!!器15よりの入力値
17をOにして検査範囲外とする。
Note that when signal processing is performed using a reference glass bottle, the portion 1 where a black portion appears continuously horizontally, for example, the shoulder portion 3b of the bottle 3 (see Fig. 3), is connected to the analog processing circuit Ai of the corresponding light-receiving element P.
D/A change 11 to comparator 14! ! The input value 17 from the device 15 is set to O to be outside the inspection range.

(発明の効果) 本発明は1表面をブルーム処理されたガラス容器や濃色
ガラス容器等の胴壁部に発生した欠陥を、自動的に検査
することができるという効果を奏する。
(Effects of the Invention) The present invention has the advantage that it is possible to automatically inspect defects occurring in the body wall of glass containers, dark-colored glass containers, etc. whose surfaces have been subjected to bloom treatment.

さらに請求項2記載の本発明は1金目1文字。Furthermore, the present invention as set forth in claim 2 is based on the first gold and one character.

マーク等の非欠陥凹凸部の存在、各受光素子毎の受光特
性の差、ガラス容器の高さ方向の肉厚、勾配の差に基づ
く光透過性の差、および光源レンズに基づく高さ方向の
透過光量分布の差等による影響を受けることな(1上記
検査を行うことができるという効果を奏する。
The existence of non-defective uneven parts such as marks, differences in light receiving characteristics for each light receiving element, differences in light transmittance due to differences in wall thickness and slope of the glass container in the height direction, and differences in light transmittance in the height direction based on the light source lens. This has the advantage that the above inspection can be performed without being affected by differences in transmitted light quantity distribution, etc. (1).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は投射光の波長とガラス容器の透過率の関係の例
を示す線図、第2図は本発明を実施するための装置の例
の説明用平面図、第3図は第2図の装置の説明用正面図
、第4図は第2図の装置における信号処理装置の例の回
路図、第5図は第2図の装置により処理されて得られた
。欠陥部を含む画像の例である。 2・・投射光、3 ガラス容器、P 受光器Pi・受光
素子。 塑〜皓
FIG. 1 is a diagram showing an example of the relationship between the wavelength of projected light and the transmittance of a glass container, FIG. 2 is an explanatory plan view of an example of an apparatus for carrying out the present invention, and FIG. FIG. 4 is a circuit diagram of an example of a signal processing device in the apparatus shown in FIG. 2, and FIG. 5 is a front view for explaining the apparatus shown in FIG. This is an example of an image including a defective part. 2... Projection light, 3 Glass container, P Photoreceiver Pi/light receiving element. plastic ~ hao

Claims (2)

【特許請求の範囲】[Claims] (1)表面をブルーム処理されたガラス容器や濃色ガラ
ス容器等の欠陥検査方法において、該ガラス容器を軸心
の周りに回転させながら、赤外線を含み、平行性の比較
的高い発散投射光を該容器に投射し、該軸心に平行に配
設された、多数の赤外線受光素子の列よりなる受光器に
よって、該容器を透過した該投射光を受光し、各受光素
子の受光量に基づいて欠陥を判別することを特徴とする
ガラス容器の欠陥検査方法。
(1) In a defect inspection method for glass containers with bloom-treated surfaces, dark-colored glass containers, etc., while rotating the glass container around its axis, a relatively highly parallel diverging projection light containing infrared rays is emitted. The projected light transmitted through the container is received by a light receiver consisting of a row of a large number of infrared light receiving elements arranged parallel to the axis of the container, and based on the amount of light received by each light receiving element. 1. A method for inspecting defects in glass containers, characterized in that defects are determined by
(2)複数の欠陥のない基準ガラス容器を用いて、各受
光素子Pi毎に合目、文字、マークなどの非欠陥凹凸部
が無い部分を透過した光の受光量に基づく信号値E(i
)を記憶し、各基準ガラス容器のうちの該信号値E(i
)の最低値E(i)minを求め、これに一定の比率に
を掛けた値E(i)min×Kを各受光素子の判断基準
値として設定し、被検査ガラス容器を透過した光の各受
光素子の受光量に基づく信号値と該判断基準値を比較し
、非欠陥凹凸部以外の部分について、該信号値が該判断
基準値より低いとき欠陥有りと判断する、請求項1記載
のガラス容器の欠陥検査方法。
(2) Using multiple defect-free reference glass containers, the signal value E(i
), and the signal value E(i
), and the value E(i)min x K, which is obtained by multiplying this by a certain ratio, is set as the judgment reference value for each light receiving element, and the value of the light transmitted through the glass container to be inspected is determined. The signal value based on the amount of light received by each light-receiving element is compared with the judgment reference value, and when the signal value is lower than the judgment reference value for a portion other than the non-defect uneven portion, it is judged that there is a defect. Defect inspection method for glass containers.
JP2181341A 1990-07-09 1990-07-09 Glass container defect inspection method Expired - Lifetime JPH0750040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2181341A JPH0750040B2 (en) 1990-07-09 1990-07-09 Glass container defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2181341A JPH0750040B2 (en) 1990-07-09 1990-07-09 Glass container defect inspection method

Publications (2)

Publication Number Publication Date
JPH0469556A true JPH0469556A (en) 1992-03-04
JPH0750040B2 JPH0750040B2 (en) 1995-05-31

Family

ID=16099005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2181341A Expired - Lifetime JPH0750040B2 (en) 1990-07-09 1990-07-09 Glass container defect inspection method

Country Status (1)

Country Link
JP (1) JPH0750040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156309A (en) * 2000-11-20 2002-05-31 Dainippon Printing Co Ltd Defect inspection device of optical system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462885A (en) * 1977-10-28 1979-05-21 Nec Corp Flaw inspector of semi-transparent objects
JPS63109352A (en) * 1986-10-28 1988-05-14 Toyo Glass Kk Apparatus for inspecting flaw of transparent container
JPH0276079A (en) * 1988-09-12 1990-03-15 Omron Tateisi Electron Co Teaching method in substrate inspecting instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462885A (en) * 1977-10-28 1979-05-21 Nec Corp Flaw inspector of semi-transparent objects
JPS63109352A (en) * 1986-10-28 1988-05-14 Toyo Glass Kk Apparatus for inspecting flaw of transparent container
JPH0276079A (en) * 1988-09-12 1990-03-15 Omron Tateisi Electron Co Teaching method in substrate inspecting instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156309A (en) * 2000-11-20 2002-05-31 Dainippon Printing Co Ltd Defect inspection device of optical system
JP4659970B2 (en) * 2000-11-20 2011-03-30 大日本印刷株式会社 Optical system defect inspection equipment

Also Published As

Publication number Publication date
JPH0750040B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US7369240B1 (en) Apparatus and methods for real-time adaptive inspection for glass production
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US7551274B1 (en) Defect detection lighting system and methods for large glass sheets
US4775889A (en) Bottle mouth defect inspection apparatus
CN1240935A (en) Method and apparatus for optical inspection of transparent containers using infrared and polarized visible light
JPS6435246A (en) Apparatus and method for measuring nature of surface
US6424414B1 (en) Method and apparatus for detecting refractive defects in transparent containers
JP3205511B2 (en) Seal inspection device
US6911653B2 (en) Inspecting method and apparatus for foreign matter
CN1120157A (en) Container sealing surface inspection
US7317524B2 (en) Method and device for detecting surface defects on the neck ring of a transparent or translucent container of revolution
JPS6098340A (en) Bottle examination device
JPH0634573A (en) Bottle inspector
JPH0469556A (en) Defect inspecting method for glass container
CN218481439U (en) Glasses optical lens piece defect detecting device
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
JPS63109352A (en) Apparatus for inspecting flaw of transparent container
JPH0734365Y2 (en) Foreign object detection and removal device
JPH08247722A (en) Dimension measuring instrument
JPH0252241A (en) Surface defect inspection instrument
JPH0432340B2 (en)
JP3682249B2 (en) Glass bottle thread inspection device
JPH05200365A (en) Foreign matter detector
JPS595940A (en) Rejected particle detection method and apparatus for rejected particle of particulate
JPS5918656B2 (en) Surface inspection method