JPH0469431A - Vibro-isolating supporter - Google Patents

Vibro-isolating supporter

Info

Publication number
JPH0469431A
JPH0469431A JP17976890A JP17976890A JPH0469431A JP H0469431 A JPH0469431 A JP H0469431A JP 17976890 A JP17976890 A JP 17976890A JP 17976890 A JP17976890 A JP 17976890A JP H0469431 A JPH0469431 A JP H0469431A
Authority
JP
Japan
Prior art keywords
slider
vibration
cylindrical body
vertical
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17976890A
Other languages
Japanese (ja)
Inventor
Seinosuke Kato
加藤 清之輔
Teruo Sasaki
輝男 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP17976890A priority Critical patent/JPH0469431A/en
Publication of JPH0469431A publication Critical patent/JPH0469431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To display vibro-isolating action relating to horizontal and vertical vibrations with a simple structure by forming a contact surface between a receiving seat and a slider into a tapered surface tilted downward toward the internal peripheral surface from the axial center of a cylindrical body. CONSTITUTION:A sliding surface 11 of a slider 9 is brought into slide contact with a lower surface of a slip plate 12 by fixing the stainless steel-made slip plate 12 to a lower surface of vibro-isolating floor 3 so that the slider 9 is smoothly slided by stable friction force relating to the slip plate 12 at the time of generating horizontal vibration. A mutual contact surface between a receiving seat 7 and the slider 9 is formed into tapered surfaces 14, 15 tilted downward toward an internal peripheral surface 8 from the axial center 0 of a cylindrical body 4. The slider 9 is equally distributively divided into a plurality of block units 9a to 9d along the peripheral direction of the slider. In this way, each block unit 9a to 9d of the slider 9 is slided to easily spread to the outside along the tapered surface 15 into contact with the receiving seat 7 and well pressed to the internal peripheral surface 8 of the cylindrical body 4 to improve vertical vibro-isolation when a vertical load is applied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防振支持装置に関し、特にコンビ二一夕、精密
計測機器、精密加工機器などのWA器類を載置する床な
どの上部構造物を、基礎などの下部構造物上に水平及び
鉛直変位可焼に支持し、交通振動や地震動による機器類
の機能停止や機器類の横転、電気配線の断線などの損壊
を未然に防止して機器類を交通振動や地震動から保護す
る防振支持装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a vibration isolation support device, and particularly to an upper structure such as a floor on which WA equipment such as a combination machine, precision measuring equipment, and precision processing equipment is placed. Objects are supported horizontally and vertically on substructures such as foundations so that they can be displaced horizontally and vertically to prevent damage such as failure of equipment, overturning of equipment, and breakage of electrical wiring due to traffic vibrations and earthquake motion. This article relates to a vibration-proof support device that protects equipment from traffic vibrations and earthquake motion.

〔従来の技術〕[Conventional technology]

コンピュータ、精密計測機器、精密加工機器などの機器
類を交通振動や地震動から保護する防振支持装置として
は、例えば、以下の(り〜(iv )に承すようなもの
がある。
Examples of anti-vibration support devices that protect equipment such as computers, precision measuring instruments, precision processing instruments, etc. from traffic vibrations and seismic motions include those that meet the following (ri) to (iv).

(i)特開昭47−35672号公報に開示された発明
は、案内筒内でばねによって上部に押しつけられるスラ
イダよりなる減衰装置を内蔵した空気ばねである。
(i) The invention disclosed in Japanese Unexamined Patent Publication No. 47-35672 is an air spring incorporating a damping device consisting of a slider that is pressed against the upper part by a spring within a guide cylinder.

(ii)特開昭54−52821号公報に開示された発
明は、建築構造体の上床から釣り床を吊り下げ、その釣
り床と建築構造体の下床との間に水平ダンパ−を取り付
けて釣り床と構造体とを水平方向に弾性的に係止させる
ようにした防振床である。
(ii) The invention disclosed in JP-A-54-52821 suspends a fishing bed from the upper floor of a building structure, and installs a horizontal damper between the fishing bed and the lower floor of the building structure. This is a vibration-proofing floor in which the fishing floor and the structure are elastically engaged in the horizontal direction.

(iii )特開昭61−228138号公報に開示さ
れた発明は、基礎プレート上に固設された支持プレート
と、その支持プレート上に載置された上プレートとの間
に固体潤滑剤のコーティング層を介在させて上プレート
を支持プレート上で水平方向に滑動させ、基礎プレート
と上プレート間のダッシュポット及びばねにより上プレ
ートの滑動を弾性減衰させるようにした防振装置である
(iii) The invention disclosed in JP-A No. 61-228138 is a coating of solid lubricant between a support plate fixed on a base plate and an upper plate placed on the support plate. This is a vibration isolating device in which an upper plate is slid horizontally on a support plate with a layer interposed therebetween, and the sliding movement of the upper plate is elastically damped by a dashpot and a spring between the base plate and the upper plate.

(iv)特開昭64−69842号公報に開示された発
明は、基礎床上に配置された転動球上に基盤を載置し、
基礎床と基盤間のばねと粘性減衰器で水平防振させ、基
盤上に積層ゴム構造体と緩衝ダンパを介して防振床を載
置して鉛直防振させるようにした防振装置である。
(iv) The invention disclosed in Japanese Patent Application Laid-Open No. 64-69842 places a base on rolling balls placed on a foundation floor,
This is a vibration isolator that provides horizontal vibration isolation using springs and viscous dampers between the foundation floor and the foundation, and vertical vibration isolation by placing the vibration isolation floor on the foundation via a laminated rubber structure and buffer damper. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述したN)〜(iv )に記載した各種の
防振装置には以下に示す問題点があった。
By the way, the various vibration isolating devices described in items N) to (iv) above have the following problems.

(i)特開昭47−35672号公報に開示された空気
ばねは、水平動に対して摩擦による防振作用を発揮する
が、鉛直方向は空気ばねとオリフィスを組合わせて減衰
効果を得るもので、その空気ばねなしでは鉛直方向の減
衰効果が得られないものとなっている。
(i) The air spring disclosed in Japanese Unexamined Patent Publication No. 47-35672 exhibits a vibration damping effect due to friction against horizontal motion, but a damping effect is obtained in the vertical direction by combining the air spring and an orifice. Therefore, without the air spring, the damping effect in the vertical direction cannot be obtained.

(ii)特開昭54−52821号公報に開示された防
振床では、鉛直振動に対して全く防振作用がなく、水平
振動に対しても水平ダンパーを別に設置しなければなら
ない。
(ii) The vibration-isolating floor disclosed in Japanese Patent Application Laid-Open No. 54-52821 has no vibration-isolating effect at all against vertical vibrations, and a separate horizontal damper must be installed for horizontal vibrations as well.

(iii )特開昭61−228138号公報に開示さ
れた防振装置では、比較的単純な構造であるが、水平振
動のみの防振構造であり、鉛直振動に対して全く防振作
用がない。
(iii) The vibration isolator disclosed in Japanese Patent Application Laid-open No. 61-228138 has a relatively simple structure, but the vibration isolating structure is only for horizontal vibration and has no vibration isolating effect against vertical vibration. .

(iv )特開昭64−69842号公報に開示された
防振装置では、鉛直及び水平振動に対して防振作用を呈
するが、その構造が複雑であり、而も、鉛直振動を吸収
するための積層ゴム構造体はその物理的制約から鉛直固
有振動数を5Hz以下に設計することが困難であるため
、地震動での2〜10Hzの卓越振動数に対して防振作
用が発揮されない。
(iv) The vibration isolator disclosed in Japanese Patent Application Laid-Open No. 64-69842 exhibits a vibration isolating effect against vertical and horizontal vibrations, but its structure is complicated, and because it absorbs vertical vibrations, Due to its physical limitations, it is difficult to design the laminated rubber structure to have a vertical natural frequency of 5 Hz or less, so it does not exhibit a vibration damping effect against the dominant frequency of 2 to 10 Hz caused by earthquake motion.

そこで、本発明は上記問題点に鑑みて提案されたもので
、その目的とするところは、簡単な構造で水平及び鉛直
振動に対して防振作用を発揮し得る防振支持装置を提供
するこ゛とにある。
Therefore, the present invention was proposed in view of the above problems, and its purpose is to provide a vibration isolating support device that has a simple structure and can exhibit a vibration isolating effect against horizontal and vertical vibrations. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明における上記目的を達成するための技術的手段は
、下部構造物上に垂設された筒状体と、筒状体内に収納
されて下部構造物上に立設された圧縮ばねと、筒状体内
にその内周面と非接触状態で収納されて圧縮ばね上に載
置された受座と、筒状体にその内周面と摺接状態で鉛直
方向に滑動自在に嵌挿されて受座上に載置され、上面に
上部構造物が水平方向に滑動自在に載置されたスライダ
とからなり、上記受座とスライダとの相互の接触面を、
筒状体の軸中心から内周面へ向かって下方使斜するテー
バ面としたことである。
Technical means for achieving the above object of the present invention include: a cylindrical body vertically disposed on a lower structure; a compression spring housed in the cylindrical body and erected on the lower structure; A seat is housed in the cylindrical body without contacting its inner peripheral surface and is placed on a compression spring, and a seat is fitted into the cylindrical body in sliding contact with the inner periphery of the cylindrical body so as to be slidable vertically. a slider placed on a catch and on the upper surface of which an upper structure is placed so as to be horizontally slidable; the mutual contact surface between the catch and the slider is
The tapered surface is inclined downward from the axial center of the cylindrical body toward the inner circumferential surface.

また、鉛直方向での防振効果を向上させる点で、上記ス
ライダをその周方向に沿って複数のブロック体に分割す
ることが望ましい。
Furthermore, in order to improve the vibration damping effect in the vertical direction, it is desirable to divide the slider into a plurality of blocks along its circumferential direction.

〔作用〕[Effect]

本発明に係る防振支持装置では、交i11振動や地震動
の発生時、鉛直荷重がスライダ、受座及び圧縮ばねに作
用する。鉛直振動の入力により上記スライダは鉛直荷重
を受けると同時に、受座と接触するテーバ面で鉛直荷重
の水平分力を受けて筒状体に押し付けられながら鉛直方
向に滑動する。この時、水平分力によるスライダ外周面
の筒状体内周面への押し付けにより鉛直摩擦力が発生し
、この鉛直摩擦力により鉛直振動を減衰させる。また、
水平振動の入力により上記スライダは上部構造物と接触
する上面で鉛直荷重を受けて押し付けられた状態で水平
方向に滑動する。この時、鉛直荷重によるスライダ上面
の上部構造物下面への押し付けにより水平摩擦力が発生
し、この水平摩擦力により水平振動を減衰させる。
In the anti-vibration support device according to the present invention, a vertical load acts on the slider, the seat, and the compression spring when cross-i11 vibration or earthquake motion occurs. The slider receives a vertical load due to input of vertical vibration, and at the same time receives a horizontal component of the vertical load on the Taber surface that contacts the seat, and slides in the vertical direction while being pressed against the cylindrical body. At this time, a vertical frictional force is generated by pressing the outer peripheral surface of the slider against the inner peripheral surface of the cylindrical body by the horizontal component force, and the vertical vibration is damped by this vertical frictional force. Also,
Due to the horizontal vibration input, the slider slides in the horizontal direction while being pressed by a vertical load on the upper surface that contacts the upper structure. At this time, a horizontal frictional force is generated by pressing the top surface of the slider against the bottom surface of the upper structure due to the vertical load, and this horizontal frictional force damps the horizontal vibration.

〔実施例〕〔Example〕

本発明に係る防振支持装置の一実施例を第1図乃至第4
図を参照しながら説明する。同図に示す実施例は、本発
明の防振支持装置を床防振に適用した場合を示す。
An embodiment of the vibration isolating support device according to the present invention is shown in FIGS. 1 to 4.
This will be explained with reference to the figures. The embodiment shown in the figure shows a case where the vibration isolation support device of the present invention is applied to floor vibration isolation.

第1図及び第2図に示す防振支持装置(1)は、下部構
造物であるコンクリート床(2)と、コンピュータ、w
1密計測機器や精密加工機器などの機器類が載置される
上部構造物である防振床(3)との間に設置される。こ
の防振支持装置(1)において、(4)はステンレス等
の金属製取付座(5)を介してコンクリート床(2)上
にネジ止め等により垂設された横断面円形の筒状体で、
交通振動や地震動などによる外力が作用しても変形しな
いように金属などの硬質材料からなることが好ましい。
The anti-vibration support device (1) shown in Figures 1 and 2 consists of a concrete floor (2) which is a lower structure, a computer, w
It is installed between it and the vibration-proof floor (3), which is the upper structure on which equipment such as high-density measurement equipment and precision processing equipment is placed. In this anti-vibration support device (1), (4) is a cylindrical body with a circular cross section that is vertically installed on the concrete floor (2) by screws or the like via a metal mounting seat (5) made of stainless steel or the like. ,
It is preferably made of a hard material such as metal so that it does not deform even when external forces such as traffic vibrations and earthquake vibrations act on it.

(6)は筒状体(4)内に収納されてコンクリート床(
2)上に立設さた圧縮ばねで、防振床(3)上に載置さ
れる機器類の積荷重量などにより図示の如く二重コイル
ばね(6a)  (6b)にしたり、その他−重コイル
ばねやゴムばねなどが使用される。また、地震動の卓越
振動数が2〜10)1zにあるので鉛直固有振動数が1
.5Hz以下となるように設計することが望ましい。(
7ンは筒状体(4)内にその内周面(8)と非接触状態
で収納されて圧縮ばね(6)上に載置された受座で、金
属或いは硬質プラスチックなどの硬質材料からなる。(
9)は筒状体(4)にその内周面(8)と摺接状態で鉛
直方向に滑動自在に嵌挿されて受座(7)上に載置され
たスライダで、受座(7)よりも若干軟質で弾性変形可
能なものが好適で、例えば中硬質ゴム、或いはポリウレ
タン、ナイロン等の軟質プラスチックなどがあり、その
硬度(Hs)が70〜90程度の材質がよい。また、ス
ライダ(9ンは、その外周面、即ち、筒状体(4)の内
周面(8)と摺接する滑動面(10) 、及びスライダ
(9)の上面、即ち、後述する防振床(3)の滑り板(
12)の下面(13)とWi接する滑動面(11)を、
ウレタン、ナイロン或いはテフロンで形成し、内部をゴ
ム材で形成した異質の材質からなる複合構造としてもよ
い、このように上記スライダ(8)の滑動面(10) 
 (11)は耐摩耗性が良好で摩擦係数が安定している
材質で形成することが望ましいl1M%これに対して筒
状体(4)の内周面(8)も、鉛直振動に対してスライ
ダ(8)の滑動面(10)に安定した摩擦力が発止する
ように適宜仕上げ加工を施すのが望ましい。また、防振
床(3)の下面にはメンテナンスフリーのステンレス製
の滑り板(12)を固着することにより、スライダ(9
)の滑動面(11)を滑り板(12)の下面(13)に
摺接させ、水平振動の発生時に上記スライダ(9)が漬
り板(12)に対して安定した摩擦力でもって円滑に滑
動するようにしている。
(6) is housed in the cylindrical body (4) and the concrete floor (
2) A compression spring installed upright on the vibration-proof floor (3) can be used as a double coil spring (6a) (6b) as shown in the diagram depending on the load of the equipment placed on the vibration-proof floor (3), or other Coil springs and rubber springs are used. In addition, since the dominant frequency of earthquake motion is between 2 and 10)1z, the vertical natural frequency is 1
.. It is desirable to design the frequency to be 5 Hz or less. (
7 is a catch seat that is housed in the cylindrical body (4) without contacting its inner peripheral surface (8) and placed on the compression spring (6), and is made of a hard material such as metal or hard plastic. Become. (
9) is a slider that is fitted into the cylindrical body (4) so as to be slidably vertically in sliding contact with the inner peripheral surface (8) of the cylindrical body (4) and placed on the catch seat (7). ) and is elastically deformable, such as medium-hard rubber, or soft plastics such as polyurethane and nylon, preferably having a hardness (Hs) of about 70 to 90. In addition, the slider (9) includes a sliding surface (10) that comes into sliding contact with the outer circumferential surface of the slider (9), that is, the inner circumferential surface (8) of the cylindrical body (4), and the upper surface of the slider (9), that is, the vibration-proofing surface (described later). The sliding board on the floor (3) (
12) The sliding surface (11) in contact with the lower surface (13) is
The sliding surface (10) of the slider (8) may have a composite structure made of different materials, such as urethane, nylon, or Teflon, and the inside made of rubber.
(11) is desirably made of a material with good wear resistance and a stable coefficient of friction l1M% On the other hand, the inner peripheral surface (8) of the cylindrical body (4) also resists vertical vibration. It is desirable to appropriately finish the sliding surface (10) of the slider (8) so that a stable frictional force is generated. In addition, by fixing a maintenance-free stainless steel sliding plate (12) to the bottom surface of the vibration-proof floor (3), a slider (9) is installed.
) is brought into sliding contact with the lower surface (13) of the sliding plate (12), so that when horizontal vibration occurs, the slider (9) slides smoothly against the dipping plate (12) with stable frictional force. I try to make it slide smoothly.

但し、防振床(3)の下面自体が平滑面であれば上記滑
り板(12)は必ずしも必要ではない。
However, if the lower surface of the vibration-proof floor (3) itself is a smooth surface, the sliding plate (12) is not necessarily required.

本発明の特徴は、受座(7)とスライダ(9)との相互
の接触面を、筒状体(4)の軸中心Oから内周面(8)
へ向かって下方傾斜するテーパ面(14)  (15)
としたことにある。また、上記スライダ(9)はその周
方向に沿って複数(図では4個)のブロック体(9a)
〜(9d)に等配分側される。これにより、鉛直荷重が
加わった時にスライダ(9)の各ブロック体(9a)〜
(9d)が受座(7)と接触するテーパ面(15)に沿
って外方へ滑動して拡がり易くなり、各ブロック体(9
a)〜(9d)が筒状体(4)の内周面(8)に良好に
押し付けられて鉛直防振の向上が図れる。
A feature of the present invention is that the mutual contact surface between the catch seat (7) and the slider (9) is
Tapered surface that slopes downward toward (14) (15)
The reason is that Further, the slider (9) has a plurality of (four in the figure) block bodies (9a) along its circumferential direction.
~(9d) are equally distributed. As a result, each block body (9a) of the slider (9) when a vertical load is applied.
(9d) slides outward along the tapered surface (15) in contact with the catch seat (7) and spreads easily.
a) to (9d) are well pressed against the inner circumferential surface (8) of the cylindrical body (4), thereby improving vertical vibration isolation.

83図は上記構成からなる防振支持装置(1)を建築物
の一部に通用した床防振の施工例を示す、この施工例で
は、コンクリート床(2)上に複数の防振支持装置(1
)(1)−を設置し、その上に防振床(3)を載置する
。この防振支持装置<1)(1)−m−の平面的な配置
パターンは、防振床(3)上に載置される機器類の配置
に基づく鉛直荷重分布により設計される。上記防振床(
3)とコンクリート床(2)との間には常に所定のテン
シランが加わった状態のばね(16)  (16)−が
水平に張設され、交通振動や地震動による水平振動の入
力に対して防振床(3)が初期位置に復元するようにし
ている。尚、防振床(3)とその周囲の壁面(17)と
の間には、防振床(3)が水平振動の入力により移動で
きるように間隙が設けられ、防振床(3)と壁面(17
)間に蛇腹(18)を張設して上記間隙を塞いでいる。
Figure 83 shows an example of floor vibration isolation construction in which the vibration isolation support device (1) having the above structure is applied to a part of a building. In this construction example, multiple vibration isolation support devices are installed on a concrete floor (2). (1
)(1)- is installed, and the vibration-proof floor (3) is placed on top of it. The planar arrangement pattern of the vibration isolation support device <1)(1)-m- is designed based on the vertical load distribution based on the arrangement of equipment placed on the vibration isolation floor (3). The vibration-proof floor above (
3) and the concrete floor (2), springs (16) (16)- with a predetermined tensile force applied are installed horizontally to prevent input of horizontal vibrations caused by traffic vibrations and earthquake motions. The shaking bed (3) is restored to its initial position. A gap is provided between the vibration-isolating floor (3) and the surrounding wall surface (17) so that the vibration-isolating floor (3) can move due to input of horizontal vibration. Wall surface (17
) A bellows (18) is stretched between the holes to close the gap.

上述の床防振構造では、例えば、1 、5Hz程度の鉛
直振動で±100日程度、0.5〜1 、5FIz程度
の水平振動で±200鶴程度の三次元運動が可能なよう
に設計される。
The above-mentioned floor vibration isolation structure is designed to allow three-dimensional movement of about ±100 days with vertical vibrations of about 1.5 Hz and ±200 days of horizontal vibration with horizontal vibrations of about 0.5 to 1.5 FIz, for example. Ru.

次に、交通振動や地震動の発生時での防振支持装置(1
)の動作を以下に説明する。
Next, we will discuss the anti-vibration support device (1
) operation is explained below.

第1図及び第2図の防振支持装置(1)では、交通振動
や地震動により水平振動及び鉛直振動を受けると、スラ
イダ(9)が筒状体(4)に対して鉛直方向に滑動する
と共に滑り板(12)に対して水平方向に滑動する。
In the anti-vibration support device (1) shown in Figures 1 and 2, the slider (9) slides in the vertical direction relative to the cylindrical body (4) when subjected to horizontal and vertical vibrations due to traffic vibration or earthquake motion. It also slides in the horizontal direction with respect to the sliding plate (12).

具体的に説明すると、まず、第4図に示すように水平振
動の入力により上記スライダ(9)は滑り板(12)に
対して鉛直荷重Wを受けて押し付けられた状態で水平方
向に滑動する。この時、鉛直荷重Wによるスライダ(9
)の滑動面(11)の滑り板(12)の下面(13)へ
の押し付けにより水平摩擦力Fh−W・μが発生する。
To explain specifically, first, as shown in FIG. 4, due to the input of horizontal vibration, the slider (9) slides in the horizontal direction while being pressed against the sliding plate (12) under the vertical load W. . At this time, the slider (9
) pressing the sliding surface (11) of the sliding plate (12) against the lower surface (13) of the sliding plate (12) generates a horizontal frictional force Fh-W·μ.

この水平摩擦力Fhにより水平振動を速やかに減衰させ
る。この場合、水平摩擦力Fhは、スライダ(9)と滑
り板(12)の材質の組合わせにもよるが、摩擦係数μ
が0.05〜0.5程度の十分安定したものが得られる
This horizontal frictional force Fh quickly damps horizontal vibrations. In this case, the horizontal frictional force Fh depends on the combination of materials of the slider (9) and the sliding plate (12), but the friction coefficient μ
A sufficiently stable product with a value of about 0.05 to 0.5 can be obtained.

また、鉛直振動の入力により圧縮ばね(6)が変位して
防振床(3)を静止状態に保持しようとするが、実際上
、上記防振床(3)には応答(過渡)振動が発生する。
In addition, the compression spring (6) is displaced by the input of vertical vibration and tries to hold the vibration-isolating floor (3) in a stationary state, but in reality, the vibration-isolating floor (3) has a response (transient) vibration. Occur.

従って1、二の応答振動を可及的に減宣させる必要があ
る。鉛直振動の入力によりスライダ(9)が鉛直荷重W
を受けると、その鉛直荷重Wはスライダ(9)のテーパ
面(15)に沿うP 1 = Wcos  (90°−
θ°)とテーパ面(15)の法線方向に沿うP 2 =
 W cos θ°に分けられ、これにより鉛直荷重W
の水平分力f=P2cos  (90°−θ°)が発生
する。上記スライダ(9)は鉛直荷MWを受けると同時
に、受座(7)と接触するテーパ面(15)で鉛直荷重
Wの水平分力fを受けて筒状体(4)に押し付けられな
がら鉛直方向に滑動する。この時、上記水平分力fによ
るスライダ(9)の滑動面(10)の筒状体(4ンの内
周面(8)への押し付けにより鉛直摩擦力生する。この
鉛直摩擦力Fvにより鉛直振動、即ち、応答振動を速や
かに減衰させる。
Therefore, it is necessary to reduce response vibrations 1 and 2 as much as possible. The slider (9) receives vertical load W due to input of vertical vibration.
, the vertical load W along the tapered surface (15) of the slider (9) is P 1 = Wcos (90°−
θ°) and P 2 = along the normal direction of the tapered surface (15)
It is divided into W cos θ°, which causes the vertical load W
A horizontal component force f=P2cos (90°-θ°) is generated. The slider (9) receives the vertical load MW, and at the same time receives the horizontal component force f of the vertical load W on the tapered surface (15) in contact with the catch seat (7), and is pressed against the cylindrical body (4) while moving vertically. slide in the direction. At this time, a vertical frictional force is generated by pressing the sliding surface (10) of the slider (9) against the inner circumferential surface (8) of the cylindrical body (4) by the horizontal component force f. To quickly damp vibrations, that is, response vibrations.

ここで、上記スライダ(9)の受座(7)と接触するテ
ーパ面(15ンのなす角度θ°を45°に設計すれば、
鉛直摩擦力FVは最大となり、水平摩擦力Fhの1/2
となる。一般的に地震動では鉛直振動が水平振動の1/
2程度であるため、上記テーパ面(15)のなす角度θ
°を45°に設計しておけば、鉛直並びに水平方向とも
に良好な減衰効果が得られる。仮りに地震動での鉛直振
動と水平振動との比率が上述の場合と異なる際には、そ
の比率に合わせてテーパ面(15)のなす角度θ°を設
計変更すればよい、即ち、鉛直振動が水平振動の1/2
よりも小さい場合には、テーパ面(15)のなす角度θ
°を45°よりも小さくするが或いは大きくすればよい
、また、鉛直振動が水平振動の1/2よりも大きい場合
には、スライダ(9)の上面である滑動面(11)での
摩擦係数μを小さくするか、或いはスライダ(9)の外
周面である滑動面(lO)での摩擦係数μを大きくすれ
ばよい。
Here, if the angle θ° formed by the tapered surface (15) of the slider (9) that contacts the seat (7) is designed to be 45°, then
The vertical frictional force FV is maximum and is 1/2 of the horizontal frictional force Fh.
becomes. In general, in earthquake motion, vertical vibration is 1/1/1 of horizontal vibration.
2, the angle θ formed by the tapered surface (15)
If the angle is designed to be 45 degrees, a good damping effect can be obtained in both the vertical and horizontal directions. If the ratio of vertical vibration to horizontal vibration due to seismic motion is different from the above case, the angle θ° formed by the tapered surface (15) may be changed in design according to the ratio, that is, the vertical vibration is 1/2 of horizontal vibration
If the angle θ of the tapered surface (15) is smaller than
If the vertical vibration is larger than 1/2 of the horizontal vibration, the coefficient of friction on the sliding surface (11) which is the upper surface of the slider (9) may be made smaller or larger than 45°. Either μ may be decreased, or the friction coefficient μ on the sliding surface (lO), which is the outer peripheral surface of the slider (9), may be increased.

この滑動面(10)  (11)での摩擦係数μの設定
変更はスライダ(9)の材質を変更するか、或いはその
上面又は外周面に別部材を貼合わせる等により行われる
The setting of the coefficient of friction μ on the sliding surfaces (10) (11) can be changed by changing the material of the slider (9), or by bonding another member to its upper surface or outer peripheral surface.

尚、大振幅の交通振動や地震動に対して良好な減衰効果
を得るためにスライダ(9ンの滑動面(10)  (1
1)での摩擦係数μを大きく設計した場合や、何らかの
原因でスライダ(9)の滑動面(10)  (11)が
−時的に密着状態となってスライダ(9)が滑動不能と
なった場合などでは、微小振幅の交通振動や地震動に対
してスライダ(9)が滑動しない現象が発生するが、そ
の際には、上記スライダ(9)がその弾性変形により微
小振動を吸収するので所望の防振効果が得られる。
In addition, in order to obtain a good damping effect against large-amplitude traffic vibrations and earthquake motions, a slider (9 sliding surfaces (10) (1
If the friction coefficient μ in step 1) is designed to be large, or for some other reason, the sliding surfaces (10) and (11) of the slider (9) may become in close contact with each other, making the slider (9) unable to slide. In some cases, the slider (9) does not slide due to minute amplitude traffic vibrations or earthquake motions, but in that case, the slider (9) absorbs the minute vibrations through its elastic deformation, so that the desired result cannot be achieved. Provides anti-vibration effect.

〔発明の効果〕〔Effect of the invention〕

本発明に係る防振支持装置によれば、筒状体に圧縮ばね
、受座、スライダを積層状態で収納配置し、受座とスラ
イダとの接触面をテーパ面としたことにより、交通振動
や地震動の発生時、上記スライダを筒状体に対して所定
の鉛直摩擦力でもって鉛直方向に滑動させ、且つ、上部
構造物に対して所定の水平摩擦力でもって水平方向に滑
動させるようにしたから、簡単な構造により鉛直及び水
平振動に対して良好な減衰効果が得られてその実用的価
値は大である。また、上記スライダをその周方向に沿っ
て複数のブロック体に分割すれば、鉛直防振性がより一
層向上する。
According to the vibration isolating support device according to the present invention, the compression spring, the catch, and the slider are stored and arranged in a stacked state in the cylindrical body, and the contact surface between the catch and the slider is made into a tapered surface, thereby reducing traffic vibration. When an earthquake occurs, the slider is made to slide vertically against the cylindrical body with a predetermined vertical frictional force, and to slide horizontally with a predetermined horizontal frictional force against the upper structure. Therefore, a good damping effect against vertical and horizontal vibrations can be obtained with a simple structure, and its practical value is great. Moreover, if the slider is divided into a plurality of blocks along its circumferential direction, the vertical vibration isolation properties can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る防振支持装置の一実施例を示す断
面図、第2図は第1図のr−r線に沿う断面図、第3図
は第1図の防振支持装置を建築物の一部に通用した床防
振の施工例を示す正面図、第4図はスライダに作用する
水平H振力及び鉛直摩擦力を説明するための第1図の防
振支持装置の要部拡大断面図である。 (1−防振支持装置、 (2−下部構造vA(コンクリート床)、(3−上部構
造vJ(防振床)、 (4−筒状体、   (6)−圧縮ばね、(7−受座、
    (8)−内周面、(9−スライダ、 (9a) 〜 (9b) ブロック体、 接触面(テーパ面)。
FIG. 1 is a sectional view showing an embodiment of the vibration isolating support device according to the present invention, FIG. 2 is a sectional view taken along line rr in FIG. 1, and FIG. 3 is the vibration isolating support device in FIG. 1. Figure 4 is a front view showing a construction example of floor vibration isolation applied to a part of a building. FIG. 3 is an enlarged cross-sectional view of main parts. (1-Vibration isolation support device, (2-Substructure vA (concrete floor), (3-Superstructure vJ (vibration isolation floor), (4-Cylindrical body, (6)-Compression spring, (7-Socket ,
(8)-inner peripheral surface, (9-slider, (9a) to (9b) block body, contact surface (tapered surface).

Claims (2)

【特許請求の範囲】[Claims] (1)下部構造物上に垂設された筒状体と、筒状体内に
収納されて下部構造物上に立設された圧縮ばねと、筒状
体内にその内周面と非接触状態で収納されて圧縮ばね上
に載置された受座と、筒状体にその内周面と摺接状態で
鉛直方向に滑動自在に嵌挿されて受座上に載置され、上
面に上部構造物が水平方向に滑動自在に載置されたスラ
イダとからなり、上記受座とスライダとの相互の接触面
を、筒状体の軸中心から内周面へ向かって下方傾斜する
テーパ面としたことを特徴とする防振支持装置。
(1) A cylindrical body vertically installed on the lower structure, a compression spring housed in the cylindrical body and erected on the lower structure, and a compression spring installed inside the cylindrical body in a non-contact state with the inner circumferential surface of the cylindrical body. The seat is housed and placed on the compression spring, and the cylindrical body is fitted into the cylindrical body so as to be slidable in the vertical direction while being in sliding contact with the inner peripheral surface thereof, and is placed on the catch, and the upper structure is attached to the top surface. It consists of a slider on which an object is placed so that it can slide freely in the horizontal direction, and the mutual contact surface between the catch seat and the slider is a tapered surface that slopes downward from the axial center of the cylindrical body toward the inner circumferential surface. An anti-vibration support device characterized by:
(2)請求項(1)記載のスライダをその周方向に沿っ
て複数のブロック体に分割したことを特徴とする防振支
持装置。
(2) A vibration isolating support device, characterized in that the slider according to claim (1) is divided into a plurality of blocks along its circumferential direction.
JP17976890A 1990-07-06 1990-07-06 Vibro-isolating supporter Pending JPH0469431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17976890A JPH0469431A (en) 1990-07-06 1990-07-06 Vibro-isolating supporter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17976890A JPH0469431A (en) 1990-07-06 1990-07-06 Vibro-isolating supporter

Publications (1)

Publication Number Publication Date
JPH0469431A true JPH0469431A (en) 1992-03-04

Family

ID=16071549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17976890A Pending JPH0469431A (en) 1990-07-06 1990-07-06 Vibro-isolating supporter

Country Status (1)

Country Link
JP (1) JPH0469431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575540U (en) * 1992-03-19 1993-10-15 トキコ株式会社 Seismic isolation device
JP2009062733A (en) * 2007-09-06 2009-03-26 Shimizu Corp Vertically-base-isolated structure
JP2010216496A (en) * 2009-03-13 2010-09-30 Miwa Tec:Kk Energy absorbing damper
KR200465124Y1 (en) * 2012-10-25 2013-02-27 유니슨엔지니어링(주) Anti-vibration rubber high efficiency spring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575540U (en) * 1992-03-19 1993-10-15 トキコ株式会社 Seismic isolation device
JP2009062733A (en) * 2007-09-06 2009-03-26 Shimizu Corp Vertically-base-isolated structure
JP2010216496A (en) * 2009-03-13 2010-09-30 Miwa Tec:Kk Energy absorbing damper
KR200465124Y1 (en) * 2012-10-25 2013-02-27 유니슨엔지니어링(주) Anti-vibration rubber high efficiency spring

Similar Documents

Publication Publication Date Title
JP5075961B2 (en) Horizontal seismic isolation table device
KR102177483B1 (en) Damper for seismic isolation
US7237364B2 (en) Foundation shock eliminator
JPH0762409B2 (en) Seismic isolation device using Coulomb friction
KR100635478B1 (en) Rolling pendulum bearing with low friction
KR20200100990A (en) Vibration isolation device with improved restoring force using ball and spring
JPH0254040A (en) Vibration-free device and response control structure
KR102191280B1 (en) Vibration isolation device using ball and spring
JPH0469431A (en) Vibro-isolating supporter
JPH02107843A (en) Three dimentional oscillation isolating device
JPS6059381B2 (en) Vibration isolation method for upper floor
JPH04113046A (en) Vibration-proof device
JP2013083299A (en) Vibration isolation table
JPH0925990A (en) Base isolation device
JP7129780B2 (en) Floor seismic isolation system
JPH04107339A (en) Vibrationproof device
JPH0599273A (en) Leg structure of electronic apparatus
JP5855916B2 (en) Seismic reduction device
JPH0478341A (en) Vibration isolator
JPS6335792B2 (en)
JPH1096445A (en) Base isolation device and electronic device using same
JPH03183864A (en) Vibration isolator
JP2000104420A (en) Base isolation structure
JPS627794Y2 (en)
JP3791974B2 (en) Base isolation device