JPH046909B2 - - Google Patents

Info

Publication number
JPH046909B2
JPH046909B2 JP57220509A JP22050982A JPH046909B2 JP H046909 B2 JPH046909 B2 JP H046909B2 JP 57220509 A JP57220509 A JP 57220509A JP 22050982 A JP22050982 A JP 22050982A JP H046909 B2 JPH046909 B2 JP H046909B2
Authority
JP
Japan
Prior art keywords
fuel ratio
electromotive force
metal oxide
electrode
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220509A
Other languages
Japanese (ja)
Other versions
JPS59109854A (en
Inventor
Megumi Fukushima
Kazuya Komatsu
Katsuhiro Yokomizo
Shunzo Mase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP57220509A priority Critical patent/JPS59109854A/en
Publication of JPS59109854A publication Critical patent/JPS59109854A/en
Publication of JPH046909B2 publication Critical patent/JPH046909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 本発明は理論空燃比の前後にわたる広い領域で
エンジンの排気ガス中の酸素濃度を検出して空燃
比を検出する広域空燃比センサーの製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a wide-range air-fuel ratio sensor that detects the air-fuel ratio by detecting the oxygen concentration in engine exhaust gas over a wide range before and after the stoichiometric air-fuel ratio.

周知のように、例えば自動車に搭載されるエン
ジンにおいて、排気ガス中の酸素濃度を検出する
ことによつて間接的に空燃比(A/F)を検出す
る技術思想が公知となつている。排気ガス中の酸
素濃度を検出する検出素子としては例えば特開昭
52−46889号、特公昭57−10382号公報に示される
ように、理論空燃比に対応する酸素濃度を境界に
して起電力がステツプ状に変化するいわゆるλセ
ンサーが知られており、このような酸素濃度検出
素子によれば空燃比が理論空燃比よりも大きいか
小さいかが判別されうる。
As is well known, for example, in an engine installed in a car, a technical concept is known in which the air-fuel ratio (A/F) is indirectly detected by detecting the oxygen concentration in exhaust gas. For example, as a detection element for detecting the oxygen concentration in exhaust gas,
As shown in Japanese Patent Publication No. 52-46889 and Japanese Patent Publication No. 57-10382, so-called λ sensors are known in which the electromotive force changes stepwise with the oxygen concentration corresponding to the stoichiometric air-fuel ratio as the boundary. The oxygen concentration detection element can determine whether the air-fuel ratio is larger or smaller than the stoichiometric air-fuel ratio.

他方、自動車等にあつては、例えば加速時、高
負荷運転時等、高出力が求められる場合には空燃
比をある程度理論空燃比より燃料の濃い、いわゆ
るリツチに設定し、高速定常走行時等においては
燃費向上のために空燃比をある程度理論空燃比よ
り燃料の薄い、いわゆるリーンに設定してエンジ
ンを運転することが望まれるが、上述のように理
論空燃比に対する大小のみを判別する酸素濃度検
出素子は当然理論空燃比を外れた空燃比を正確に
検出することはできず、したがつてこのように空
燃比を任意の値に設定する制御には使用され得な
い。
On the other hand, in the case of automobiles, etc., when high output is required, such as during acceleration or high-load operation, the air-fuel ratio is set to a certain level of fuel richer than the stoichiometric air-fuel ratio. In order to improve fuel efficiency, it is desirable to operate the engine with the air-fuel ratio set to a level where the fuel is thinner than the stoichiometric air-fuel ratio, so-called lean. Naturally, the detection element cannot accurately detect an air-fuel ratio that deviates from the stoichiometric air-fuel ratio, and therefore cannot be used for control such as this to set the air-fuel ratio to an arbitrary value.

そこで例えば特開昭57−76450号、同53−34077
号公報に示されるように、理論空燃比以外の酸素
濃度を検出可能にした酸素濃度検出素子が提案さ
れている。しかしこれら従来のものは、前述した
λセンサー、すなわち固体電解質の両面に多孔質
電極を形成してなる酸素濃度検出素子において、
被測定ガス側の多孔質電極の外側に保護層を設け
て該電極へのガスの拡散を律速するいわゆるアン
ペロメトリツクセンサーであり、また後者は、多
孔質電極を被毒させることによつて感度を鈍ら
せ、全体の起電力特性を漸減させてリニアな起電
力特性を得るようにしたものであり、リーン領域
においては上記λセンサーと同様、リニアな起電
力特性は得られない。しかもこのリニアな起電力
特性の幅は例えば100〜200mV程度と小さく、し
たがつてこれらの検出素子は検出感度が不十分で
実用には不適なものとなつていた。
For example, JP-A-57-76450, JP-A No. 53-34077
As shown in the publication, an oxygen concentration detection element that is capable of detecting oxygen concentrations other than the stoichiometric air-fuel ratio has been proposed. However, these conventional devices are not suitable for the above-mentioned λ sensor, that is, an oxygen concentration detection element formed by forming porous electrodes on both sides of a solid electrolyte.
This is a so-called amperometric sensor in which a protective layer is provided on the outside of a porous electrode on the side of the gas to be measured to control the rate of gas diffusion to the electrode. It is designed to obtain linear electromotive force characteristics by dulling the overall electromotive force characteristics, and in the lean region, linear electromotive force characteristics cannot be obtained like the above-mentioned λ sensor. Moreover, the width of this linear electromotive force characteristic is small, for example, about 100 to 200 mV, and therefore these detection elements have insufficient detection sensitivity, making them unsuitable for practical use.

本発明者らは、上記のような欠点を解消して空
燃比を連続的に測定しうる広域空燃比センサーを
得るべく研究を重ねた結果、固体電解質の表面に
半触媒性能を有する多孔質電極を形成し、かつ該
電極と固体電解質と被測定ガスとで構成される3
相点近傍に、炭化水素(以下、HCと称する)を
酸化してCOを生成する金属酸化物を存在せしめ
た広域空燃比センサーを提供するに至つた。
The inventors of the present invention have conducted extensive research in order to solve the above-mentioned drawbacks and to obtain a wide-range air-fuel ratio sensor that can continuously measure the air-fuel ratio. and is composed of the electrode, the solid electrolyte, and the gas to be measured.
We have now provided a wide-range air-fuel ratio sensor in which a metal oxide that oxidizes hydrocarbons (hereinafter referred to as HC) to generate CO is present near the phase point.

ここで上記「半触媒性能」について説明する。
第1図はWilliam J.Fleming著「Physical
Principles Governing Nonideal Behavior of
the Zirconia Oxygen Sensor」(J.Electro−
chemical Society,Vol.124,No.1,January
1977,pp.21−28)に示された、電極触媒活性に
よる3相点のO2,CO分圧変化を示すグラフであ
る。前記「半触媒性能」とはこの第1図におい
て、活性が「Poor」であるとされる「2」程度
もしくはそれ以下の活性を示す性能をいうものと
する(その作用は後述する)。このような半触媒
性能は例えばAg、Au等が示すが、一般に高活性
であるとされ従来のステツプ状の特性を示すλセ
ンサーに使用されるPtでも、材料、焼成条件に
よりこのような性質を付与しうる。
Here, the above-mentioned "semi-catalytic performance" will be explained.
Figure 1 is “Physical” by William J.Fleming.
Principles Governing Nonideal Behavior of
the Zirconia Oxygen Sensor” (J.Electro−
chemical Society, Vol.124, No.1, January
1977, pp. 21-28) is a graph showing changes in O 2 and CO partial pressure at the three-phase point due to electrocatalytic activity. The above-mentioned "semi-catalytic performance" refers to a performance showing an activity of about "2" or less, which is considered to be "Poor" activity in FIG. 1 (the effect will be described later). For example, Ag, Au, etc. exhibit this kind of semi-catalytic performance, but even Pt, which is generally considered to be highly active and is used in conventional lambda sensors that exhibit step-like characteristics, may exhibit such properties depending on the material and firing conditions. Can be granted.

上記「3相点」とは第4図に破線円で示すよう
に、固体電解質1と、この表面に形成される多孔
質電極3、および被測定ガス6の3者が互いに隣
り合う点のことである。
The above-mentioned "three-phase point" refers to the point where the solid electrolyte 1, the porous electrode 3 formed on the surface of the solid electrolyte 1, and the gas to be measured 6 are adjacent to each other, as shown by the broken line circle in FIG. It is.

ここで以上説明した構造を第2〜第4図を用い
て模式的に説明する。第2図に示すように固体電
解質1は、従来のλセンサー等と同様、大気5と
被測定ガス6とを隔絶する例えば管状の形状に形
成され、この固体電解質1の大気5側および被測
定ガス6側の両表面に多孔質電極2,3がそれぞ
れ形成される。そして被測定ガス6側の表面には
さらに金属酸化物4の層が形成される。第3図は
第2図の拡大図であり、第4図はさらにこの第3
図を拡大したものであるが、これら第3、第4図
に示されるように上記金属酸化物4は前述した3
相点の近傍に存在するように層成される。
The structure described above will now be schematically explained using FIGS. 2 to 4. As shown in FIG. 2, the solid electrolyte 1 is formed into, for example, a tubular shape that isolates the atmosphere 5 and the gas to be measured 6, similar to a conventional λ sensor, etc. Porous electrodes 2 and 3 are formed on both surfaces on the gas 6 side, respectively. A layer of metal oxide 4 is further formed on the surface on the side of gas to be measured 6. Figure 3 is an enlarged view of Figure 2, and Figure 4 further shows this third view.
As shown in FIGS. 3 and 4, the metal oxide 4 is an enlarged version of the metal oxide 4 described above.
It is stratified so that it exists near the phase point.

以下、上記のような構成により、空燃比(A/
F)に対してリニアな起電力特性が得られるメカ
ニズムについて詳述する。一般に知られているよ
うに理論センサーの起電力Vは、Nernst式 V=(RT/4F)ln〔Po2(air) /Po2(exh)〕 で与えられる。ここでRは気体定数、Tは絶対温
度、Fはフアラデー定数、Po2(air)は大気中の
酸素分圧、Po2(exh)は被測定ガス中の酸素分圧
である被測定ガス側電極がガスを平衡にしうる程
高い触媒活性を有している場合この式から導かれ
る値をプロツトすれば第5A図に示すような起電
力特性曲線が得られる。しかし実際のセンサー
は、このNernst式では説明できない起電力特性
を示すものが多く、これらを説明するため、前述
のWilliam J.FlemingはFlemingの等価回路モデ
ルを提案している。本発明の広域空燃比センサー
の挙動も、多くのパラメータを持つこのFleming
の等価回路モデルにより説明される。
Hereinafter, the air-fuel ratio (A/
The mechanism by which linear electromotive force characteristics are obtained for F) will be explained in detail. As is generally known, the theoretical electromotive force V of the sensor is given by the Nernst equation: V=(RT/4F)ln [Po 2 (air) /Po 2 (exh)]. Here, R is the gas constant, T is the absolute temperature, F is Faraday's constant, Po 2 (air) is the partial pressure of oxygen in the atmosphere, and Po 2 (exh) is the partial pressure of oxygen in the gas to be measured. If the electrode has a catalytic activity high enough to bring the gas into equilibrium, plotting the values derived from this equation will yield an electromotive force characteristic curve as shown in FIG. 5A. However, many actual sensors exhibit electromotive force characteristics that cannot be explained by the Nernst equation, and to explain these, the aforementioned William J. Fleming proposed Fleming's equivalent circuit model. The behavior of the wide-range air-fuel ratio sensor of the present invention is also determined by Fleming, which has many parameters.
This is explained by the equivalent circuit model of

ここでFlemingの等価回路モデルの簡単な説明
を行なう。該等価回路モデルは、3相点における
吸着点毎に固有の起電力が発生しているというこ
とに基づくものであり、それによれば起電力Vは V=fcp・Vco+(1−fcp)Vo2で表わされる。
ここでfcpは3相点にCOが吸着している割合で fcp=Kco・Pco/ (1+Kco・Pco+Ko2・Po2) (Kco、Ko2は各々CO、O2の吸着定数) Vcoは3相点のCOが吸着している所で発生する
起電力で Vco=Vco+(RT/2F)ln 〔Po2 1/2(air)・ Pco(anode)/Pco2(anode)〕、 Vo2は3相点のO2が吸着している所で発生する起
電力で Vo2=Vo2+(RT/4F) ln〔Po2(air)/ Po2(anode)〕 である。なお、Vco、Vo2は各電気化学セルにお
ける標準セルポテンシヤルである。Pco(anode)、
Pco2(anode)、Po2(anode)はそれぞれ被測定ガ
ス側電極3相点におけるCO、CO2、O2分圧であ
る。上記式は3相点での次の2つの反応により求
められるものである。
Here we will briefly explain Fleming's equivalent circuit model. The equivalent circuit model is based on the fact that a unique electromotive force is generated at each attraction point in the three-phase points, and according to this, the electromotive force V is V=f cp・Vco+(1−f cp ) Represented by Vo 2 .
Here , f cp is the rate at which CO is adsorbed at the three - phase point . The electromotive force generated where CO is adsorbed at the three-phase point is Vco = Vco + (RT/2F) ln [Po 2 1/2 (air), Pco (anode) / Pco 2 (anode)], Vo 2 is the electromotive force generated at the three-phase point where O 2 is adsorbed, and is Vo 2 = Vo 2 + (RT/4F) ln [Po 2 (air) / Po 2 (anode)]. Note that Vco and Vo 2 are standard cell potentials for each electrochemical cell. Pco (anode),
Pco 2 (anode) and Po 2 (anode) are the partial pressures of CO, CO 2 and O 2 at the three-phase point of the electrode on the gas side to be measured, respectively. The above formula is determined by the following two reactions at three-phase points.

O2+4e-2O2- CO+O2-CO2+2e- 実際のセンサーの起電力特性と理論センサーの
起電力特性のずれは主に、陰極の触媒性能が不十
分であることによる。つまり3相点でのO2、CO
分圧の差により起電力特性が大きく変化するので
ある。前記第1図に示されるように、リーン領域
ではO2分圧は触媒活性によらずほぼ一定であり、
大きく変化するのはCO分圧である。すなわちリ
ーン領域の起電力は主にCOが支配している。
Flemingの式によればリーン領域でCO分圧を上
げてやれば、起電力が上がることになる。
O 2 +4e - 2O 2- CO + O 2- CO 2 +2e - The difference between the electromotive force characteristics of the actual sensor and the electromotive force characteristics of the theoretical sensor is mainly due to the insufficient catalytic performance of the cathode. In other words, O 2 and CO at the three-phase point
The electromotive force characteristics change greatly due to the difference in partial pressure. As shown in FIG. 1 above, in the lean region, the O 2 partial pressure is almost constant regardless of the catalyst activity;
What changes greatly is the CO partial pressure. In other words, the electromotive force in the lean region is mainly dominated by CO.
According to Fleming's equation, increasing the CO partial pressure in the lean region will increase the electromotive force.

以上の事をふまえリニアな起電力特性が得られ
るメカニズムを説明する。まず前記金属酸化物は
被測定ガス(排気ガス)中のHCを酸化し(自己
は還元され)COを生成する酸化触媒として作用
する。例えばこの金属酸化物がSnO2の場合、 aSnO2+bHC(g)→ cSnO+dCO(g)+eCO2(g)+ fH2O(g)+…… の反応が起こり、さらに還元されたSnOは被測定
ガス中のO2によりSnO2に戻る。つまり、いわゆ
るRedox作用によりSnO2は定常的にCO生成、O2
吸収を行なう。
Based on the above, we will explain the mechanism by which linear electromotive force characteristics are obtained. First, the metal oxide acts as an oxidation catalyst that oxidizes HC in the gas to be measured (exhaust gas) (self is reduced) and generates CO. For example, if this metal oxide is SnO 2 , the following reaction occurs: aSnO 2 + bHC(g) → cSnO + dCO(g) + eCO 2 (g) + fH 2 O(g) +..., and the further reduced SnO is It returns to SnO2 due to O2 in the gas. In other words, SnO 2 constantly generates CO and O 2 due to the so-called Redox effect.
Perform absorption.

SnO2HC ―→ ←― O2SnO 以上の作用によりO2分圧が低下し、またHCよ
り生成されたCOが3相点近傍のCO分圧を上昇さ
せるので、リーン領域における起電力が第5B図
に示すように上昇して、該リーン領域においてリ
ニアな起電力特性が得られる。
SnO 2 HC ―→ ←― O 2 SnO O 2 partial pressure decreases due to the above action, and CO generated from HC increases the CO partial pressure near the three-phase point, so the electromotive force in the lean region becomes As shown in Fig. 5B, the electromotive force increases and a linear electromotive force characteristic is obtained in the lean region.

そして上記多孔質電極として半触媒性能を有す
るものを使用しているため、リツチ領域における
起電力が第5B図に示すように下降し、上述した
リーン領域からこのリツチ領域にまで亘つてリニ
アな起電力特性が得られることとなる。
Since a porous electrode having semi-catalytic performance is used as the porous electrode, the electromotive force in the rich region decreases as shown in Figure 5B, and the electromotive force is linear from the lean region to this rich region. Power characteristics will be obtained.

ところで、リーン領域でのHC濃度はたかだか
千〜数百ppm程度に過ぎない。したがつて上記金
属酸化物の作用により生成するCOの量も極くわ
ずかである。しかしこのCOが3相点近傍で発生
すれば、多孔質電極によつて酸化されることなく
3相点へ到達する。例えばこのCOの濃度が例え
ば0.001%としても、酸化されることなく3相点
へ到達すればCO分圧変化は前記第1図に示す
「4」から「2」程度になる。したがつてこのよ
うに金属酸化物による効果を十分に発揮させるた
めに、該金属酸化物を3相点近傍に存在させるこ
とが必要となる。
By the way, the HC concentration in the lean region is only about 1,000 to several hundred ppm at most. Therefore, the amount of CO produced by the action of the metal oxide is also extremely small. However, if this CO is generated near the three-phase point, it will reach the three-phase point without being oxidized by the porous electrode. For example, even if the concentration of CO is 0.001%, if it reaches the three-phase point without being oxidized, the CO partial pressure will change from "4" shown in FIG. 1 to about "2". Therefore, in order to fully exhibit the effect of the metal oxide, it is necessary to make the metal oxide exist near the three-phase point.

上記金属酸化物はHCを酸化してCOを生成する
ように作用しなければならないから、この金属酸
化物としては、HCを酸化する酸化能力が小さい
ものは不適である。各種金属酸化物のHC酸化能
力(CO生成能力)は、例えば清山哲郎著「金属
酸化物とその触媒作用」(1979年、講談社)の表
4.10「種々の金属酸化物上でのプロピレン酸化反
応」(p185)等を目安として判断されうるが、例
えば多孔質電極としてPtを主要成分とするもの
(Ptペースト等)を使用する場合には、SnO2
In2O3、NiO、Co3O4およびCuOが十分なHC酸化
能力を示す。したがつてこの場合には、これらの
金属酸化物のうちの1種あるいは何種かを使用す
ればよい。なおHCが酸化されてCOが生成される
傾向は、多孔質電極の触媒活性と上記金属酸化物
のHC酸化能力との総合的なバランスによつて決
定されるので、多孔質電極を上記Ptよりも触媒
活性が低い物質、例えばAg、Au等を主要成分と
するものから形成する場合には、前述した金属酸
化物よりもHC酸化能力が低いものも使用でき
る。例えば多孔質電極をAgペーストから形成し
た場合には、ZnO、MnO2を使用しても、リーン
領域においてリニアな起電力特性が得られる。
Since the above-mentioned metal oxide must act to oxidize HC and generate CO, a metal oxide having a small oxidizing ability to oxidize HC is unsuitable. The HC oxidation ability (CO generation ability) of various metal oxides can be found, for example, in the table in "Metal Oxides and Their Catalytic Actions" by Tetsuro Kiyoyama (1979, Kodansha).
This can be determined using 4.10 "Propylene oxidation reaction on various metal oxides" (p185) as a guide, but for example, when using a porous electrode containing Pt as a main component (such as Pt paste), SnO2 ,
In 2 O 3 , NiO, Co 3 O 4 and CuO exhibit sufficient HC oxidation ability. Therefore, in this case, one or more of these metal oxides may be used. The tendency for HC to be oxidized to generate CO is determined by the overall balance between the catalytic activity of the porous electrode and the HC oxidation ability of the metal oxide. When forming the oxide layer from a material having low catalytic activity, for example, a material containing Ag, Au, etc. as a main component, a material having a lower HC oxidation ability than the above-mentioned metal oxides can also be used. For example, when the porous electrode is formed from Ag paste, linear electromotive force characteristics can be obtained in the lean region even if ZnO or MnO 2 is used.

以上のような空燃比センサーを実用に適したも
のとするには、3相点近傍での金属酸化物(HC
を酸化してCOを生成するもの)の存在率が各素
子によつてまちまちにならないよう、それらも高
い存在率でもつて均一となるようにすることが必
要である。すなわちこの3相点近傍における金属
酸化物の存在により、リーン領域における起電力
上昇が得られるのであるから、この金属酸化物の
存在率が各素子間でまちまちであると各素子の起
電力特性がバラつき、キヤリブレーシヨン作業が
煩雑を極める。また該金属酸化物存在率が低けれ
ば、当然上記リーン領域における十分な起電力上
昇が得られず、起電力特性のリニア化が鈍化す
る。
In order to make the above air-fuel ratio sensor suitable for practical use, it is necessary to
It is necessary to ensure that the abundance of carbon dioxide (which generates CO by oxidizing carbon dioxide) does not vary depending on each element, and that the abundance of these substances is uniform even at a high abundance. In other words, the presence of metal oxides near this three-phase point increases the electromotive force in the lean region, so if the presence rate of metal oxides varies between elements, the electromotive force characteristics of each element will change. Variations and calibration work are extremely complicated. Moreover, if the metal oxide abundance rate is low, naturally a sufficient increase in electromotive force in the lean region cannot be obtained, and the linearization of the electromotive force characteristics is slowed down.

他方、前述したような用途に用いられる広域空
燃比センサーは、その表面の多孔質電極が十分な
耐久性を備えることが実用上不可欠である。従来
よりこの多孔質電極の耐久性を向上させるため
に、該電極上に耐熱金属酸化物をプラズマ溶射し
て保護被膜を形成することが行なわれているが、
上述のように3相点近傍にCOを生成する金属酸
化物を存在せしめた素子にこのようなプラズマ溶
射を行なうと、該3相点近傍の金属酸化物が溶融
して酸化物自身の酸化能を損なうと共に、溶融
時、薄い酸化物層はスピネル中に吸収されて、そ
の量も減少することにより、リニアな起電力特性
を発揮できなくなる問題点がある。
On the other hand, in the wide range air-fuel ratio sensor used for the above-mentioned applications, it is practically essential that the porous electrode on the surface thereof has sufficient durability. Conventionally, in order to improve the durability of this porous electrode, a protective coating has been formed by plasma spraying a heat-resistant metal oxide on the electrode.
As mentioned above, when such plasma spraying is performed on an element in which a metal oxide that generates CO is present near the three-phase point, the metal oxide near the three-phase point melts and the oxidation ability of the oxide itself is reduced. In addition, the thin oxide layer is absorbed into the spinel during melting, and its amount decreases, making it impossible to exhibit linear electromotive force characteristics.

本発明は上記の点に鑑みてなされたものであ
り、上述の新しい広域空燃比センサーを、前記金
属酸化物が各素子間で均一かつ高い存在率で3相
点近傍に存在し、しかもリニアな起電力特性を損
なわずに十分な耐久性を備えるように形成しうる
製造法を提供することを目的とするものである。
The present invention has been made in view of the above points, and provides the above-mentioned new wide-range air-fuel ratio sensor in which the metal oxide is present near the three-phase point at a uniform and high abundance rate between each element, and is linear. The object of the present invention is to provide a manufacturing method that can be formed to have sufficient durability without impairing the electromotive force characteristics.

本発明の広域空燃比センサーの製造法は、前述
したような固体電解質の表面上に多孔質電極を形
成した後、被測定ガスに接触する側の電極上に耐
熱金属酸化物をプラズマ溶射して多孔質の保護被
膜を形成してなるセンサー素材を、前記COを生
成する金属酸化物を生成する金属の化合物の溶液
中に浸漬して該溶液を上記保護被膜の気孔を通し
て電極の気孔奥部に含浸し、その後、該素材を溶
液から取り出して前記金属化合物の熱分解温度ま
で加熱することにより、前記3相点近傍に前記
COを生成する金属酸化物を生成するようにした
ものである。
The method for manufacturing the wide-range air-fuel ratio sensor of the present invention involves forming a porous electrode on the surface of the solid electrolyte as described above, and then plasma-spraying a refractory metal oxide onto the electrode on the side that comes into contact with the gas to be measured. A sensor material formed with a porous protective coating is immersed in a solution of a metal compound that generates a metal oxide that generates CO, and the solution is passed through the pores of the protective coating and deep into the pores of the electrode. By impregnating the material, and then taking the material out of the solution and heating it to the thermal decomposition temperature of the metal compound, the material is impregnated near the three-phase point.
It is designed to generate metal oxides that generate CO.

上記方法によれば、溶解された金属化合物が電
極気孔奥部まで到達するから、3相点近傍におけ
る金属酸化物存在率は、電極気孔の大きさ、電極
膜厚、素子表面形状等に左右されず高い存在率で
もつて各素子間で均一となる。
According to the above method, the dissolved metal compound reaches the deep part of the electrode pores, so the metal oxide abundance rate near the three-phase point depends on the size of the electrode pores, the electrode film thickness, the element surface shape, etc. Even if the abundance rate is high, it will be uniform among each element.

しかも、プラズマ溶射による保護被膜の形成
を、COを生成する金属酸化物の形成前に行なう
ようにしたから、起電力特性のリニア化に関与す
る該金属酸化物がプラズマ溶射によつて破壊され
てしまうことがない。
Moreover, since the protective film is formed by plasma spraying before the formation of the metal oxide that generates CO, the metal oxide that is involved in linearizing the electromotive force characteristics is not destroyed by plasma spraying. There is no need to put it away.

3相点における金属酸化物存在率を高めるため
には、上記の操作を何回か繰り返せばよい。上記
金属化合物としては、前述したような金属酸化物
を生成する金属(すなわちSn、In、Ni、Co、
Cu、Mn、Zn等)の塩化物、硫酸塩、硝酸塩等が
用いられ得、その溶液としては水溶液、アルカリ
溶液、酸溶液、有機溶剤溶液等が使用され得る
が、特に水溶液で上記金属以外の余分な元素を多
く含まないものが好適である。
In order to increase the metal oxide abundance at the three-phase point, the above operation may be repeated several times. The above-mentioned metal compounds include metals that produce metal oxides such as those mentioned above (i.e., Sn, In, Ni, Co,
Cu, Mn, Zn, etc.) chlorides, sulfates, nitrates, etc. of metals other than the above-mentioned metals can be used. It is preferable to use one that does not contain many extra elements.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

〔第1実施例〕 以下、第6図を参照して説明する。第2図に示
すような管状の固体電解質1として日本碍子(株)製
ZrO2−6モルY2O3を用い、Ptペーストを上記固
体電解質1の両面にハケ塗りコーテイングし、
1050℃で1時間焼成し、膜厚約20μの大気側多孔
質電極2、測定側多孔質電極3を形成した(第6
図a)。次にこの電極上に耐熱金属酸化物である
MgAl2O4スピネルをプラズマ溶射し、膜厚50μ、
気孔率約15%の保護被膜10を形成した(第6図
b)。
[First Embodiment] Hereinafter, a description will be given with reference to FIG. 6. Manufactured by Nippon Insulator Co., Ltd. as a tubular solid electrolyte 1 as shown in Figure 2.
Using ZrO 2 −6 mol Y 2 O 3 , coat both sides of the solid electrolyte 1 with Pt paste by brushing,
It was baked at 1050°C for 1 hour to form a porous electrode 2 on the atmosphere side and a porous electrode 3 on the measurement side with a film thickness of about 20 μm (6th
Diagram a). Next, on this electrode is a refractory metal oxide.
Plasma sprayed MgAl 2 O 4 spinel, film thickness 50μ,
A protective coating 10 having a porosity of about 15% was formed (FIG. 6b).

そしてこのセンサー素材20の外側(測定側多
孔質電極3側)を、35重量%に調製した塩化スズ
()(SnCl4)水溶液に浸漬し(第6図c)、そ
の後アンモニアガス雰囲気にさらし、水に不溶の
Sn(OH)4を析出させてスズ溶液の流下を防止し、
200℃で1時間乾燥させ、その後800℃の温度で30
分間加熱することにより(第6図d)、SnO2を生
成させた。
The outside of this sensor material 20 (measurement side porous electrode 3 side) is immersed in a tin chloride () (SnCl 4 ) aqueous solution prepared at 35% by weight (Fig. 6c), and then exposed to an ammonia gas atmosphere. insoluble in water
Precipitate Sn(OH) 4 to prevent the tin solution from flowing down,
Dry at 200℃ for 1 hour, then at a temperature of 800℃ for 30 minutes.
By heating for minutes (FIG. 6d), SnO 2 was formed.

以上のSnCl4水溶液浸漬からの処理をさらに3
回繰り返すことにより、多孔質電極3の3相点に
十分にSnO2を担持させた空燃比センサーを得た
(第6図e)。
The above treatment from SnCl 4 aqueous solution immersion is continued for 3 more times.
By repeating this process several times, an air-fuel ratio sensor was obtained in which SnO 2 was sufficiently supported at the three-phase points of the porous electrode 3 (FIG. 6e).

この空燃比センサーをレシプロエンジンの排気
系に装着してテストを行なつた。センサー付近の
排気ガス温度を550℃に保つた状態で空燃比A/
Fを11〜18に変化させて起電力を測定したとこ
ろ、第7図に示すようなリニアな起電力特性が得
られた。
This air-fuel ratio sensor was installed in the exhaust system of a reciprocating engine and tested. While maintaining the exhaust gas temperature near the sensor at 550℃, the air-fuel ratio is set to A/
When the electromotive force was measured while changing F from 11 to 18, linear electromotive force characteristics as shown in FIG. 7 were obtained.

〔他の製造法との比較〕[Comparison with other manufacturing methods]

(1) 第8図の実線は、上述のプラズマ溶射による
保護被膜形成工程を省き、その他は本質的に上
記実施例方法と同一とした製造法によつて製造
された広域空燃比センサーの起電力特性を示し
ている(なお排気ガス温度は600℃である)。
(1) The solid line in Figure 8 indicates the electromotive force of a wide range air-fuel ratio sensor manufactured by a manufacturing method that is essentially the same as the method of the above example except that the step of forming a protective film by plasma spraying described above is omitted. characteristics (exhaust gas temperature is 600℃).

次にこのリニアな起電力特性を有するセンサ
ーの耐久性を向上させるべく、該センサーの測
定側多孔質電極表面にMgAl2O4スピネルを溶
射し、保護被膜を形成した。この保護被膜を付
加した後のセンサーの起電力特性を測定したと
ころ、第8図に破線で示すような結果が得られ
た。つまり空燃比に対するリニアな起電力特性
は完全に失われてしまう。このようなリニアな
起電力特性の損失は、 溶融したスピネルの高熱により、電極気孔
部および3相点に存在していた金属酸化物
(本例ではSnO2;融点1127℃)が溶融して
HC酸化能力を失う、 金属酸化物(SnO2)は微粒子であつて密
着強度が小さく、また薄く担持されているた
め、溶融したスピネルに吸収されて3相点に
おける密度が低下する、 ことに起因するものと考えられる。
Next, in order to improve the durability of this sensor with linear electromotive force characteristics, MgAl 2 O 4 spinel was sprayed onto the surface of the porous electrode on the measurement side of the sensor to form a protective coating. When the electromotive force characteristics of the sensor after adding this protective film were measured, results as shown by the broken line in FIG. 8 were obtained. In other words, the linear electromotive force characteristic with respect to the air-fuel ratio is completely lost. This loss of linear electromotive force characteristics is due to the metal oxide (SnO 2 in this example; melting point 1127°C) that was present in the electrode pores and three-phase point melting due to the high heat of the molten spinel.
Loss of HC oxidation ability. Metal oxide (SnO 2 ) is a fine particle with low adhesion strength and is supported thinly, so it is absorbed by the molten spinel and the density at the three-phase point decreases. It is considered that

(2) HCを酸化してCOを生成する金属酸化物を3
相点近傍に担持する空燃比センサーは、以上説
明した金属化合物溶液にセンサー素材を浸漬さ
せる方法の他、バインダー中に金属酸化物粒子
を混合分散させこの中にセンサー素材を浸漬さ
せることによつても形成されうる。以下、この
方法によつて製造されるセンサーに保護被膜を
形成した場合について説明する。
(2) 3 metal oxides that oxidize HC to generate CO
In addition to the method of immersing the sensor material in the metal compound solution described above, the air-fuel ratio sensor supported near the phase point can be prepared by mixing and dispersing metal oxide particles in a binder and immersing the sensor material in this. can also be formed. Hereinafter, a case will be described in which a protective film is formed on a sensor manufactured by this method.

このような製造法による場合、金属酸化物は
多孔質電極気孔および3相点に担持される他、
多孔質電極の表面上にも層を形成する。例えば
金属酸化物としてSnO2を使用し、該SnO2と、
バインダーとしてのエチルシリケート縮合物
と、粘度調整液としてのエチルアルコールとを
重量比で3:1:1に混合した液中にセンサー
素材を浸漬させた場合、SnO2は30〜40μ程度の
厚さで電極上に層成する(第9図の断面顕微鏡
写真〔倍率500倍〕参照)。
In the case of such a manufacturing method, the metal oxide is supported in the porous electrode pores and three-phase points, and
A layer is also formed on the surface of the porous electrode. For example, using SnO 2 as a metal oxide, the SnO 2 and
When the sensor material is immersed in a mixture of ethyl silicate condensate as a binder and ethyl alcohol as a viscosity adjusting liquid at a weight ratio of 3:1:1, the SnO 2 has a thickness of approximately 30 to 40μ. (See the cross-sectional micrograph in Figure 9 [magnification: 500x]).

このようにして形成したセンサーの上記多孔
質電極上にMgAl2O4スピネルを溶射して保護
被膜を形成した後、起電力特性を測定したが、
この場合、リニアな起電力特性は失われなかつ
た。これは上記電極上のSnO2層がスピネルに
対する保護層として作用し、3相点近傍の
SnO2までスピネルの溶射熱の影響が及ばない
ためと考えられる。
After spraying MgAl 2 O 4 spinel onto the porous electrode of the sensor thus formed to form a protective coating, the electromotive force characteristics were measured.
In this case, linear electromotive force characteristics were not lost. This is because the SnO 2 layer on the electrode acts as a protective layer for the spinel, and the
This is thought to be because the thermal spraying heat of spinel does not affect SnO 2 .

ところが、スピネル溶射後の素子断面を拡大
撮影した第10図の写真(倍率500倍)に示さ
れているように、スピネル保護被膜と多孔質電
極との間にクラツクが生じている。これは
SnO2層がスピネルの熱により溶融、吸収され
た際に生じるものと考えられる。このクラツク
が発生するためスピネル保護被膜は、多孔質電
極への密着力が極めて弱くなり、簡単に電極か
ら剥離して保護被膜としての働きをなさなくな
る。
However, as shown in the photograph of FIG. 10 (magnification: 500 times), which is an enlarged photograph of the cross section of the element after spinel spraying, cracks were generated between the spinel protective coating and the porous electrode. this is
This is thought to occur when the SnO 2 layer is melted and absorbed by the heat of the spinel. Because of this cracking, the spinel protective coating has extremely weak adhesion to the porous electrode, easily peels off from the electrode, and no longer functions as a protective coating.

上記保護被膜の剥離は、一例として、780℃
で10分間加熱保持後200℃で5分間保持を1サ
イクルとする温度衝撃テストにおいて、テスト
サイクル200、500、1000サイクルで50本の試料
をテストし、わずかでも剥離の認められるもの
は剥離したものとみなし、剥離本数/50本×
100の百分率でその剥離率を求めた結果各サイ
クルにおいて30、60、90%程度発生した。一
方、前述した本発明の実施例による広域空燃比
センサーに対して同様のテストを行なつたが、
すべてのサイクルにおいて保護被膜の剥離は生
じなかつた。
As an example, the above protective film is peeled off at 780°C.
In a temperature shock test where one cycle was heating and holding at 200℃ for 10 minutes and then holding at 200℃ for 5 minutes, 50 samples were tested at test cycles of 200, 500, and 1000 cycles, and if even a slight amount of peeling was observed, the samples were peeled off. Assuming that, number of peeled pieces / 50 pieces ×
As a result of calculating the peeling rate as a percentage of 100, it was found that approximately 30, 60, and 90% of peeling occurred in each cycle. On the other hand, similar tests were conducted on the wide-range air-fuel ratio sensor according to the embodiment of the present invention described above.
No peeling of the protective coating occurred during all cycles.

以上詳細に説明した通り本発明の製造法によれ
ば、3相点近傍の金属酸化物存在率が高くかつ均
一で十分にリニアな起電力特性を備えるとともに
個体間の性能差も少なく、しかも強固な保護被膜
によつて耐久性が高められ実用に十分に耐えうる
広域空燃比センサーが得られる。
As explained in detail above, according to the manufacturing method of the present invention, the metal oxide abundance near the three-phase point is high, the electromotive force characteristics are uniform and sufficiently linear, there is little difference in performance between individual products, and the material is strong. The protective coating increases durability and provides a wide-range air-fuel ratio sensor that is sufficiently durable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空燃比センサーにおける空燃比と3相
点のO2、CO分圧との関係を電極触媒活性毎に示
すグラフ、第2図は本発明の方法により製造され
る広域空燃比センサーの構造を示す概略断面図、
第3図は第2図の拡大図、第4図は第3図の拡大
図、第5A図は理論センサーにおける空燃比と起
電力との関係を雰囲気温度毎に示すグラフ、第5
B図は本発明の方法により製造される広域空燃比
センサーにおける起電力特性をλセンサーの特性
と比較して示す説明図、第6図は本発明の1実施
例による広域空燃比センサーの製造法を概略的に
示す説明図、第7図は第6図に示す方法によつて
製造されたセンサーの、空燃比に対する起電力特
性を示すグラフ、第8図は本発明の方法以外の方
法によつて製造された、保護被膜を有するセンサ
ーの起電力特性を示すグラフ、第9図は本発明の
方法以外の方法によつて製造されたセンサーの表
面の断面構造を拡大して示す顕微鏡写真、第10
図は第9図のセンサーにスピネル溶射保護被膜を
形成したセンサーの表面の断面構造を拡大して示
す顕微鏡写真である。 1……固体電解質、2……大気側多孔質電極、
3……測定用多孔質電極、4……金属酸化物、6
……被測定ガス、10……保護被膜、20……セ
ンサー素材。
Figure 1 is a graph showing the relationship between the air-fuel ratio and O 2 and CO partial pressure at the three-phase point in the air-fuel ratio sensor for each electrode catalyst activity, and Figure 2 is a graph of the wide-range air-fuel ratio sensor manufactured by the method of the present invention. A schematic cross-sectional diagram showing the structure,
Fig. 3 is an enlarged view of Fig. 2, Fig. 4 is an enlarged view of Fig. 3, Fig. 5A is a graph showing the relationship between the air-fuel ratio and the electromotive force in the theoretical sensor at each atmospheric temperature, and Fig.
Figure B is an explanatory diagram showing the electromotive force characteristics of a wide range air-fuel ratio sensor manufactured by the method of the present invention in comparison with the characteristics of a λ sensor, and Figure 6 is a method of manufacturing a wide range air-fuel ratio sensor according to an embodiment of the present invention. FIG. 7 is a graph showing the electromotive force characteristics with respect to the air-fuel ratio of the sensor manufactured by the method shown in FIG. 6, and FIG. FIG. 9 is a graph showing the electromotive force characteristics of a sensor with a protective film manufactured by a method other than the method of the present invention; FIG. 10
The figure is a micrograph showing an enlarged cross-sectional structure of the surface of the sensor shown in FIG. 9 with a spinel sprayed protective coating formed thereon. 1... Solid electrolyte, 2... Atmospheric side porous electrode,
3... Porous electrode for measurement, 4... Metal oxide, 6
... Gas to be measured, 10... Protective coating, 20... Sensor material.

Claims (1)

【特許請求の範囲】[Claims] 1 固体電解質の表面に半触媒性能を有する多孔
質電極が形成され、かつ該電極と固体電解質と被
測定ガスとで構成される3相点近傍に、炭化水素
を酸化してCOを生成する金属酸化物が存在せし
められてなる広域空燃比センサーの製造法であつ
て、固体電解質の表面に多孔質電極を形成した
後、被測定ガスに接触する側の電極上に耐熱金属
酸化物をプラズマ容射して多孔質の保護被膜を形
成してなるセンサー素材を、前記COを生成する
金属酸化物を生成する金属の化合物の溶液中に浸
漬して、該溶液を上記保護被幕の気孔を通して電
極の気孔奥部に含浸し、その後、該素材を溶液か
ら取り出して前記金属化合物の熱分解温度まで加
熱することにより、前記3相点近傍に前記COを
生成する金属酸化物を生成せしめることを特徴と
する広域空燃比センサーの製造法。
1 A porous electrode with semi-catalytic performance is formed on the surface of a solid electrolyte, and a metal that oxidizes hydrocarbons to generate CO is placed near a three-phase point consisting of the electrode, solid electrolyte, and gas to be measured. This is a method for manufacturing a wide range air-fuel ratio sensor in which an oxide is present, in which a porous electrode is formed on the surface of a solid electrolyte, and then a refractory metal oxide is placed in a plasma chamber on the electrode on the side that contacts the gas to be measured. The sensor material is immersed in a solution of a metal compound that generates a metal oxide that generates CO, and the solution is passed through the pores of the protective coating to the electrode. The material is impregnated deep into the pores of the material, and then the material is taken out of the solution and heated to the thermal decomposition temperature of the metal compound, thereby producing a metal oxide that produces the CO in the vicinity of the three-phase point. A method for manufacturing a wide range air-fuel ratio sensor.
JP57220509A 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor Granted JPS59109854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220509A JPS59109854A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220509A JPS59109854A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS59109854A JPS59109854A (en) 1984-06-25
JPH046909B2 true JPH046909B2 (en) 1992-02-07

Family

ID=16752136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220509A Granted JPS59109854A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPS59109854A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810209B2 (en) * 1987-08-12 1996-01-31 日本特殊陶業株式会社 Oxygen sensor element
DE68927087T2 (en) * 1988-11-01 1997-02-06 Ngk Spark Plug Co Oxygen-sensitive sensor and method for its production

Also Published As

Publication number Publication date
JPS59109854A (en) 1984-06-25

Similar Documents

Publication Publication Date Title
JPH0513260B2 (en)
US4136000A (en) Process for producing improved solid electrolyte oxygen gas sensors
JP3311218B2 (en) Hydrocarbon sensor
US20070080074A1 (en) Multicell ammonia sensor and method of use thereof
Li et al. High‐temperature carbon monoxide potentiometric sensor
JPH08510561A (en) Electrochemical sensor for measuring oxygen concentration in air-fuel mixture
JPH0668480B2 (en) Electrode structure in oxygen sensor
EP0159905B1 (en) Device for detecting concentration of oxygen in exhaust gas
JPS61120055A (en) Production of oxygen sensor
US4169777A (en) Process for producing an activated oxygen gas sensor element
JPH06341972A (en) Sensor device
JP2009014706A (en) Gas sensor
JP2563953B2 (en) Oxygen sensor
JPH046909B2 (en)
US7244316B2 (en) Methods of making gas sensors and sensors formed therefrom
JPH0244244A (en) Manufacture of electrochemical cell
JPH046908B2 (en)
JP3623870B2 (en) Air-fuel ratio detection element, method for manufacturing the same, and method for stabilizing air-fuel ratio detection element
JP2008116321A (en) Ammonia gas sensor and manufacturing method therefor
JPS59142457A (en) Production of wide range air-fuel ratio sensor
JP3795227B2 (en) Hydrocarbon sensor
JPS59142455A (en) Wide range air-fuel ratio sensor
JP3696494B2 (en) Nitrogen oxide sensor
JP2007163176A (en) Ammonia gas sensor
JP3633825B2 (en) Nitrogen oxide sensor