JPH0469058A - Switching power supply device - Google Patents

Switching power supply device

Info

Publication number
JPH0469058A
JPH0469058A JP2169789A JP16978990A JPH0469058A JP H0469058 A JPH0469058 A JP H0469058A JP 2169789 A JP2169789 A JP 2169789A JP 16978990 A JP16978990 A JP 16978990A JP H0469058 A JPH0469058 A JP H0469058A
Authority
JP
Japan
Prior art keywords
circuit
power supply
switching power
metal substrate
insulated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2169789A
Other languages
Japanese (ja)
Other versions
JPH072013B2 (en
Inventor
Akira Okamura
岡村 彰
Takahisa Makino
高久 牧野
Tokuo Maeda
徳雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2169789A priority Critical patent/JPH072013B2/en
Publication of JPH0469058A publication Critical patent/JPH0469058A/en
Publication of JPH072013B2 publication Critical patent/JPH072013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Power Conversion In General (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To improve heat radiation and also set the interval between insulated metallic boards accurately and simplify the manufacturing process by mounting the circuit on the primary side and the circuit on the secondary side of first and second insulated metallic boards, and coupling them by a photocoupler. CONSTITUTION:The circuit on the primary side and the circuit on the secondary side are formed on insulated metallic boards, which are united by a bridge, and thereon integrated circuits, elements, etc., are mounted. A photocoupler 50 is fixed to straddle a rectangular extra hole. For a variable resistance element 52, a variable resistance element for surface mounting is used, and a hole is made in a casing 10, or through an extra hole it is fixed in such arrangement that the adjustment is possible. Next, the bridge part is stamped out and removed by a press, thereby dividing it in two sheets of hybrid integrated circuit boards 20 and 20, and the margins are fixed to the step of the casing 10. The coupling with a transformer is performed through leads 56 and 58, and the feedback of a signal is performed by the photocoupler 50.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は大圧力間が絶縁されるコンバータ型のスイッチ
ング電源装置に関し、詳細には、2枚の重色縁金属基板
上にその1次側回路および2次側回路をそれぞれ実装し
たスイッチング電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a converter-type switching power supply device in which high pressure is insulated. The present invention relates to a switching power supply device in which a side circuit and a secondary side circuit are respectively mounted.

(ロ)従来の技術 第6図はフライバック方式のスイッチング電源回路を示
す。
(b) Prior Art FIG. 6 shows a flyback type switching power supply circuit.

図示するスイッチング電源回路は1次巻線と2次巻線が
逆極性であって、人力V I Nと出力V。ulを絶縁
するトランスT、入力V I NからトランスTに流れ
る電流を制御するスイッチング−トランジスタあるいは
パワーMOSFET等のスイッチング素子Q、数十K 
Hzの一定周波数であって、帰還信号によりデユーティ
が変更されるパルスをスイッチング素子Qの制御電極に
出力するPWM回路(60)、トランスTのリーケージ
 インダクタンスに蓄積されるエネルギーを放出するた
めのスナバ回路(66)、スイッチング素子Qの電流を
モニタして過電流保護を行う電流検出器(64)、電源
回路の熱暴走を防止する温度検出器(62)、トランス
Tの出力電圧を整流平滑するそれぞれダイオードD3、
コンデンサC2、出力V。L12の定電圧制御および過
電圧制御を行う電圧検出器(68)、この電圧検出器(
68)の出力を絶縁帰還するホトカプラ(70)等から
構成される。
In the illustrated switching power supply circuit, the primary winding and the secondary winding have opposite polarities, and the human power V I N and the output V. Transformer T that insulates UL, switching element Q that controls the current flowing from input V I N to transformer T, such as a transistor or power MOSFET, several tens of kilometres.
A PWM circuit (60) that outputs a pulse with a constant frequency of Hz and whose duty is changed by a feedback signal to the control electrode of the switching element Q, and a snubber circuit that releases the energy accumulated in the leakage inductance of the transformer T. (66), a current detector (64) that monitors the current of the switching element Q and provides overcurrent protection, a temperature detector (62) that prevents thermal runaway in the power supply circuit, and a rectifier and smoother that rectify and smooth the output voltage of the transformer T. diode D3,
Capacitor C2, output V. A voltage detector (68) that performs constant voltage control and overvoltage control of L12, this voltage detector (
It is composed of a photocoupler (70), etc., which insulates back the output of (68).

次に、上記構成されるスイッチング電源回路の動作を説
明する。
Next, the operation of the switching power supply circuit configured as described above will be explained.

PWM回路(60)の出力パルスがハイレベルとなって
スイッチング素子Qがオンすると、人力■、−トランス
Tの一次巻線一スイツチング素子Qの閉回路が形成され
てトランスTの1次巻線に1次関数的に増加する電流が
流れる。このとき、トランスTの2次巻線出力はダイオ
ードD3により阻止されるためトランスTを介する電力
の伝達は行われず、1次巻線へ供給されたエネルギーは
全てトランスT内に蓄積される。そして、PWM回16
0)の出力パルスがローレベルとなってスイッチング素
子Qがオフすると、1次巻線に逆起電力が発生し、この
逆起電力に基づく2次巻線出力がダイオードD3を介し
てコンデンサC2に充電され出力■。olとなる。
When the output pulse of the PWM circuit (60) becomes high level and the switching element Q turns on, a closed circuit of the primary winding of the transformer T and the switching element Q is formed, and the primary winding of the transformer T A current that increases linearly flows. At this time, the secondary winding output of the transformer T is blocked by the diode D3, so no power is transmitted through the transformer T, and all the energy supplied to the primary winding is stored in the transformer T. And PWM times 16
When the output pulse of 0) becomes low level and the switching element Q is turned off, a back electromotive force is generated in the primary winding, and the secondary winding output based on this back electromotive force is transferred to the capacitor C2 via the diode D3. Charged and output ■. It becomes OL.

上記の動作を行うスイッチング電源回路は高効率である
ため比較的小容量のものではセラミックス等の絶縁基板
上に混成集積回路化することも可能であり、小型、軽量
化が要求される昨今の電気機器の電源装置として好適で
ある。しかしながら、セラミックス等の絶縁基板は概ね
熱伝導能が低いため、発熱量が大きい大容量のスイッチ
ング電源回路を混成集積回路化することができない問題
を有している。
The switching power supply circuit that performs the above operations is highly efficient, so if it has a relatively small capacity, it is possible to create a hybrid integrated circuit on an insulating substrate such as ceramics. It is suitable as a power supply device for equipment. However, since insulating substrates such as ceramics generally have low thermal conductivity, there is a problem that it is not possible to form a large-capacity switching power supply circuit that generates a large amount of heat into a hybrid integrated circuit.

(ハ)発明が解決しようとする課題 これに対して、基板として絶縁金属基板を使用してスイ
ッチング電源回路を混成集積回路化する場合には放熱の
問題は解決されるものの、安全規格によりスイッチング
電源回路の1次側回路と2次側回路を単一の金属基板上
に形成してはならないとされているため製造工程が煩雑
になる問題を有する。
(c) Problems to be solved by the invention On the other hand, when converting a switching power supply circuit into a hybrid integrated circuit by using an insulated metal substrate as the substrate, the problem of heat dissipation is solved, but due to safety standards, switching power supply Since it is said that the primary side circuit and the secondary side circuit of the circuit should not be formed on a single metal substrate, there is a problem that the manufacturing process becomes complicated.

また、特にスイッチング電源装置には電流容量、大圧力
電圧あるいは電力容量等による極めて多数のニーズが存
在しているため、それらのいくつかのニーズに応えるた
めの開発負担は重いものとなる。
In addition, especially in switching power supply devices, there are a large number of needs such as current capacity, high pressure voltage, power capacity, etc., so the burden of development to meet some of these needs becomes heavy.

従って、本発明は回路)<ターン形成工程、素子実装工
程等を単一の基板を使用するものと同等に簡素化するこ
とができると共に開発負担を増加させることなく多数の
ユーザニーズに即応できる構造のスイッチング電源装置
を提供することにある。
Therefore, the present invention has a structure that can simplify the circuit (circuit) < turn formation process, element mounting process, etc. to the same level as using a single board, and can quickly respond to the needs of a large number of users without increasing the development burden. The purpose of this company is to provide switching power supply devices.

(ニ)課題を解決するための手段 本発明は斯る課題に鑑みなされたものであって、スイッ
チング電源回路の1次側回路と2次側回路を第1および
第2の絶縁金属基板上に実装し、この第1および第2の
絶縁金属基板を、2次側回路から1次側回路へ電圧信号
および過電圧信号を絶縁帰還するホトカプラにより結合
することによって、スイッチング電源回路の1次側回路
と2次側回路間の絶縁距離の問題および製造工程上の問
題を解決するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above problems, and provides a method for disposing a primary side circuit and a secondary side circuit of a switching power supply circuit on first and second insulated metal substrates. The first and second insulated metal substrates are coupled by a photocoupler that insulates and returns voltage signals and overvoltage signals from the secondary circuit to the primary circuit, thereby connecting the primary circuit of the switching power supply circuit. This solves the problem of insulation distance between secondary circuits and the problem of manufacturing process.

また、第1の絶縁金属基板あるいは第2の絶縁金属基板
に、少なくとも1次側回路の過電流検圧レベル設定用可
変抵抗、2次側回路の電圧設定用可変抵抗、あるいは過
電圧検8レベル設定用可変抵抗の1を実装し、第1およ
び第2の絶縁金属基板の間隙を介して、あるいはケーシ
ングに形成した孔を介して、ユーザサイドにおいて、ま
た少なくとも製造の最終段階においてその抵抗調整を可
能とすることによって多数のユーザニーズに応えるもの
である。
Further, on the first insulated metal substrate or the second insulated metal substrate, at least a variable resistor for setting the overcurrent detection level of the primary side circuit, a variable resistor for setting the voltage of the secondary side circuit, or a variable resistor for setting the overvoltage detection level of 8 levels is provided. The resistance can be adjusted on the user side or at least in the final stage of manufacturing by mounting a variable resistor 1 for the first and second insulated metal substrates or through a hole formed in the casing. By doing so, it meets the needs of many users.

(ホ)作用 スイッチング電源回路の1次側回路と2次側回路を格別
に実装した第1および第2の絶縁金属基板をホトカプラ
により結合することによって、体の金属基板として扱う
ことが可能になり、素子実装工程、リード固着工程等を
単一の基板のものと同等に簡素化することが可能になる
。また、2枚の金属基板をホトカプラにより結合するた
め第1および第2の絶縁金属基板距離を高精度に設定す
ることができる。
(E) Function By coupling the first and second insulated metal substrates, on which the primary and secondary circuits of the switching power supply circuit are specially mounted, using a photocoupler, it is possible to treat them as the metal substrates of the body. , it becomes possible to simplify the element mounting process, lead fixing process, etc. to be equivalent to that of a single board. Furthermore, since the two metal substrates are coupled using a photocoupler, the distance between the first and second insulating metal substrates can be set with high precision.

また、過電流検出レベル設定用可変抵抗、電圧設定用可
変抵抗、あるいは過電圧検圧レベル設定用可変抵抗の少
なくと61の抵抗調整を可能にしたため、微細な規格変
更には即応することができる。
Furthermore, it is possible to adjust at least 61 resistances of the variable resistor for setting the overcurrent detection level, the variable resistor for setting the voltage, or the variable resistor for setting the overvoltage detection level, so that it is possible to immediately respond to minute changes in specifications.

(へ)実施例 初めに、本発明のスイッチング電源装置の外形並びに構
造の概要を第4図および第5図を参照して説明する。な
お、本発明のスイッチング電源装置には従来例の説明の
項で説明したスイッチング電源回路を含む任意のコンバ
ータ型スイッチング電源回路が使用できるため回路構成
の説明は省略する。
(F) Embodiments First, the outline and structure of the switching power supply device of the present invention will be explained with reference to FIGS. 4 and 5. Note that any converter-type switching power supply circuit including the switching power supply circuit described in the description of the conventional example can be used in the switching power supply device of the present invention, so a description of the circuit configuration will be omitted.

第4図を参照すると、本発明のスイッチング電源装置は
絶縁トランス(外部接続されるため図示されない)によ
り分離される1次側および2次側回路をそれぞれに実装
した2枚の混成集積回路基板(20)(20)、2枚の
混成集積回路基板(20)(20)のそれぞれの−周辺
端から導出されるリード(56)(58)、2枚の混成
集積回路基板(20)(20)を結合するホトカプラ(
50)および全体として枠形状であって、サーコンと称
されるスペーサのガイドとなる段部(12)を備えるケ
ーシング(10)で示されている。
Referring to FIG. 4, the switching power supply device of the present invention includes two hybrid integrated circuit boards (1) each mounted with a primary side circuit and a secondary side circuit separated by an isolation transformer (not shown because it is externally connected). 20) (20), leads (56) (58) led out from the respective peripheral ends of the two hybrid integrated circuit boards (20) (20), two hybrid integrated circuit boards (20) (20); A photocoupler (
50) and a casing (10) which is generally frame-shaped and includes a step (12) serving as a guide for a spacer called a circon.

2枚の混成集積回路基板(20) (20)は同一平面
上に所定間隔離間配置され、その周辺端はケーシング(
10)の段部に接着シート等を使用して固着される。混
成集積回路基板(20) (20)に実装されるスイッ
チング電源回路の1次側および2次側回路は混成集積回
路基板<20) (20)とケーシング(10)により
形成される独立の封止空間にそれぞれ配置され、それら
回路とトランスとの結合はリード(56)(58)を介
して行われる。また、2次側回路から1次側回路への電
圧並びに過電圧信号の帰還はホトカプラ(50)により
行われる。なお、このホトカプラ(50)が配置される
n8領域は図示しないカバにより封止される。
Two hybrid integrated circuit boards (20) (20) are arranged on the same plane with a predetermined distance apart, and their peripheral edges are connected to the casing (
10) is fixed to the stepped portion using an adhesive sheet or the like. The primary and secondary side circuits of the switching power supply circuit mounted on the hybrid integrated circuit board (20) (20) are independent seals formed by the hybrid integrated circuit board (20) (20) and the casing (10). The circuits are arranged in a space, and the circuits are coupled to the transformer through leads (56) and (58). Further, feedback of voltage and overvoltage signals from the secondary circuit to the primary circuit is performed by a photocoupler (50). Note that the n8 region where this photocoupler (50) is arranged is sealed with a cover (not shown).

第5図は変形例を示し、ケーシング(10)に可変抵抗
素子(52)の抵抗調整のための孔(14)が形成され
る点のみが先の例と異なる。第4図に示したスイッチン
グ電源装置はその可変抵抗素子(52)の抵抗調整は第
1および第2の混成集積回路基板(20)(20)の基
板間隙を介して行われるため、例えば放熱器へ取り付け
た後の抵抗調整は不可能である。
FIG. 5 shows a modified example, which differs from the previous example only in that a hole (14) for adjusting the resistance of the variable resistance element (52) is formed in the casing (10). In the switching power supply shown in FIG. 4, the resistance of the variable resistance element (52) is adjusted through the gap between the first and second hybrid integrated circuit boards (20) (20). It is not possible to adjust the resistance after installation.

これに対して本変形例では随時の抵抗調整が可能である
On the other hand, in this modification, the resistance can be adjusted at any time.

次に、本発明の特徴をより明らかにするため実施例の製
造工程を説明する。
Next, the manufacturing process of an example will be explained in order to clarify the features of the present invention.

第1図Aは回路部品を実装して混成集積回路基板とする
直前の回路基板の平面図を示す。なお、第1図Bはその
I−1線断面図である。
FIG. 1A shows a plan view of a circuit board just before circuit components are mounted to form a hybrid integrated circuit board. Note that FIG. 1B is a sectional view taken along line I-1.

金属基板(20)にはアルミニウム等の厚さ0゜5mm
〜3mmの金属基板が使用され、第1図Aに図示される
ように、その中央部の矩形の捨孔(24)と共に矩形に
プレス打ち抜きされる。
The metal substrate (20) is made of aluminum or the like with a thickness of 0°5 mm.
A ~3 mm metal substrate is used and press punched into a rectangular shape with a rectangular cut hole (24) in its center, as illustrated in FIG. 1A.

アルミニウムが使用される場合にはこの後陽極酸化処理
により酸化膜が形成され、厚さ18μm〜35μmの銅
箔と厚さ約35μmのポリイミド系あるいはエボ牛シ系
の絶縁樹脂層(26)の積層体が貼着される。そしてこ
の銅箔を所定の形状にエツチングして回路パターン(2
8)、外部リードのだめのパッド(30)(32)、ホ
トカプラ(50)のためのパフ)’ (34)、可変抵
抗素子のための)<ラド(36)等が形成される。
When aluminum is used, an oxide film is formed by anodizing after this, and a copper foil with a thickness of 18 μm to 35 μm is laminated with an insulating resin layer (26) of polyimide or enamelled wood with a thickness of about 35 μm. The body is attached. This copper foil is then etched into a predetermined shape to form a circuit pattern (2
8), pads (30) and (32) for external leads, puff )' (34) for the photocoupler (50), )<rad (36) for the variable resistance element, etc. are formed.

第2図を参照すると、上記のようにして完成された回路
基板にスイッチング電源回路を構成するスイッチング素
子(40)、PWM回路(42)、過電流検出回路(4
4)、ダイオード(46)、過電圧検出回路(48)等
の集積回路、あるいは抵抗、コンデンサ等の素子がチッ
プ形状で実装される。パフl’ (34)には矩形の捨
孔(24)を跨ぐようにしてホトカプラ(50)が固着
され、ノベッド(30)(32)にはリード(56)(
58)が半田固着される。可変抵抗素子(52)はデイ
ツプ型あるいはトリマ型等任意の型の表面実装用の可変
抵抗素子が使用され、必要に応じてケーシング(10)
に孔を形成するか、捨孔(24)を介して調整可能なよ
うな配置で固着される。
Referring to FIG. 2, the circuit board completed as described above includes a switching element (40), a PWM circuit (42), an overcurrent detection circuit (42), and an overcurrent detection circuit (42) constituting a switching power supply circuit.
4) Integrated circuits such as diodes (46) and overvoltage detection circuits (48), or elements such as resistors and capacitors are mounted in chip form. A photocoupler (50) is fixed to the puff l' (34) so as to straddle the rectangular hole (24), and a lead (56) (
58) is fixed by solder. The variable resistance element (52) may be of any type such as a dip type or trimmer type, and may be attached to the casing (10) as required.
A hole is formed in the hole or the hole is fixed in an adjustable manner through a hole (24).

この可変抵抗素子(52)の抵抗調整がユーザサイドで
可能な構造、あるいは少なくとも混成集積回路装置の製
造の最後の段階で抵抗調整が可能な構造を採用すること
によって、本発明のスイッチング電源装置は極めて多数
のユーザニーズに即応することができる。この後、ワイ
ヤポンディングにより所定の電極と回路パターンとが接
続される。
By adopting a structure in which the resistance of this variable resistance element (52) can be adjusted on the user side, or at least in the final stage of manufacturing the hybrid integrated circuit device, the switching power supply device of the present invention can be achieved. It can immediately respond to the needs of an extremely large number of users. Thereafter, a predetermined electrode and a circuit pattern are connected by wire bonding.

これらの実装工程および前記した回路パターンエツチン
グ工程は単一の基板を使用する混成集積回路装置の製造
と同様に行われる。
These mounting steps and the circuit pattern etching steps described above are performed in the same manner as in the manufacture of a hybrid integrated circuit device using a single substrate.

次いで、素子実装およびリード(46)の固着が完了し
た混成集積回路基板(20(20)の捨孔の左右の回路
基板を接続しているブリッジ(22)およびリードフレ
ーム(54)がプレス打ち抜きにより除去されて、ホト
カプラ(50)のみにより結合される2枚の混成集積回
路基板として完成する(第3図参照)、なお、2枚の混
成集積回路基板(20(20)の間隔はホトカプラ(5
0)の固着により固定されるため、後の製造工程におい
ても安全規格により定められる基板間隔が保証される。
Next, the bridge (22) and lead frame (54) connecting the circuit boards on the left and right sides of the left and right holes of the hybrid integrated circuit board (20 (20)) on which the element mounting and the fixing of the leads (46) have been completed are punched out by press punching. The two hybrid integrated circuit boards (20) are removed and completed as two hybrid integrated circuit boards that are connected only by the photocoupler (50) (see Figure 3).
0), the substrate spacing specified by safety standards is guaranteed even in the subsequent manufacturing process.

(1)発明の効果 以上述べたように本発明によれば、 (1)絶縁金属基板を使用するため放熱特性が良好であ
り、大容量のスイッチング電源装置に対応できる。
(1) Effects of the Invention As described above, according to the present invention, (1) Since an insulated metal substrate is used, heat dissipation characteristics are good and it can be applied to a large-capacity switching power supply device.

(2)スイッチング電源回路の1次側回路と2次側回路
が完全に分離されるため安全規格が満たされるにもかか
わらず、エツチング、実装工程等を単一の基板処理と同
等に簡素化することができる。
(2) Even though safety standards are met because the primary and secondary circuits of the switching power supply circuit are completely separated, etching and mounting processes are simplified to the same level as processing a single board. be able to.

(3)過電流検圧レベル設定用可変抵抗、電圧設定用可
変抵抗、あるいは過電圧検比レベル設定用可変抵抗の少
な(とも1の抵抗調整を可能にしたため、多数のユーザ
ニーズに即応できる。
(3) Since the variable resistance for setting the overcurrent detection level, the variable resistance for setting the voltage, or the variable resistance for setting the overvoltage detection level can be adjusted to a minimum of 1, it can quickly meet the needs of many users.

(4)捨孔を形成した単一基板に対して回路パターンが
形成されるため、それぞれの基板に形成されるリードの
バンドおよびホトカプラのパッドが整合する。
(4) Since the circuit pattern is formed on a single substrate with holes formed, the lead bands and photocoupler pads formed on each substrate are aligned.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の一実施例の製造工程を説明
する図であって、第1図Aは実施例に使用される回路基
板の平面図、第1図BはそのII線断面図、第2図Aは
回路素子を実装した混成集積回路基板の平面図、第2図
BはそのI−1線断面図、第3図は完成混成集積回路基
板の平面図、第4図は実施例の斜視図、第5図は変形例
の斜視図、第6図は一般的なスイッチング電源回路の回
路図。 (10)・−ケーシング、(12)・・・サーコン・ガ
イド、 (20)・・−混成集積回路基板、 (22)
・−ブリッジ、 (24)・・・捨孔、 (28)・−
回路パターン、(30) (32) (34) (36
)・・・バンド。
1 to 4 are diagrams explaining the manufacturing process of an embodiment of the present invention, in which FIG. 1A is a plan view of a circuit board used in the embodiment, and FIG. 1B is a line II thereof. 2A is a plan view of the hybrid integrated circuit board on which circuit elements are mounted, FIG. 2B is a sectional view taken along line I-1, FIG. 3 is a plan view of the completed hybrid integrated circuit board, and FIG. 5 is a perspective view of an embodiment, FIG. 5 is a perspective view of a modified example, and FIG. 6 is a circuit diagram of a general switching power supply circuit. (10) - Casing, (12)... Circon guide, (20)... - Hybrid integrated circuit board, (22)
・-Bridge, (24)...Subhole, (28)・-
Circuit pattern, (30) (32) (34) (36
)···band.

Claims (1)

【特許請求の範囲】 (1)スイッチング電源回路の1次側回路を構成するス
イッチング素子、このスイッチング素子の動作を制御す
る回路等の複数の回路素子を実装した第1の絶縁金属基
板と、 スイッチング電源回路の2次側回路を構成するダイオー
ド、過電圧検出回路等の複数の回路素子を実装した第2
の絶縁金属基板と、 第1および第2の絶縁金属基板を同一平面上で所定間隔
で離間結合し、スイッチング電源回路の2次側回路から
1次側回路へ電圧信号および過電圧信号を絶縁帰還する
ホトカプラと、 前記第1および第2の絶縁金属基板に実装されたスイッ
チング電源回路の1次側回路および2次側回路を独立に
封止する空間を備えたケーシングとからなり、 第1の絶縁金属基板あるいは第2の絶縁金属基板には少
なくとも1次側回路の過電流検出レベル設定用可変抵抗
、2次側回路の電圧設定用可変抵抗、あるいは過電圧検
出レベル設定用可変抵抗の1が実装されることを特徴と
するスイッチング電源装置。 (2)前記第1および第2の絶縁金属基板が矩形の捨孔
を形成した単一の絶縁金属基板のブリッジを切断して形
成されることを特徴とする請求項1記載のスイッチング
電源装置。(3)前記捨孔の幅が所要の絶縁規格を満た
す大きさに設定されることを特徴とする請求項2記載の
スイッチング電源装置。 (4)前記第1および第2の絶縁金属基板から導出され
るリードがブリッジの切断による前記単一の絶縁金属基
板の分離前にその一周辺端に固着されることを特徴とす
る請求項2記載のスイッチング電源装置。
[Scope of Claims] (1) A first insulated metal substrate mounting a plurality of circuit elements such as a switching element constituting a primary side circuit of a switching power supply circuit and a circuit that controls the operation of this switching element; The second circuit is equipped with multiple circuit elements such as diodes and overvoltage detection circuits that constitute the secondary side circuit of the power supply circuit.
The insulated metal substrate and the first and second insulated metal substrates are coupled at a predetermined interval on the same plane, and voltage signals and overvoltage signals are insulated and fed back from the secondary side circuit to the primary side circuit of the switching power supply circuit. A casing comprising a photocoupler and a space for independently sealing a primary side circuit and a secondary side circuit of a switching power supply circuit mounted on the first and second insulated metal substrates, and a first insulated metal substrate. At least one variable resistor for setting the overcurrent detection level of the primary side circuit, the variable resistor for setting the voltage of the secondary side circuit, or the variable resistor for setting the overvoltage detection level is mounted on the substrate or the second insulated metal substrate. A switching power supply device characterized by: (2) The switching power supply device according to claim 1, wherein the first and second insulated metal substrates are formed by cutting a bridge of a single insulated metal substrate in which a rectangular cut hole is formed. (3) The switching power supply device according to claim 2, wherein the width of the cut hole is set to a size that satisfies a required insulation standard. (4) The leads led out from the first and second insulating metal substrates are fixed to one peripheral edge of the single insulating metal substrate before the single insulating metal substrate is separated by cutting the bridge. The switching power supply described.
JP2169789A 1990-06-29 1990-06-29 Switching power supply Expired - Fee Related JPH072013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169789A JPH072013B2 (en) 1990-06-29 1990-06-29 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169789A JPH072013B2 (en) 1990-06-29 1990-06-29 Switching power supply

Publications (2)

Publication Number Publication Date
JPH0469058A true JPH0469058A (en) 1992-03-04
JPH072013B2 JPH072013B2 (en) 1995-01-11

Family

ID=15892912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169789A Expired - Fee Related JPH072013B2 (en) 1990-06-29 1990-06-29 Switching power supply

Country Status (1)

Country Link
JP (1) JPH072013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332678A (en) * 2000-05-23 2001-11-30 Mitsubishi Electric Corp Semiconductor device
JP2009232637A (en) * 2008-03-25 2009-10-08 Rohm Co Ltd Switch controller and motor drive using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109141A (en) * 1995-10-16 1997-04-28 Goei Seisakusho:Kk Drilling bit and mounting method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332678A (en) * 2000-05-23 2001-11-30 Mitsubishi Electric Corp Semiconductor device
JP2009232637A (en) * 2008-03-25 2009-10-08 Rohm Co Ltd Switch controller and motor drive using the same

Also Published As

Publication number Publication date
JPH072013B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US5959846A (en) Modular surface mount circuit device and a manufacturing method thereof
EP2485225B1 (en) Electronic unit
KR840006885A (en) High frequency DC-DC inverter
JP7326782B2 (en) Transformers and power supplies
WO2005025042A1 (en) Power conversion module device and power source device using the same
JPH0469058A (en) Switching power supply device
JPH0469059A (en) Switching power supply device
US10660193B2 (en) Multilayer substrate
JP2810452B2 (en) Switching power supply
JPH0469060A (en) Switching power supply device
EP0851439B1 (en) Modular surface mount circuit device and a manufacturing method thereof
JPH0469056A (en) Switching power supply device
JPH0748543B2 (en) Method for manufacturing hybrid integrated circuit
JP2022100475A (en) Power conversion device and shutdown mechanism
JP2810448B2 (en) Switching power supply
JP2010251559A (en) Electronic circuit device
JP2016009704A (en) Power transformer and power supply device
JPH0748947B2 (en) Switching power supply
JP7081476B2 (en) Circuit board configuration
JPS6216792Y2 (en)
JPH0766361A (en) Power supply device
JPH01157266A (en) Switching regulator
JPH03145925A (en) Switching power supply
JPH0528952Y2 (en)
JP6349874B2 (en) Power supply