JPH0468812B2 - - Google Patents

Info

Publication number
JPH0468812B2
JPH0468812B2 JP58128823A JP12882383A JPH0468812B2 JP H0468812 B2 JPH0468812 B2 JP H0468812B2 JP 58128823 A JP58128823 A JP 58128823A JP 12882383 A JP12882383 A JP 12882383A JP H0468812 B2 JPH0468812 B2 JP H0468812B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
thermistor
resistance
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128823A
Other languages
Japanese (ja)
Other versions
JPS6020613A (en
Inventor
Yoshinori Ookuma
Yoshuki Ppongo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58128823A priority Critical patent/JPS6020613A/en
Publication of JPS6020613A publication Critical patent/JPS6020613A/en
Publication of JPH0468812B2 publication Critical patent/JPH0468812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/54Modifications of networks to reduce influence of variations of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components

Landscapes

  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)
  • Filters And Equalizers (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はサーミスタを使用する温度補償回路に
係り、特に二個のサーミスタを使用し、ある温度
より上昇しても降下しても、その等価抵抗が増加
又は減少する特性を有する温度補償回路に関する
ものである。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a temperature compensation circuit using thermistors, and in particular, to a temperature compensation circuit using two thermistors, and determining the equivalent value of the temperature when the temperature rises or falls above a certain temperature. The present invention relates to a temperature compensation circuit having a characteristic that resistance increases or decreases.

(b) 従来技術の問題点 第1図は従来のサーミスタを使用する温度補償
回路の一例を示す図であり、aは回路図、bはそ
の温度特性を表す。図中、R1,R2はそれぞれ
抵抗、Thはサーミスタである。
(b) Problems with the Prior Art FIG. 1 is a diagram showing an example of a temperature compensation circuit using a conventional thermistor, where a represents the circuit diagram and b represents its temperature characteristics. In the figure, R1 and R2 are resistors, respectively, and Th is a thermistor.

サーミスタThは周知の如く温度が高くなると
その抵抗値は減少する。従つて第1図のaのよう
な回路を作ると端子α、端子β間の合成抵抗Rと
温度Tとの関係は第1図のbに示すようにある温
度範囲内では、温度Tの増加と共に合成抵抗Rは
略直線的に減少し、抵抗R1,R2を適当に選定
するとその傾斜を変化させることが出来る。この
特性を利用して各種の温度補償を行つていた。
As is well known, the resistance value of the thermistor Th decreases as the temperature increases. Therefore, when creating a circuit like a in Figure 1, the relationship between the combined resistance R between terminals α and β and temperature T is as shown in b in Figure 1. Within a certain temperature range, the temperature T increases. At the same time, the combined resistance R decreases approximately linearly, and its slope can be changed by appropriately selecting the resistances R1 and R2. This characteristic was used to perform various types of temperature compensation.

然し上記の第1図aのような一個のサーミスタ
のみを使用する従来の回路では、温度Tの増加と
共に合成抵抗Rが略直線的に減少するのみである
ので、多様な温度補償を行うには不十分である。
However, in a conventional circuit using only one thermistor as shown in Figure 1a above, the combined resistance R only decreases approximately linearly as the temperature T increases, so it is difficult to perform various temperature compensations. Not enough.

そこで、単に直線的に合成抵抗を変化させるの
みでなく、ある温度で合成抵抗の変化傾向を変え
るための回路構成から考案された。
Therefore, a circuit configuration was devised that not only changes the combined resistance linearly, but also changes the tendency of the combined resistance to change at a certain temperature.

第2図a〜hはその例を説明するための図であ
る。図中、R3,R4はそれぞれ抵抗、Thはサ
ーミスタである。
FIGS. 2a to 2h are diagrams for explaining the example. In the figure, R3 and R4 are resistors, respectively, and Th is a thermistor.

いま第2図のaにおいて、端子1及び端子2間
に一定の電圧を印加し、温度を変化した時の端子
3と端子2間の出力電圧V1と温度Tの関係をb
に示す。温度が上昇するとサーミスタThの抵抗
値が減少し、出力電圧V1は減少する。
Now, in a of Figure 2, when a constant voltage is applied between terminals 1 and 2 and the temperature is changed, the relationship between the output voltage V1 between terminals 3 and 2 and temperature T is expressed as b.
Shown below. As the temperature rises, the resistance value of the thermistor Th decreases, and the output voltage V1 decreases.

一方第2図のcにおいて、同様に端子4及び端
子5間に一定の電圧を印加し、温度を変化した時
の端子6と端子5間の出力電圧V2と温度Tの関
係をdに示す。温度が上昇するとサーミスタTh
の抵抗値が減少し、出力電圧V2は増加する。こ
の時抵抗R3及び抵抗R4とサーミスタThの抵
抗値との関係で、温度Tと出力電圧V1,V2曲
線に彎曲点が出来る、尚第2図のb,d等におい
て折線特性が示されているが、実際には点線で示
すように曲線で変化するものである。特性の変化
を明示する為折線表示としてある。
On the other hand, in c of FIG. 2, a constant voltage is similarly applied between terminals 4 and 5, and the relationship between the output voltage V2 between terminals 6 and 5 and temperature T when the temperature is varied is shown in d. As the temperature increases, the thermistor Th
The resistance value of V2 decreases, and the output voltage V2 increases. At this time, due to the relationship between the resistance values of resistor R3, resistor R4, and thermistor Th, curved points are created in the temperature T and output voltage V1, V2 curves, and broken line characteristics are shown at b, d, etc. in Fig. 2. However, it actually changes along a curve as shown by the dotted line. A broken line is used to clearly indicate changes in characteristics.

又第2図のeを示すようにサーミスタThに並
列抵抗R5を付けると、出力電圧V1はfに示す
ようにbとは反対方向に彎曲する。更に第2図の
gに示すようにサーミスタThは並列抵抗R5を
付けると、出力電圧V2はhに示すようにdとは
反対方向に彎曲する。
If a parallel resistor R5 is attached to the thermistor Th as shown in e of FIG. 2, the output voltage V1 curves in the opposite direction to b as shown in f. Further, when a parallel resistance R5 is attached to the thermistor Th as shown in g in FIG. 2, the output voltage V2 curves in the opposite direction to d as shown in h.

このように1個のサーミスタに、抵抗を直・並
列に接続すると、温度に対する合成抵抗値の変化
に彎曲点を設けることができる。しかし、実際に
はこれでもなお不十分で、ある温度を境に合成抵
抗値が増加から減少に、或いは減少から増加に変
化することを要する場合がある。
By connecting resistors in series and parallel to one thermistor in this way, it is possible to provide an inflection point in the change in the combined resistance value with respect to temperature. However, in reality, this is still insufficient, and there are cases where it is necessary for the combined resistance value to change from increasing to decreasing or from decreasing to increasing after a certain temperature.

第3図aは上記目的を実現した回路構成の一例
を示す図であつて、R6,R7はそれぞれ抵抗、
Th1,Th2はそれぞれサーミスタである。第3
図のbは第3図のaの回路の動作を説明する図で
ある。
FIG. 3a is a diagram showing an example of a circuit configuration that achieves the above object, in which R6 and R7 are resistors, respectively.
Th1 and Th2 are thermistors, respectively. Third
FIG. 3B is a diagram illustrating the operation of the circuit shown in FIG. 3A.

第3図のaにおいて、端子7と端子8の間に同
様一定電圧を印加し、温度Tにより端子9と端子
8の間の出力電圧V3が如何に変化するかを第3
図のbは示している。即ち温度の低い時は、抵抗
R7がサーミスタTh2の値より大きくなるよう
に設定しておくと、抵抗R7とサーミスタTh2
の合成抵抗の変化量は抵抗R6とサーミスタTh
1の合成抵抗の変化量より少ないので、第3図の
bに示すように温度Tが増加すると出力電圧V3
も増加する。しかし、ある温度を越すと抵抗R7
とサーミスタTh2の合成抵抗の変化量は主にサ
ーミスタTh2の変化量により支配される為、抵
抗R7とサーミスタTh2の合成抵抗の変化量は
抵抗R6とサーミスタTh1の合成抵抗の変化量
より大きくなり、出力電圧V3は減少する。この
結果、第3図のbに示すような特性が得られる。
In Fig. 3a, a constant voltage is similarly applied between terminals 7 and 8, and how the output voltage V3 between terminals 9 and 8 changes depending on the temperature T is calculated in a third manner.
b in the figure shows. That is, when the temperature is low, if the resistance R7 is set to be larger than the value of thermistor Th2, the resistance R7 and thermistor Th2
The amount of change in the combined resistance is the resistance R6 and thermistor Th
1, so as the temperature T increases, the output voltage V3 increases as shown in Figure 3b.
will also increase. However, when a certain temperature is exceeded, the resistance R7
Since the amount of change in the combined resistance of R7 and thermistor Th2 is mainly controlled by the amount of change in thermistor Th2, the amount of change in the combined resistance of resistor R7 and thermistor Th2 is larger than the amount of change in the combined resistance of resistor R6 and thermistor Th1, Output voltage V3 decreases. As a result, characteristics as shown in FIG. 3b are obtained.

第4図のaは別の例を示す図であつて、第4図
のbは第3図のbの山型とは反対に谷型の特性を
示す。
FIG. 4a shows another example, and FIG. 4b shows a valley-shaped characteristic, which is opposite to the mountain-shaped characteristic shown in FIG. 3b.

このようにサーミスタを2個使用し、一方には
直列抵抗を接続し他方に並列抵抗を接続して、こ
の両者を直列に接続することによつて、第3図b
および第4図bに示す如く、温度がある値より高
くなつても低くなつても、合成抵抗はいずれも増
加あるいは減少する特性が得られる。この特性を
利用することによつて、ある温度で最大あるいは
最小となるような特性を有する回路や回路素子等
被補償手段温度特性を補償することができる。
By using two thermistors in this way, connecting a series resistor to one and connecting a parallel resistor to the other, and connecting both in series, it is possible to
As shown in FIG. 4b, a characteristic is obtained in which the combined resistance either increases or decreases when the temperature becomes higher or lower than a certain value. By utilizing this characteristic, it is possible to compensate for the temperature characteristic of a compensated means such as a circuit or a circuit element, which has a characteristic that becomes maximum or minimum at a certain temperature.

しかしこの種の構成のサーミスタ回路のみで温
度特性を補償できるのは、上記サーミスタ回路を
バイアス回路に用いて有効な場合に限られる。即
ち、上記第3図a、第4図aの回路の両端に電源
電圧を供給し、その中点(第3図aでは端子9、
第4図aでは端子12)からバイアス電圧を取り
出す構成を採ることによつて、温度特性を補償で
きる場合は有効であるが、すべての回路あるいは
回路素子の温度特性を、この種のバイアス補正に
よつて補償し得るものではない。
However, temperature characteristics can only be compensated using a thermistor circuit having this type of configuration only when the thermistor circuit is effectively used as a bias circuit. That is, the power supply voltage is supplied to both ends of the circuits shown in FIGS. 3a and 4a, and the midpoint (terminal 9 in FIG. 3a,
In Figure 4a, it is effective if the temperature characteristics can be compensated for by taking out the bias voltage from the terminal 12), but this type of bias correction does not compensate for the temperature characteristics of all circuits or circuit elements. Therefore, it is not something that can be compensated for.

例えば、レーザダイオードは一般に、レーザ素
子とこれの光出力を検知して出力するモニター素
子としてのフオトダイオードとから構成されてい
る。そしてこのレーザダイオードの使用に際して
は、レーザ素子の光出力をモニター素子で検知
し、これをフイードバツクしてレーザ素子の光出
力を制御する。
For example, a laser diode generally includes a laser element and a photodiode as a monitor element that detects and outputs the optical output of the laser element. When using this laser diode, the optical output of the laser element is detected by a monitor element, and this is fed back to control the optical output of the laser element.

ところが、上記モニター素子はその検知感度が
ある温度で最大あるいは最小となるような温度特
性を有することが多く、レーザ素子の光出力自身
は一定であるにもかかわらず、モニター素子の検
知出力が変動し、その結果光出力を変化させてし
まう場合がある。このモニター素子の検知出力の
温度特性の補償を行うには、上記構成のサーミス
タ回路では不可能であり、モニター素子と逆の温
度特性を持つ制御回路を設け、これにモニター素
子の検知出力を入力して温度補償を行い、その補
正出力をレーザ素子の光出力に対する検知出力と
することが必要である。
However, the above-mentioned monitor elements often have temperature characteristics such that their detection sensitivity is maximum or minimum at a certain temperature, and even though the optical output of the laser element itself is constant, the detection output of the monitor element fluctuates. However, as a result, the optical output may change. In order to compensate for the temperature characteristics of the detection output of this monitor element, which is impossible with the thermistor circuit of the above configuration, a control circuit with temperature characteristics opposite to that of the monitor element is provided, and the detection output of the monitor element is input to this control circuit. It is necessary to perform temperature compensation and use the corrected output as the detection output for the optical output of the laser element.

しかし上記従来構成のサーミスタを用いた温度
補償回路では、上記温度特性を有する被補償手段
であるモニター素子の検知出力の温度補償を行う
ことができない。
However, in the temperature compensation circuit using the thermistor having the above-mentioned conventional configuration, it is not possible to perform temperature compensation of the detection output of the monitor element, which is the means to be compensated and has the above-mentioned temperature characteristics.

(c) 発明の目的 そこで本発明は従来技術の有する上記の欠点を
除去し、温度特性を有する入力に所定の温度補償
を加えて出力することができるサーミスタを用い
た温度補償回路を提供することを目的とする。
(c) Purpose of the Invention Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a temperature compensation circuit using a thermistor that can add a predetermined temperature compensation to an input having temperature characteristics and output the result. With the goal.

(d) 発明の構成 上記目的は本発明により、第一のサーミスタに
直列抵抗を接続した第一の回路、第二のサーミス
タに並列抵抗を接続した第二の回路、第一の演算
増幅器及び第二の演算増幅器を具備し、前記第一
の演算増幅器と第二の演算増幅器を前記第一の回
路又は第二の回路を介して接続し、前記第二の演
算増幅器の帰還回路に前記第二の回路又は第一の
回路を接続し、直列抵抗及び並列抵抗の値を変え
て回路の温度特性を、第一演算増幅器への入力電
圧を出力する被補償手段の温度特性と逆極性とす
ることを特徴とするサーミスタを使用する温度補
償回路によつて達成される。
(d) Structure of the Invention The above object is achieved by the present invention, which includes a first circuit in which a series resistance is connected to a first thermistor, a second circuit in which a parallel resistance is connected to a second thermistor, a first operational amplifier, and a second circuit in which a series resistance is connected to a first thermistor. the first operational amplifier and the second operational amplifier are connected via the first circuit or the second circuit, and the feedback circuit of the second operational amplifier is connected to the second operational amplifier; or the first circuit, and change the values of the series resistance and parallel resistance to make the temperature characteristics of the circuit opposite in polarity to the temperature characteristics of the compensated means that outputs the input voltage to the first operational amplifier. This is achieved by a temperature compensation circuit using a thermistor characterized by:

(e) 発明の実施例 第5図は本発明の一実施例を示す図で、R8〜
R13はそれぞれ抵抗、AMP1、AMP2はそれ
ぞれ演算増幅器である。
(e) Embodiment of the invention FIG. 5 is a diagram showing an embodiment of the invention, and R8 to
R13 is a resistor, and AMP1 and AMP2 are operational amplifiers.

本例は演算増幅器の端子a1と端子a、端子a
2と端子b、端子b1と端子c、端子b2と端子
dをそれぞれ接続することにより、即ち、端子a
1−a2間に接続する入力抵抗として、サーミス
タTh1と抵抗R13との直列接続回路、端子b
1−b2間に接続する帰還抵抗として、サーミス
タTh2と抵抗R14の並列接続回路を使用する
ことにより、第3図のbに示したのと同様な温度
特性が得られる。
In this example, terminal a1 and terminal a of the operational amplifier, terminal a
By connecting 2 and terminal b, terminal b1 and terminal c, and terminal b2 and terminal d, that is, terminal a
As an input resistance connected between 1 and a2, a series connection circuit of thermistor Th1 and resistor R13, terminal b
By using a parallel circuit of thermistor Th2 and resistor R14 as the feedback resistor connected between 1 and b2, temperature characteristics similar to those shown in FIG. 3b can be obtained.

また端子a1と端子c、端子a2と端子d、端
子b1と端子a、端子b2と端子bをそれぞれ接
続することにより、即ち、入力抵抗としてサーミ
スタTh2と抵抗R14の並列接続回路、帰還抵
抗としてサーミスタTh1と抵抗R13との直列
接続回路をしようとすることにより、第4図bに
示したのと同様な温度特性が得られる。
In addition, by connecting terminals a1 and c, terminals a2 and terminals d, terminals b1 and a, and terminals b2 and b, respectively, a parallel connection circuit of thermistor Th2 and resistor R14 is used as an input resistor, and a thermistor is used as a feedback resistor. By forming a series connection circuit of Th1 and resistor R13, a temperature characteristic similar to that shown in FIG. 4b can be obtained.

このように構成した本実施例の温度補償回路を
用いれば、前述のレーザダイオードのモニター素
子等被補償手段の温度補償を行うことができる。
By using the temperature compensation circuit of this embodiment configured as described above, it is possible to perform temperature compensation of the means to be compensated such as the monitor element of the laser diode mentioned above.

即ち、上記構成の温度補償回路の温度特性を、
モニター素子の温度特性の逆特性としておき、こ
れの入力端子INに上記モニター素子の検知出力
を入力すれば、この温度補償回路により温度特性
が補償された補正出力を得ることができる。従つ
てたとえモニター素子が温度特性を有している場
合でも、その温度特性を補償した出力が得られる
ので、これをレーザ素子の光出力の制御に用いれ
ば、モニター素子の温度特性によつてレーザ素子
の光出力を誤つて制御することを防止できる。
That is, the temperature characteristics of the temperature compensation circuit with the above configuration are
If the temperature characteristic of the monitor element is set to have an inverse characteristic, and the detection output of the monitor element is inputted to the input terminal IN of the monitor element, it is possible to obtain a corrected output whose temperature characteristic is compensated for by this temperature compensation circuit. Therefore, even if the monitor element has temperature characteristics, an output that compensates for the temperature characteristics can be obtained, so if this is used to control the optical output of the laser element, the laser Erroneous control of the optical output of the element can be prevented.

なお、第6図に前述の第3図aに示した構成の
温度サーミスタ回路の温度特性を実測値を示す。
図示したように、サーミスタと直列接続した抵抗
および並列接続した抵抗の値を変えることによつ
て、種々の曲線が得られる。従つて、本発明に係
る2つの演算増幅器の入力抵抗および帰還抵抗に
上記サーミスタと抵抗の直列回路、並列回路を組
み合わせることにより、種々の温度特性を有する
回路あるいは回路素子の出力に対し、温度補償を
加えることが可能となる。
Incidentally, FIG. 6 shows actual measured values of the temperature characteristics of the temperature thermistor circuit having the configuration shown in FIG. 3a.
As shown, various curves can be obtained by changing the values of the resistors connected in series and in parallel with the thermistor. Therefore, by combining the input resistor and feedback resistor of the two operational amplifiers according to the present invention with the series circuit or parallel circuit of the thermistor and resistor, temperature compensation can be achieved for the output of circuits or circuit elements having various temperature characteristics. It becomes possible to add

(f) 発明の効果 以上詳細に説明したように本発明によれば、山
型あるいは谷型の温度特性を有する回路あるいは
回路素子の出力に対し、効果的に温度補償を加え
ることが可能となる。
(f) Effects of the Invention As explained in detail above, according to the present invention, it is possible to effectively apply temperature compensation to the output of a circuit or circuit element having a mountain-shaped or valley-shaped temperature characteristic. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来のサーミスタを使用する温
度補償回路の一例を示す図、第2図a〜hは従来
のサーミスタを使用する温度補償回路の他の例を
示す図、第3図a,bは従来のサーミスタを2個
使用する温度補償回路の一例を示す図、第4図
a,bは従来のサーミスタを2個使用する温度補
償回路の他の例を示す図、第5図は本発明に係る
温度補償回路の構成を示す図、第6図は第3図a
に示す回路の実測値を示す図である。 図中、R1〜R14は抵抗、Th,Th1,Th
2はそれぞれサーミスタ、AMP1,AMP2はそ
れぞれ演算増幅器である。
Figures 1a and b are diagrams showing an example of a temperature compensation circuit using a conventional thermistor, Figures 2a to h are diagrams showing another example of a temperature compensation circuit using a conventional thermistor, Figure 3a , b are diagrams showing an example of a temperature compensation circuit using two conventional thermistors, FIGS. 4a and b are diagrams showing another example of a temperature compensation circuit using two conventional thermistors, and FIG. A diagram showing the configuration of the temperature compensation circuit according to the present invention, FIG.
FIG. 3 is a diagram showing actual measured values of the circuit shown in FIG. In the figure, R1 to R14 are resistances, Th, Th1, Th
2 is a thermistor, and AMP1 and AMP2 are operational amplifiers.

Claims (1)

【特許請求の範囲】[Claims] 1 第一のサーミスタに直列抵抗を接続した第一
の回路、第二のサーミスタに並列抵抗を接続した
第二の回路、第一の演算増幅器及び第二の演算増
幅器を具備し、前記第一の演算増幅器と第二の演
算増幅器を前記第一の回路又は第二の回路を介し
て接続し、前記第二の演算増幅器の帰還回路に前
記第二の回路又は第一の回路を接続し、直列抵抗
及び並列抵抗の値を変えて回路の温度特性を、第
一演算増幅器への入力電圧を出力する被補償手段
の温度特性と逆極性とすることを特徴とするサー
ミスタを使用する温度補償回路。
1 comprising a first circuit in which a series resistance is connected to a first thermistor, a second circuit in which a parallel resistance is connected to a second thermistor, a first operational amplifier and a second operational amplifier, An operational amplifier and a second operational amplifier are connected via the first circuit or the second circuit, and the second circuit or the first circuit is connected to the feedback circuit of the second operational amplifier, and the second operational amplifier is connected in series. A temperature compensation circuit using a thermistor, characterized in that the temperature characteristics of the circuit are made opposite in polarity to the temperature characteristics of a compensated means that outputs an input voltage to a first operational amplifier by changing the values of a resistance and a parallel resistance.
JP58128823A 1983-07-15 1983-07-15 Temperature compensating circuit using thermistor Granted JPS6020613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128823A JPS6020613A (en) 1983-07-15 1983-07-15 Temperature compensating circuit using thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128823A JPS6020613A (en) 1983-07-15 1983-07-15 Temperature compensating circuit using thermistor

Publications (2)

Publication Number Publication Date
JPS6020613A JPS6020613A (en) 1985-02-01
JPH0468812B2 true JPH0468812B2 (en) 1992-11-04

Family

ID=14994291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128823A Granted JPS6020613A (en) 1983-07-15 1983-07-15 Temperature compensating circuit using thermistor

Country Status (1)

Country Link
JP (1) JPS6020613A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508001B2 (en) * 2005-06-22 2010-07-21 株式会社デンソー Temperature correction circuit
DE102006034181B3 (en) * 2006-07-24 2008-04-03 Siemens Ag temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495179A (en) * 1972-03-27 1974-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495179A (en) * 1972-03-27 1974-01-17

Also Published As

Publication number Publication date
JPS6020613A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
US4414853A (en) Pressure transmitter employing non-linear temperature compensation
US4516865A (en) Resistance thermometer
US5197334A (en) Programmable compensation of bridge circuit thermal response
JPS6142876B2 (en)
US4021722A (en) Temperature-sensitive current divider
US5181420A (en) Hot wire air flow meter
JPH0468812B2 (en)
JP3003174B2 (en) Amplifier circuit
JP3105697B2 (en) Constant current generation circuit
JP5640418B2 (en) Temperature control circuit and constant temperature type piezoelectric oscillator
JPS6321125B2 (en)
JPS6122766B2 (en)
JP2597205B2 (en) Temperature detection circuit
JPS632888Y2 (en)
JPH02109384A (en) Optical-output stabilizing apparatus for semiconductor laser
JPS5834499Y2 (en) temperature compensation circuit
JPH08307160A (en) Temperature compensation circuit
JPH01126032A (en) Apd bias circuit
SU1198494A1 (en) D.c.voltage stabilizer
JP2855974B2 (en) Wind speed sensor
JPS6111779Y2 (en)
JP2543079B2 (en) Amplifier temperature compensation circuit
RU1778556C (en) Device for measuring temperature difference
JPH04324508A (en) Constant-voltage power source
JPS6136626B2 (en)