JPH0468747B2 - - Google Patents

Info

Publication number
JPH0468747B2
JPH0468747B2 JP57106100A JP10610082A JPH0468747B2 JP H0468747 B2 JPH0468747 B2 JP H0468747B2 JP 57106100 A JP57106100 A JP 57106100A JP 10610082 A JP10610082 A JP 10610082A JP H0468747 B2 JPH0468747 B2 JP H0468747B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
positive electrode
electrode active
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57106100A
Other languages
Japanese (ja)
Other versions
JPS58223265A (en
Inventor
Shigeto Okada
Akihiko Yamaji
Masami Kakuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57106100A priority Critical patent/JPS58223265A/en
Publication of JPS58223265A publication Critical patent/JPS58223265A/en
Publication of JPH0468747B2 publication Critical patent/JPH0468747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は小型にして充電容量の大きな二次電池
詳細にはリチウムを負極活物質として用いる電池
に関するものである。 従来からリチウムを負極活物質として用いる高
エネルギー密度電池に関する提案は多くなされて
おり、例えば正極活物質として黒鉛及び弗素のイ
ンターカレーシヨン化合物、負極活物質としてリ
チウム金属をそれぞれ使用した電池が知られてい
る(米国特許第3514337号明細書参照)。又弗化黒
鉛を正極活物質としたリチウム電池(松下電器
製)及び二酸化マンガンを正極活物質としたリチ
ウム電池(三洋電機製)がすでに市販されてい
る。しかしながら、これらの電池は充電不能で二
次電池として使用できないという欠点がある。 又、正極活物質としてチタン、ジルコニウム、
ハフニウム、ニオビウム、タンタル、バナシウム
の硫化物、セレン化物、テルル化物を用いた二次
電池(米国特許第4089052号明細書参照)及び酸
化クロム、セレン化ニオビウム等を用いた二次電
池〔J.Electrochem.Soc,Vol.124 No.7号第968
頁及び第325頁(1977年)〕等が提案されている
が、これらの電池はその電池特性から必ずしも十
分であるとはいえなかつた。 さらに金属フタロシアニンを正極活物質に用い
たLi電池については米国特許第4251607号に開示
されるが、この特許においては正極活物質の粒度
及びその原料加工条件についてはなんらの記載も
ない。 本発明はこのような現状に鑑みてなされたもの
であり、その目的は、小型にして優れた充放電特
性を有する二次電池を提供することである。 本発明につき概説すれば、本発明の電池は正極
活物質としては、不活性ガス希薄雰囲気中でフタ
ロシアニン原料を加熱蒸発せしめて形成した平均
粒径1μm以下のフタロシアニン係化合物結晶性
超微粒子、負極活物質としてリチウム、電解質と
して正極活物質及びリチウムに対して化学的に安
定でありかつリチウムイオンが正極活物質と電気
化学反応をするため移動を行ないうる物質より構
成されていることを特徴とする。 本発明によれば、正極活物質としてフタロシア
ニン係化合物超微粒子を用いることにより、小型
で良好な充放電特性を有する二次電池を作製する
ことができる。 本発明を更に詳しく説明する。 本発明による二次電池は、前述のように、正極
活物質としてフタロシアニン系化合物の超微粒
子、すなわちフタロシアニン核を有する金属ない
し非金属化合物の超微粒子を用いる。このような
フタロシアニン系化合物は、本発明において基本
的に限定されるものではない。たとえば、鉄フタ
ロシアニン、銅フタロシアニン、亜鉛フタロシア
ニン、マンガンフタロシアニン、フルオロクロム
フタロシアニン、コバルトフタロシアニン、ニツ
ケルフタロシアニン、ガリウムフタロシアニンク
ロリド、バナジルフタロシアニン、銀フタロシア
ニン、カドミウムフタロシアニン、すずフタロシ
アニンジクロリド、アルミニウムフタロシアニン
クロリド、アルミニウムフタロシアニンジクロリ
ド、マグネシウムフタロシアニン、リチウムフタ
ロシアニンおよびおよび無金属フタロシアニン等
より成る群より選択された化合物の一種以上を挙
げることができる。 このようなフタロシアニン系化合物超微粒子の
平均粒径は好ましくは1μm以下である。このよ
うな超微粒子とすることにより反応表面積が大き
くなり取得電流の向上が図られるばかりでなく、
粒径が小寸法になることによる電池反応の平均
化、粒径が揃うことによる電池反応の均一化が、
放電電圧平坦化を著しく改良するためである。 前記のようなフラロシアニン径化合物超微粒子
を製造するには、例えば第1図に示すような装置
を用いる。 すなわち真空チエンバー1中に超微粒子補集容
器2を設け、この底部に蒸発源3を載置し、この
蒸発源3を蒸発源用電源4に接続する。さらに真
空チエンバー1はレギユレータ5を介して不活性
ガス(たとえばHe)ボンペ6と接続している。
なお図中、7は真空チエンバー1内を観察する
窓、8はマノメータ、9はピラニア真空ゲージで
ある。 真空チエンバ1内に不活性ガスボンベ6よりレ
ギユレータ5を介して不活性ガスを導入し、真空
チエンバー内を不活性ガス希薄雰囲気にすると共
に、電源4によりフタロシアニン原料3(蒸発
源)を加熱し、蒸発させる。蒸発した原料3は不
活性ガスと衝突し、急冷して過飽和状態となり超
微粒子を生成する。 この際の不活性ガスの濃度は好ましくは10〜
100torrである。100torrを越えると粒子の粒径が
大きくなりすぎるからである。また10torrより少
ないと粒子が生成しにくくなるからである。 また、蒸発の温度は、300〜600℃であるのが好
ましい。600℃を越えると、粒径が大きくなりず
ぎ、300℃未満であると、原料が蒸発しにくくな
るからである。 このように生成した超微粒子は結晶性が損なわ
れることなく、平均粒径が1μm以下の粒子を得
ることができる。 本発明における正極活物質としての上記フタロ
シアニン系化合物超微粒子を正極として使用する
場合、正極はこれらの化合物の粉末又はこれと結
合剤粉末との混合物をニツケル、銅等の支持体上
に膜状に圧着成形するか又はこれらの化合物粉末
に導電性を付与するための炭素粉末を嵌合し、こ
の混合物を金属容器に入れ、或いは前記混合物を
結合剤容器と混合してニツケル、銅等の支持体上
に塗布、乾燥して膜状に成形する等の手段により
形成される。 負極活物質であるリチウムは一般のリチウム電
池のそれと同様にシート状として、又はそのシー
トをニツケル又は銅の網に圧着して負極として形
成される。 電解質としては、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、ジメ
チルスルホキシド、アセトニトリル、ホルムアミ
ド、ジメチルホルムアミド、ニトロメタ、等の非
プロトン性有機溶媒とLiClO4、LiAlCl4、LiBF4
LiCl等のリチウム塩との組合せ又はLi+を伝導体
とする固体電解或いは溶融塩など、一般にリチウ
ムを負極活物質として用いた電池で使用される既
知の電解質を用いることが出来る。 又電池構成上、必要ならば多孔質のポリプロピ
レン等よりなる隔膜を使用しても良い。 次に本発明の実施例について説明するが、本発
明はこれらによりなんら限定されるものではな
い。なお実施例において電池の作製および測定は
Ar雰囲気で行なつた。 実施例 1 第2図は本発明の一具体例であるボタン型電池
の特性測定用電池セル断面概略図であり、21は
Niメツキをした黄銅容器、22はリチウム負極、
23は多孔質ポリプロピレン性隔膜、24はカー
ボン繊維よりなるフエルト、25は正極合剤、2
6はテフロン性容器、27はNiリード線を示す。 容器21(直径26mm)の凹室内に正極合剤25
を挿入し、その上に電解液含浸用のフエルト24
を載せ、隔膜23を介してリチウム負極22を載
置し、テフロン製容器26でしめつけた。リチウ
ム負極22は直径20mmの円板であり、フエルト2
4及び隔膜23も円板形のものを用いた。 電解液としては蒸留脱水プロピレンカーボネー
トに溶解したLiClO4の1モル/溶液を用い、
隔膜23、フエルト24及び正極合剤25に含浸
させて使用した。正極合剤25は0.01gの鉄フタ
ロシアニン超微粒子(平均粒径0.1μm)と、0.01
gケツチエンブラツクを上記電解液と混合して形
成した。 この様にして作製した電池を2mA/cm2の定電
流密度で放電試験した。 第3図は放電試験の結果を示す図である。比較
のため、同条件で作製測定した鉄フタロシアニン
粉末多結晶及びフタロシアニン単結晶による電池
の放電試験の結果も合わせて示す。図中、(a)は本
発明による電池の放電特性、(b)は鉄フタロシアニ
ン粉末多結晶による電池、(c)は鉄フタロシアニン
単結晶による電池の放電特性を示すものである。 1V終止の金属フタロシアニン比重量エネルギ
密度は、金属フタロシアニン超微粒子試料、粉末
多結晶試料、単結晶試料各々1270WH/Kg、
350WH/Kg、270WH/Kgであつた。 実施例 2 実施例1と同一の電池を作製し、この電池につ
いて1mA/cm2の定電流密度で放電試験を行なつ
た。 第4図は放電試験の結果を示す図である。比較
のため、同条件で作製測定した鉄フタロシアニン
粉末多結晶及び鉄フタロシアニン単結晶による電
池の放電試験の結果も合わせて示す。図中、a,
b,cは第3図と同様のものを示す。 1V終止の金属フタロシアニン比重量エネルギ
密度は、金属フタロシアニン超微粒子試料、粉末
多結晶試料、単結晶試料各々1780WH/Kg、
870WH/Kg、430WH/Kgであつた。 実施例 3 実施例1と同一の電池を作製し、この電池につ
いて0.318mA/cm2の定電流密度で放電試験を行
なつた。 第5図は放電試験の結果を示す図である。比較
のため同条件で作製測定した鉄フタロシアニン粉
末多結晶及び鉄フタロシアニン単結晶による電池
の放電試験の結果も合わせて示す。なお図中、
a,b,cは第3図、第4図と同様のものを示
す。 1V終止の金属フタロシアニン比重量エネルギ
密度は、金属フタロシアニン超微粒子試料、粉末
多結晶試料、単結晶試料各々2200WH/Kg、
1770WH/Kg、1540WH/Kgであつた。 実施例 4 実施例1と同一の電池を作製し、この電池につ
いて0.1mA/cm2の定電流密度で放電試験を行な
つた。 第6図は放電試験の結果を示す図である。比較
のため、同条件で作製測定した鉄フタロシアニン
粉末多結晶及び鉄フタロシアニン単結晶による電
池の放電試験の結果も合わせて示す。なお図中
a,b,cは第3〜5図と同様のものを示す。 1V終止の金属フタロシアニン比重量エネルギ
密度は、金属フタロシアニン超微粒子試料、粉末
多結晶試料、単結晶試料各々2980WH/Kg、
3520WH/Kg、3690WH/Kgであつた。 実施例1、2、3、4の金属フタロシアニン超
微粒子試験a、粉末多結晶試料b、単結晶試料c
各電池における比重量エネルギ密度の放電電流依
存性を第7図に示す。 超微粒子試料は高放電電流の際でも高い比重量
エネルギ密度を示しており、またその放電電圧平
坦性を改善されている。 実施例 5 0.02gの鉄フタロシアニン超微粒子と0.02gの
アセチレンブラツクを電解液と混合して形成した
正極合剤を用いて実施例1と同様な電池を作製
し、0.318mA/cm2の定電流密度で充放電試験し
た。充放電サイクルは放電3時間、休止40分、充
電3時間、休止40分であり、これは150AH/Kg
の充放電深さ(3電子関与に相当)である。即
ち、この曲線は、放電状態次に休止期間ついで充
電状態、次に休止期間を示す。 充電最終電圧が、電解液の分解する6V以下の
条件下では61回の充放電が可能であつた。 実施例 6 0.01gの銅フタロシアニン超微粒子(平均粒径
0.1μm)と0.01gのアセチンブラツクを電解液と
混合して形成した正極合剤を用いて実施例1と同
様な電池を作製し、0.318mA/cm2の定電流密度
で充放電試験した。充放電サイクルは放電3時
間、休止40分、充電3時間、休止40分であり、こ
れは300AH/Kgの充放電深さ(6電子関与に相
当)である。 第9図は、充放電試験の結果を示す図である。
即ち、この曲線は放電状態次に休止期間ついで充
電状態次に休止期間を示す。充電最終電圧が、電
解液の分解する6V以下の条件下では23回の充放
電が可能であつた。 実施例 7 フタロシアニン核を有する金属又は非金属化合
物の粉末多結晶及び超微粒子0.1gとアセチレン
ブラツク0.1gを電解液と混合して形成した正極
合剤の用いて実施例1と同様な電池を作製し、
0.318mA/cm2及び1mA/cm2の定電流放電試験
を行つた。 第1表に各々の1V終止電圧での放電容量を示
した。ただし、Pcはフタロシアニン核を示す。
The present invention relates to a secondary battery that is small in size and has a large charging capacity, and more particularly to a battery that uses lithium as a negative electrode active material. Many proposals have been made for high energy density batteries that use lithium as a negative electrode active material. For example, batteries that use graphite and fluorine intercalation compounds as positive electrode active materials and lithium metal as negative electrode active materials are known. (See US Pat. No. 3,514,337). In addition, lithium batteries using fluorinated graphite as a positive electrode active material (manufactured by Matsushita Electric) and lithium batteries using manganese dioxide as a positive electrode active material (manufactured by Sanyo Electric) are already on the market. However, these batteries have the disadvantage that they are not rechargeable and cannot be used as secondary batteries. In addition, titanium, zirconium,
Secondary batteries using sulfides, selenides, and tellurides of hafnium, niobium, tantalum, and vanadium (see US Pat. No. 4,089,052) and secondary batteries using chromium oxide, niobium selenide, etc. [J.Electrochem .Soc, Vol.124 No.7 No.968
Page and No. 325 (1977)], but these batteries could not necessarily be said to be sufficient due to their battery characteristics. Furthermore, a Li battery using metal phthalocyanine as a positive electrode active material is disclosed in US Pat. No. 4,251,607, but this patent does not include any description of the particle size of the positive electrode active material or the processing conditions for its raw materials. The present invention has been made in view of the current situation, and an object thereof is to provide a secondary battery that is small in size and has excellent charge/discharge characteristics. To summarize the present invention, the positive electrode active material of the battery of the present invention is crystalline ultrafine particles of a phthalocyanine-related compound with an average particle size of 1 μm or less formed by heating and evaporating a phthalocyanine raw material in a dilute inert gas atmosphere, and negative electrode active materials. It is characterized in that it is composed of lithium as a substance and a substance that is chemically stable with respect to the positive electrode active material and lithium as an electrolyte, and that allows lithium ions to move because of an electrochemical reaction with the positive electrode active material. According to the present invention, by using phthalocyanine-related compound ultrafine particles as a positive electrode active material, a secondary battery that is small and has good charge and discharge characteristics can be produced. The present invention will be explained in more detail. As described above, the secondary battery according to the present invention uses ultrafine particles of a phthalocyanine compound, that is, ultrafine particles of a metal or nonmetallic compound having a phthalocyanine nucleus, as the positive electrode active material. Such phthalocyanine compounds are not fundamentally limited in the present invention. For example, iron phthalocyanine, copper phthalocyanine, zinc phthalocyanine, manganese phthalocyanine, fluorochrome phthalocyanine, cobalt phthalocyanine, nickel phthalocyanine, gallium phthalocyanine chloride, vanadyl phthalocyanine, silver phthalocyanine, cadmium phthalocyanine, tin phthalocyanine dichloride, aluminum phthalocyanine chloride, aluminum phthalocyanine dichloride, magnesium Examples include one or more compounds selected from the group consisting of phthalocyanine, lithium phthalocyanine, metal-free phthalocyanine, and the like. The average particle size of such ultrafine phthalocyanine compound particles is preferably 1 μm or less. Using such ultrafine particles not only increases the reaction surface area and improves the acquired current, but also
The average battery reaction due to the smaller particle size, and the uniformity of the battery reaction due to the uniform particle size,
This is to significantly improve discharge voltage flattening. In order to produce the ultrafine particles of a fluorocyanine-sized compound as described above, an apparatus as shown in FIG. 1, for example, is used. That is, an ultrafine particle collection container 2 is provided in a vacuum chamber 1, an evaporation source 3 is placed on the bottom of the container 2, and the evaporation source 3 is connected to a power source 4 for the evaporation source. Furthermore, the vacuum chamber 1 is connected via a regulator 5 to an inert gas (for example He) pump 6.
In the figure, 7 is a window for observing the inside of the vacuum chamber 1, 8 is a manometer, and 9 is a piranha vacuum gauge. Inert gas is introduced into the vacuum chamber 1 from an inert gas cylinder 6 via the regulator 5 to create an inert gas diluted atmosphere inside the vacuum chamber 1, and the phthalocyanine raw material 3 (evaporation source) is heated by the power source 4 to evaporate it. let The evaporated raw material 3 collides with the inert gas, rapidly cools down, becomes supersaturated, and generates ultrafine particles. The concentration of inert gas at this time is preferably 10~
It is 100 torr. This is because if it exceeds 100 torr, the particle size of the particles becomes too large. In addition, if the amount is less than 10 torr, it becomes difficult to generate particles. Further, the temperature of evaporation is preferably 300 to 600°C. This is because if the temperature exceeds 600°C, the particle size becomes too large, and if the temperature is below 300°C, the raw material becomes difficult to evaporate. The ultrafine particles thus produced can have an average particle size of 1 μm or less without impairing their crystallinity. When the ultrafine particles of the phthalocyanine compound as the positive electrode active material in the present invention are used as a positive electrode, the positive electrode is prepared by forming a powder of these compounds or a mixture of the same and a binder powder into a film on a support such as nickel or copper. These compound powders are pressure-molded or fitted with carbon powder for imparting conductivity, and the mixture is placed in a metal container, or the mixture is mixed with a binder container to form a support such as nickel or copper. It is formed by means such as coating it on top, drying it, and forming it into a film shape. Lithium, which is the negative electrode active material, is formed in the form of a sheet, as in general lithium batteries, or by pressing the sheet onto a nickel or copper mesh to form the negative electrode. As the electrolyte, aprotic organic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitrometh, etc. and LiClO 4 , LiAlCl 4 , LiBF 4 ,
Known electrolytes generally used in batteries using lithium as a negative electrode active material can be used, such as a combination with a lithium salt such as LiCl, or a solid electrolyte or molten salt using Li + as a conductor. Furthermore, if necessary due to the battery structure, a diaphragm made of porous polypropylene or the like may be used. Next, examples of the present invention will be described, but the present invention is not limited to these in any way. In addition, in the examples, the production and measurement of batteries are
It was held in an Ar atmosphere. Example 1 FIG. 2 is a schematic cross-sectional view of a battery cell for measuring characteristics of a button-type battery, which is a specific example of the present invention.
Ni-plated brass container, 22 is a lithium negative electrode,
23 is a porous polypropylene diaphragm, 24 is a felt made of carbon fiber, 25 is a positive electrode mixture, 2
6 indicates a Teflon container, and 27 indicates a Ni lead wire. Positive electrode mixture 25 is placed in the concave chamber of container 21 (diameter 26 mm).
Insert the felt 24 for electrolyte impregnation on top of it.
A lithium negative electrode 22 was placed thereon with a diaphragm 23 in between, and the container 26 made of Teflon was sealed. The lithium negative electrode 22 is a disk with a diameter of 20 mm, and the felt 2
4 and the diaphragm 23 were also disc-shaped. As the electrolyte, 1 mol/solution of LiClO 4 dissolved in distilled dehydrated propylene carbonate was used.
It was used by impregnating the diaphragm 23, felt 24, and positive electrode mixture 25. Positive electrode mixture 25 contains 0.01 g of iron phthalocyanine ultrafine particles (average particle size 0.1 μm) and
A g-button black was formed by mixing with the above electrolyte. The battery thus produced was subjected to a discharge test at a constant current density of 2 mA/cm 2 . FIG. 3 is a diagram showing the results of the discharge test. For comparison, the results of a discharge test of batteries made and measured under the same conditions using iron phthalocyanine powder polycrystals and phthalocyanine single crystals are also shown. In the figure, (a) shows the discharge characteristics of the battery according to the present invention, (b) shows the discharge characteristics of the battery using iron phthalocyanine powder polycrystal, and (c) shows the discharge characteristics of the battery using iron phthalocyanine single crystal. The metal phthalocyanine specific gravimetric energy density at 1V is 1270WH/Kg for each of the metal phthalocyanine ultrafine particle sample, powder polycrystalline sample, and single crystal sample.
They were 350WH/Kg and 270WH/Kg. Example 2 The same battery as in Example 1 was prepared, and a discharge test was conducted on this battery at a constant current density of 1 mA/cm 2 . FIG. 4 is a diagram showing the results of the discharge test. For comparison, the results of a discharge test of batteries made and measured under the same conditions using iron phthalocyanine powder polycrystals and iron phthalocyanine single crystals are also shown. In the figure, a,
b and c are the same as in FIG. 3. The metal phthalocyanine specific gravimetric energy density at 1V end is 1780WH/Kg for each of the metal phthalocyanine ultrafine particle sample, powder polycrystalline sample, and single crystal sample.
They were 870WH/Kg and 430WH/Kg. Example 3 A battery identical to that of Example 1 was prepared, and a discharge test was conducted on this battery at a constant current density of 0.318 mA/cm 2 . FIG. 5 is a diagram showing the results of the discharge test. For comparison, the results of a discharge test of batteries using iron phthalocyanine powder polycrystals and iron phthalocyanine single crystals produced and measured under the same conditions are also shown. In addition, in the figure,
a, b, and c indicate the same things as in FIGS. 3 and 4. The metal phthalocyanine specific gravimetric energy density at 1V is 2200WH/Kg for each of the metal phthalocyanine ultrafine particle sample, powder polycrystalline sample, and single crystal sample.
They were 1770WH/Kg and 1540WH/Kg. Example 4 The same battery as in Example 1 was prepared, and a discharge test was conducted on this battery at a constant current density of 0.1 mA/cm 2 . FIG. 6 is a diagram showing the results of the discharge test. For comparison, the results of a discharge test of batteries made and measured under the same conditions using iron phthalocyanine powder polycrystals and iron phthalocyanine single crystals are also shown. Note that a, b, and c in the figure indicate the same ones as in FIGS. 3 to 5. The specific gravimetric energy density of metal phthalocyanine at 1V end is 2980WH/Kg for metal phthalocyanine ultrafine particle sample, powder polycrystalline sample, and single crystal sample, respectively.
They were 3520WH/Kg and 3690WH/Kg. Metal phthalocyanine ultrafine particle test a, powder polycrystal sample b, single crystal sample c of Examples 1, 2, 3, and 4
FIG. 7 shows the discharge current dependence of the specific gravimetric energy density in each battery. The ultrafine particle sample shows a high specific gravimetric energy density even at high discharge current, and its discharge voltage flatness is improved. Example 5 A battery similar to Example 1 was prepared using a positive electrode mixture formed by mixing 0.02 g of ultrafine iron phthalocyanine particles and 0.02 g of acetylene black with an electrolyte, and a constant current of 0.318 mA/cm 2 was prepared. A charge/discharge test was conducted based on the density. The charge/discharge cycle is 3 hours of discharging, 40 minutes of rest, 3 hours of charging, and 40 minutes of rest, which is 150AH/Kg.
charge/discharge depth (corresponding to 3 electrons involved). That is, this curve shows a discharge state, then a rest period, then a charge state, then a rest period. It was possible to charge and discharge 61 times under conditions where the final charging voltage was 6V or less, at which the electrolyte decomposed. Example 6 0.01g of copper phthalocyanine ultrafine particles (average particle size
A battery similar to Example 1 was prepared using a positive electrode mixture formed by mixing 0.1 μm) and 0.01 g of acetin black with an electrolyte, and a charge/discharge test was conducted at a constant current density of 0.318 mA/cm 2 . The charge/discharge cycle is 3 hours of discharge, 40 minutes of rest, 3 hours of charge, and 40 minutes of rest, which is a charge/discharge depth of 300 AH/Kg (corresponding to 6 electrons involved). FIG. 9 is a diagram showing the results of a charge/discharge test.
That is, this curve shows a discharge state, then a rest period, then a charge state, then a rest period. It was possible to charge and discharge 23 times under conditions where the final charging voltage was 6 V or less, at which point the electrolyte decomposed. Example 7 A battery similar to Example 1 was prepared using a positive electrode mixture formed by mixing 0.1 g of powdered polycrystalline and ultrafine particles of a metal or nonmetal compound having a phthalocyanine nucleus and 0.1 g of acetylene black with an electrolyte. death,
Constant current discharge tests at 0.318 mA/cm 2 and 1 mA/cm 2 were conducted. Table 1 shows each discharge capacity at a final voltage of 1V. However, Pc indicates a phthalocyanine nucleus.

【表】【table】

【表】 以上説明したように、本発明のリチウム−フタ
ロシアニン系超微粒子電池は、その正極活性物質
の超微粒子化によつて有効反応表面積が拡大さ
れ、大電流取得可能かつ放電平担性良好な二次電
池として種々の分野に使用できるという利点を有
する。
[Table] As explained above, the lithium-phthalocyanine-based ultrafine particle battery of the present invention expands the effective reaction surface area by making the positive electrode active material into ultrafine particles, and can obtain a large current and has good discharge flatness. It has the advantage that it can be used in various fields as a secondary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、金属フタロシアニン超微粒子化のた
めのガス中蒸発装置、第2図は本発明の実施例で
あるボタン型電池の特性測定用セル断面概念図、
第3図、第4図、第5図、第6図は本発明の実施
例1、2、3、4における電池の放電時の電圧変
化を示した図、第7図は実施例1、2、3、4に
おける比重量エネルギ密度の放電電流依存性の
図、第8図、第9図は本発明の実施例5、6にお
ける電池の充放電繰り返し数と充放電時の電圧変
化を示した図である。 1……真空チエンバー、2……超微粒子試料補
集容器、3……蒸発源、4……蒸発源用電源、5
……レギユレータ、6……ヘリウムガスボンベ、
21……容器、22……リチウム負極、23……
隔膜、24……フエルト、25……正極合剤、2
6……テフロン製容器、27……リード線。
FIG. 1 shows an in-gas evaporation device for ultrafine metal phthalocyanine particles, and FIG. 2 shows a cross-sectional conceptual diagram of a cell for measuring characteristics of a button-type battery, which is an embodiment of the present invention.
3, 4, 5, and 6 are diagrams showing voltage changes during battery discharge in Examples 1, 2, 3, and 4 of the present invention, and FIG. 7 is a diagram showing voltage changes in Examples 1 and 2 of the present invention. Figures 8 and 9 show the discharge current dependence of the specific gravimetric energy density in Examples 5 and 4 of the present invention, and the number of charging and discharging cycles of the battery and the voltage change during charging and discharging in Examples 5 and 6 of the present invention. It is a diagram. 1... Vacuum chamber, 2... Ultrafine particle sample collection container, 3... Evaporation source, 4... Power source for evaporation source, 5
...regulator, 6...helium gas cylinder,
21... Container, 22... Lithium negative electrode, 23...
Diaphragm, 24...Felt, 25...Positive electrode mixture, 2
6...Teflon container, 27...Lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質として、不活性ガス希薄雰囲気中
でフタロシアニン原料を加熱蒸発せしめて形成し
た平均粒径1μm以下のフタロシアニン系化合物
結晶性超微粒子、負極活物質としてリチウム、電
解質として正極活物質及びリチウムに対して化学
的に安定でありかつリチウムイオンが正極活物質
と電気化学反応をするため移動を行ないうる物質
より構成されていることを特徴とするリチウム−
フタロシアニン系化合物超微粒子二次電池。
1 As a positive electrode active material, ultrafine crystalline particles of a phthalocyanine compound with an average particle size of 1 μm or less formed by heating and evaporating a phthalocyanine raw material in a dilute inert gas atmosphere, lithium as a negative electrode active material, and a positive electrode active material and lithium as an electrolyte. Lithium is characterized by being composed of a material that is chemically stable and capable of moving because lithium ions undergo an electrochemical reaction with the positive electrode active material.
Phthalocyanine compound ultrafine particle secondary battery.
JP57106100A 1982-06-22 1982-06-22 Lithium-phthalocyanine compounds ultrafine particle secondary battery Granted JPS58223265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106100A JPS58223265A (en) 1982-06-22 1982-06-22 Lithium-phthalocyanine compounds ultrafine particle secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106100A JPS58223265A (en) 1982-06-22 1982-06-22 Lithium-phthalocyanine compounds ultrafine particle secondary battery

Publications (2)

Publication Number Publication Date
JPS58223265A JPS58223265A (en) 1983-12-24
JPH0468747B2 true JPH0468747B2 (en) 1992-11-04

Family

ID=14425095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106100A Granted JPS58223265A (en) 1982-06-22 1982-06-22 Lithium-phthalocyanine compounds ultrafine particle secondary battery

Country Status (1)

Country Link
JP (1) JPS58223265A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168363A (en) * 2016-03-17 2017-09-21 東洋インキScホールディングス株式会社 Electricity storage material, electrode for electricity storage device, and electricity storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100664A (en) * 1979-01-26 1980-07-31 Nippon Telegr & Teleph Corp <Ntt> Battery
JPS5630261A (en) * 1979-08-17 1981-03-26 Matsushita Electric Ind Co Ltd Battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100664A (en) * 1979-01-26 1980-07-31 Nippon Telegr & Teleph Corp <Ntt> Battery
JPS5630261A (en) * 1979-08-17 1981-03-26 Matsushita Electric Ind Co Ltd Battery and its manufacturing method

Also Published As

Publication number Publication date
JPS58223265A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
US8748036B2 (en) Non-aqueous secondary battery
US8900749B2 (en) Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for capacitor, lithium ion secondary battery, and capacitor
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JPH0364989B2 (en)
JP5584302B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JPH0544143B2 (en)
JPH0468747B2 (en)
WO2021179220A1 (en) Anode pole piece, battery using same, and electronic device
JP2726285B2 (en) Rechargeable battery
JPS6311748B2 (en)
JP2749826B2 (en) Rechargeable battery
JPH0546670B2 (en)
JPH0439864A (en) Secondary battery electrode
JP3291758B2 (en) Non-aqueous solvent secondary battery and its electrode material
JPH0834108B2 (en) Non-aqueous solvent secondary battery
JP7507405B2 (en) Secondary battery
JP7507406B2 (en) Secondary battery
WO2022185638A1 (en) Solid electrolyte material and battery using same
WO2023013206A1 (en) Solid electrolyte material and battery using same
WO2022259781A1 (en) Solid electrolyte material and battery using same
WO2022259782A1 (en) Solid electrolyte material and battery using same
WO2022185637A1 (en) Solid electrolyte material and battery using same
JPH0451945B2 (en)
JPH06187974A (en) Negative electrode material, manufacture thereof, and lithium secondary battery
JPH0714608A (en) Battery