JPH046867A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH046867A
JPH046867A JP2108019A JP10801990A JPH046867A JP H046867 A JPH046867 A JP H046867A JP 2108019 A JP2108019 A JP 2108019A JP 10801990 A JP10801990 A JP 10801990A JP H046867 A JPH046867 A JP H046867A
Authority
JP
Japan
Prior art keywords
film
electrode
ferroelectric film
capacitor
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2108019A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takenaka
竹中 計廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2108019A priority Critical patent/JPH046867A/en
Publication of JPH046867A publication Critical patent/JPH046867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a DRAM having a capacitor of a large capacity and sufficient insulation breakdown strength by forming a ferroelectric film between electrodes, and forming a silicon oxide or nitride film at least part between either electrode and a high concentration diffused layer. CONSTITUTION:An oxide film 102 of an element isolating insulating film is formed on a P-type Si substrate 101, an N-type diffused layer 103 to become a source is formed by ion implanting, an N-type diffused layer 104 to become a drain is simultaneously formed, and a gate electrode 105 is formed. Then, a ferroelectric film 106 is formed on the diffused layer. The layer 106 is formed between a Pt electrode 111 and the electrode 107 of the ferroelectric film. In this case, a uniform Si oxide film 110 is formed by lamp annealing in an atmosphere containing oxygen before the film 106 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電体を用いた、メモリ、中でも特に、容
量に電荷をためることにより信号を記憶する、ダイナミ
ックRAMの構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a structure of a memory using a ferroelectric material, and in particular, a dynamic RAM that stores signals by storing charge in a capacitor. .

〔発明の概要〕[Summary of the invention]

本発明は、強誘電体膜を用いた、メモリの構造において
、強誘電体膜が、電極に挟まれて形成され、電極のうち
のとちらか一方と、高濃度拡散層との間に、酸化S1が
、窒化Si膜か形成することにより、比誘電率の大きい
、かつ、絶縁耐圧の高いキャパシタを集積化させたメモ
リを得るようにしたものである。
The present invention provides a memory structure using a ferroelectric film, in which the ferroelectric film is formed between electrodes, and between one of the electrodes and a high concentration diffusion layer. By forming the oxide S1 as a Si nitride film, a memory in which a capacitor having a high dielectric constant and a high dielectric strength voltage is integrated can be obtained.

〔従来の技術〕[Conventional technology]

従来の半導体メモリDRAMとしては、高濃度拡散層上
に5i02をキャパシタの絶縁膜としてもちいていた。
In a conventional semiconductor memory DRAM, 5i02 was used as a capacitor insulating film on a heavily doped diffusion layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、近年、微細化が進み、素子面積を小さくする努
力がされている。微細化を進めると、キャパシタを形成
する面積も小さく成り、電荷を貯えるに必要な容量を確
保出来なくなってきた。そこで、例えば、キャパシタの
面積を大きく取るために、トレンチ型のキャパシタや、
キャパシタをトランジスタの上部にまで集積化させたス
タック型のキャパシタなどのように、構造によりキャパ
シタの面積を大きくする試みや、SiNや、TaO2な
どのように比誘電率か大きい材料を用いてキャパシタの
容量を増やす試みなどがされてきた。
However, in recent years, miniaturization has progressed and efforts have been made to reduce the element area. As miniaturization progresses, the area on which a capacitor is formed also becomes smaller, making it difficult to secure the capacity necessary to store charge. Therefore, for example, in order to increase the area of the capacitor, trench-type capacitors,
Attempts have been made to increase the area of the capacitor by changing its structure, such as stacked capacitors in which the capacitor is integrated to the top of the transistor, and by using materials with high dielectric constants such as SiN and TaO2. Attempts have been made to increase capacity.

しかし、これらのいずれの方法も十分な容量を得るまで
にはいたっていない。そこで本発明はこのような課題を
解決するもので、その目的とする所は、比誘電率が桁違
いに大きい強誘電体膜を用いて、容量の大きいキャパシ
タを持ち、かつ、絶縁耐圧の十分なりRAMなどの半導
体メモリを提供する所にある。
However, none of these methods has reached the point where sufficient capacity can be obtained. The present invention is intended to solve these problems, and its purpose is to create a capacitor with a large capacitance and sufficient dielectric strength by using a ferroelectric film with an order of magnitude higher relative dielectric constant. It is located in a place that provides semiconductor memory such as RAM.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、強誘電体膜を用いたメモリの構造において、
強誘電体膜が、電極に挾まれて形成され、電極のうちの
どちらか一方と、高濃度拡散層との間に、酸化Siが、
窒化S1膜か形成したことを特徴とする。
The present invention provides a structure of a memory using a ferroelectric film.
A ferroelectric film is formed between electrodes, and Si oxide is formed between one of the electrodes and the high concentration diffusion layer.
It is characterized in that a nitride S1 film is formed.

〔実 施 例〕〔Example〕

第1図は、本発明の半導体装置の一実施例に於ける主要
断面図である。以下、第1図に従い、本発明の半導体装
置を説明する。ここでは説明の都合上Si基板を用い、
Nチャンネルトランジスタを用いた例につき説明する。
FIG. 1 is a main sectional view of an embodiment of the semiconductor device of the present invention. The semiconductor device of the present invention will be described below with reference to FIG. For convenience of explanation, a Si substrate is used here.
An example using an N-channel transistor will be explained.

(101)はP型Si基板であり、例えば200hm、
cmの比抵抗のウエノ\を用いる。(102)は素子分
離用の絶縁膜であり、例えば、従来技術であるLOCO
5法により酸化膜を600OA形成する。(103)は
ソースとなるN型拡散層でアリ、例エバリンを80Ke
V5E15cm2イオン注入することにより形成する。
(101) is a P-type Si substrate, for example, 200hm,
Ueno\ with a resistivity of cm is used. (102) is an insulating film for element isolation, for example, the conventional LOCO
An oxide film having a thickness of 600 OA is formed using method No. 5. (103) is an N-type diffusion layer that becomes a source, for example Evalin is 80Ke.
It is formed by implanting V5E15cm2 ions.

(104)はドレインとなるN型拡散層であり、(10
3)と同時に形成する。(105)はゲート電極であり
、例えばリンでドープされたポリStを用いる。(10
6)が本発明の構成要素となる、強誘電体膜であるP 
b T i O3、P Z T (P b Z r03
、PbT iO,、PLZT  (La、PbZ r0
3 、P b T i 03 )であり、例えばスパッ
タ法なとにより100OA形成する。(111)か本発
明の構成要素である電極であり、例えばptを1000
A、スパッタ法により形成する。(107)は強誘電体
膜の電極となる例えばポリSiであり、例えばCVD法
により1500Aの膜厚て形成する。(108)は(1
07)の電極とドレインへの配線電極である(109)
を分離する絶縁膜であり、ここでは、CVD法により5
i02膜を4000A形成する。そして(110)か本
発明のもう一つの構成要素となる酸化Si膜であり、例
えば、酸素を含む雰囲気中でのランプアニールにより、
15Aの均一な酸化Si膜を(106)の強誘電体膜の
形成前に形成する。
(104) is an N-type diffusion layer that becomes a drain, and (10
3) Form at the same time. (105) is a gate electrode, for example, polySt doped with phosphorus is used. (10
6) is a ferroelectric film P which is a component of the present invention.
b T i O3, P Z T (P b Z r03
, PbT iO,, PLZT (La, PbZ r0
3, P b T i 03 ), and is formed with a thickness of 100 OA by, for example, a sputtering method. (111) is an electrode that is a component of the present invention, for example, pt is 1000
A. Formed by sputtering method. (107) is poly-Si, for example, which becomes the electrode of the ferroelectric film, and is formed to a thickness of 1500 Å by, for example, the CVD method. (108) is (1
(109) is the wiring electrode to the electrode and drain of 07)
This is an insulating film that separates the
A 4000A i02 film is formed. And (110) is a Si oxide film which is another component of the present invention, for example, by lamp annealing in an atmosphere containing oxygen.
A uniform Si oxide film of 15A is formed before forming the ferroelectric film (106).

さて、第1図のような構造のキャパシタの容量について
考えてみると、強誘電体膜の比誘電率は、仮に強誘電体
膜としてPZTを用いた場合、約1000であるため、 1/C=1/C(S 102)+1/C(PZT)とな
り、前述した膜厚で計算すると、5i02換算て1.4
 Aのキャパシタが形成出来る。この換算膜厚は、(1
10)の酸化Si膜の膜厚とほぼかわりはないが、(1
10)の様に、15Aの膜厚の酸化Si膜のみを直接キ
ャパシタの絶縁膜とした場合には、絶縁耐圧が数ボルト
しかなく、素子は構成出来なかった。それに対し、第1
図のように酸化Si膜と強誘電体膜を積層化させること
により、絶縁耐圧としては20Vの値が得られ、絶縁耐
圧としても十分であり、かつ容量としても、非常に単位
面積当たりの容量値が大きいキャパシタが得られた。ま
た、強誘電体膜の電極として、ptなとの強誘電体膜(
PZT、PLZTSPbTi03など)と格子定数の近
い金属を用いることにより、結晶性の優れ、また比誘電
率などの電気特性も優れた強誘電体膜が形成出来る。実
際に(111)の電極を用いない場合には比誘電率が8
00 (PZTの場合)に対し、(111)の電極を用
いることにより、比誘電率として1500の値が得られ
た。このような効果はptばかりでなく、白金属の他の
金属、Reや、Ruなと、また高融点金属MoやTit
ども効果の差はあれ、効果があることも分かった。
Now, if we consider the capacitance of a capacitor with the structure shown in Figure 1, the relative dielectric constant of the ferroelectric film is approximately 1000 if PZT is used as the ferroelectric film, so it is 1/C. = 1/C (S 102) + 1/C (PZT), and when calculated using the film thickness mentioned above, it is 1.4 in terms of 5i02.
Capacitor A can be formed. This equivalent film thickness is (1
Although the thickness is almost the same as that of the Si oxide film in (10),
10), when only a 15A thick Si oxide film was directly used as the insulating film of the capacitor, the dielectric strength was only a few volts, and the device could not be constructed. On the other hand, the first
As shown in the figure, by laminating a Si oxide film and a ferroelectric film, a dielectric strength value of 20V can be obtained, which is sufficient as a dielectric strength voltage and has a very high capacitance per unit area. A capacitor with a large value was obtained. In addition, as an electrode of the ferroelectric film, a ferroelectric film such as PT (
By using a metal with a lattice constant similar to that of PZT, PLZTSPbTi03, etc.), a ferroelectric film with excellent crystallinity and electrical properties such as dielectric constant can be formed. In fact, when the (111) electrode is not used, the dielectric constant is 8
00 (in the case of PZT), by using the (111) electrode, a value of 1500 was obtained as the dielectric constant. This effect is not limited to PT, but also other metals other than white metal, such as Re and Ru, as well as high melting point metals such as Mo and Ti.
It was also found that it was effective, although there were differences in effectiveness.

以上の説明においては、強誘電体膜を積層する絶縁膜と
して、酸化Si膜を用いた場合について説明したが、窒
化Si膜や、酸化Si膜と窒化Si膜の積層膜を用いて
も良いことはいうまでもない。
In the above explanation, a case was explained in which a Si oxide film was used as the insulating film on which the ferroelectric film is laminated, but it is also possible to use a Si nitride film or a laminated film of a Si oxide film and a Si nitride film. Needless to say.

〔発明の効果〕〔Effect of the invention〕

本発明のように、強誘電体膜を用いた、メモリの構造に
おいて、強誘電体膜が、電極に挟まれて形成され、電極
のうちのどちらか一方と、高濃度拡散層との間に、酸化
Stが、窒化Si膜を形成したため、絶縁耐圧が高く、
かつ容量としても、非常に単位面積当たりの容量値が大
きいキャパシタが集積化出来るという効果を有する。
In a memory structure using a ferroelectric film as in the present invention, the ferroelectric film is formed sandwiched between electrodes, and between one of the electrodes and a high concentration diffusion layer. , St oxide formed a Si nitride film, so the dielectric strength was high;
Also, in terms of capacitance, it has the effect that capacitors with extremely large capacitance values per unit area can be integrated.

Si基板 素子分離絶縁膜 ソース拡散層 ドレイン拡散層 ゲート電極 強誘電体膜 電極 層間絶縁膜 配線電極 キャパシタ絶縁膜 電極 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)Si substrate Element isolation insulating film source diffusion layer drain diffusion layer gate electrode ferroelectric film electrode interlayer insulation film wiring electrode capacitor insulation film electrode Applicant: Seiko Epson Corporation Agent: Patent attorney Kisanbe Suzuki (1 other person)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の主要断面図である。 FIG. 1 is a main sectional view of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)強誘電体膜が、能動素子が形成された同一半導体
基板上に、集積された半導体装置において、前記強誘電
体膜が電極に挟まれて形成され、前記電極のうちのどち
らか一方と、前記半導体主表面上に形成された高濃度拡
散層との間の少なくとも一部分に、酸化Siか、窒化S
i膜のいずれかの絶縁膜が形成されてることを特徴とす
る半導体装置。
(1) In a semiconductor device in which a ferroelectric film is integrated on the same semiconductor substrate on which active elements are formed, the ferroelectric film is formed sandwiched between electrodes, and either one of the electrodes and the high-concentration diffusion layer formed on the main surface of the semiconductor, Si oxide or S nitride is formed.
A semiconductor device characterized in that any one of the insulating films of the i-film is formed.
(2)前記電極がPt、Pd、Ru、Re、Mo、Ti
、Wのうちのいずれかの金属を主成分とした電極である
ことを特徴とする請求項1記載の半導体装置。
(2) The electrode is made of Pt, Pd, Ru, Re, Mo, Ti
, W. , W. , W. , W. , W. , W. , W.
JP2108019A 1990-04-24 1990-04-24 Semiconductor device Pending JPH046867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108019A JPH046867A (en) 1990-04-24 1990-04-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108019A JPH046867A (en) 1990-04-24 1990-04-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH046867A true JPH046867A (en) 1992-01-10

Family

ID=14473920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108019A Pending JPH046867A (en) 1990-04-24 1990-04-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH046867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939744A (en) * 1995-03-22 1999-08-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with x-ray absorption layer
US6281536B1 (en) 1998-04-08 2001-08-28 Nec Corporation Ferroelectric memory device with improved ferroelectric capacity characteristic
US6384440B1 (en) 1999-11-10 2002-05-07 Nec Corporation Ferroelectric memory including ferroelectric capacitor, one of whose electrodes is connected to metal silicide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939744A (en) * 1995-03-22 1999-08-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with x-ray absorption layer
US6049103A (en) * 1995-03-22 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor capacitor
US6281536B1 (en) 1998-04-08 2001-08-28 Nec Corporation Ferroelectric memory device with improved ferroelectric capacity characteristic
US6384440B1 (en) 1999-11-10 2002-05-07 Nec Corporation Ferroelectric memory including ferroelectric capacitor, one of whose electrodes is connected to metal silicide film

Similar Documents

Publication Publication Date Title
US6090659A (en) Lead silicate based capacitor structures
US5216572A (en) Structure and method for increasing the dielectric constant of integrated ferroelectric capacitors
KR100775721B1 (en) Capacitor and method of manufacturing the same
US6861330B2 (en) Structures and methods for enhancing capacitors in integrated circuits
JP3305627B2 (en) Semiconductor device and manufacturing method thereof
KR950007118A (en) Semiconductor storage device having improved insulation between electrodes and manufacturing method thereof
JPH118355A (en) Ferroelectric memory
JP3439370B2 (en) Method for manufacturing semiconductor memory device
JPH11126881A (en) Semiconductor device having high ferroelectric thin-film capacitor and manufacture thereof
US6228701B1 (en) Apparatus and method for minimizing diffusion in stacked capacitors formed on silicon plugs
JP2003068993A (en) Semiconductor device and its manufacturing method
KR20010086354A (en) Semiconductor device with capacitive element and method of forming the same
JPH0563156A (en) Manufacture of semiconductor device
JP2004014916A (en) Semiconductor device and manufacture thereof
US6559498B2 (en) Semiconductor device and method of forming the same
JPH06151751A (en) Semiconductor integrated circuit device and manufacture thereof
JP3530416B2 (en) Method for manufacturing semiconductor memory device
JPH046867A (en) Semiconductor device
JPH0621333A (en) Method for fabricating semiconductor device
WO1992002955A1 (en) Semiconductor device
TWI230972B (en) Ferro-electric capacitor and method for making same
EP0967651A2 (en) Semiconductor memory with capacitor dielectric
JPH046866A (en) Semiconductor device
JP2001345434A (en) Semiconductor device
JPH0499365A (en) Semiconductor device