JPH0468518A - Inspection method for mask registration and pseudo wafer used for it - Google Patents

Inspection method for mask registration and pseudo wafer used for it

Info

Publication number
JPH0468518A
JPH0468518A JP2180458A JP18045890A JPH0468518A JP H0468518 A JPH0468518 A JP H0468518A JP 2180458 A JP2180458 A JP 2180458A JP 18045890 A JP18045890 A JP 18045890A JP H0468518 A JPH0468518 A JP H0468518A
Authority
JP
Japan
Prior art keywords
ray
pseudo wafer
mark
mask
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2180458A
Other languages
Japanese (ja)
Other versions
JP2704454B2 (en
Inventor
Hideo Nikawa
二河 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP18045890A priority Critical patent/JP2704454B2/en
Publication of JPH0468518A publication Critical patent/JPH0468518A/en
Application granted granted Critical
Publication of JP2704454B2 publication Critical patent/JP2704454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To readily appreciate registration accuracy by irradiating X-ray through an X-ray mask provided with an alignment mark and a read appreciation mark pattern on a pseudo wafer and by reading light emission of X-ray irradiation by scanning an X-ray irradiation part on the pseudo wafer with laser beam. CONSTITUTION:X-ray 3 is applied through a first X-ray mask 11a provided with a standard alignment mark 9a and a first read appreciation mark 10a to an accelerated phosphorescence fluorescent substance 2 of a registration pseudo wafer. If a position of an X-ray irradiated part 12 and that of an alignment mark 9b of an X-ray mask 11b are deviated each other, light emission 5 from the registration pseudo wafer is not detected. If they coincide, light emission can be detected in all the parts. X-ray is irradiated to the accelerated phosphorescence fluorescent substance 2 of the registration pseudo wafer through a second read appreciation mark 10b. Then, a read appreciation X-ray irradiation part 13 is scanned by an He-Ne laser 6 to obtain a distance between first and second read mark transcription parts 13a, 13b from light emission strength of a light emission part and to acquire registration accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置を製造する際のマスク位置合わせ
検査方法およびそれに用いる擬似ウェハに関する。ここ
に擬似ウェハというのは、被処理用半導体ウェハに外径
2寸法、材質等を似せたもので、検査専用のものをいう
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mask alignment inspection method used in manufacturing semiconductor devices and a pseudo wafer used therein. The pseudo wafer here refers to a wafer that resembles a semiconductor wafer to be processed in two outer diameter dimensions, material, etc., and is used exclusively for inspection.

(従来の技術) 半導体装置の製造における従来の複数のマスクの位置合
わせ方法の一例について第8図を参照して以下に説明す
る。まず、第8図(a)に示すようにウェハ21上のア
ラインメントマーク22と第1の位置合わせ精度の読み
取りウェハマーク23を形成する。次に第8図(b)に
示すようにその上にレジスト24を塗布して、その後、
第8図(C)のようにウェハ21上のアラインメントマ
ーク22に対して位置合わせを行い、マスク上の読み取
りマーク23をウェハ21上のレジスト24に転写して
、現像を行い、第2の位置合わせ精度の読み取りレジス
トマーク24aを形成すると第8図(d)のようになる
(Prior Art) An example of a conventional method for aligning a plurality of masks in manufacturing a semiconductor device will be described below with reference to FIG. First, as shown in FIG. 8(a), an alignment mark 22 on a wafer 21 and a reading wafer mark 23 having a first alignment accuracy are formed. Next, as shown in FIG. 8(b), a resist 24 is applied thereon, and then,
As shown in FIG. 8(C), alignment is performed with respect to the alignment mark 22 on the wafer 21, the reading mark 23 on the mask is transferred to the resist 24 on the wafer 21, development is performed, and the second position is When the registration mark 24a is read with alignment accuracy and formed, it becomes as shown in FIG. 8(d).

第1の位置合わせ精度の読み取りウェハマーク23と第
2の位置合わせ精度の読み取りレジストマーク24aと
の間の距離x1およびX、を測長し、(X、 −X、)
/ 2から合わせ誤差を計算により求める。
The distances x1 and X between the read wafer mark 23 with the first alignment accuracy and the read registration mark 24a with the second alignment accuracy are measured, and (X, -X,)
Calculate the alignment error from /2.

また、X線マスク間の精度を測定する場合は、第8図(
C)で異なるマスクを用いて、第8図(b)。
In addition, when measuring the accuracy between X-ray masks, see Figure 8 (
Figure 8(b) using a different mask in C).

(C)の工程を繰り返し、第3のレジストマークを形成
する。その後、マークの測長を行い、第2のレジストマ
ークとの位置関係からX線マスd間の精度を求める。
Repeat the step (C) to form a third registration mark. Thereafter, the length of the mark is measured, and the accuracy between the X-ray masses d is determined from the positional relationship with the second registration mark.

(発明が解決しようとする課題) このように位置合わせ精度やマスク間の精度を測定する
場合、レジスト上へマスクマークを転写し、レジストマ
ークを形成する工程が必要である。
(Problems to be Solved by the Invention) When measuring the alignment accuracy and the accuracy between masks in this way, a step of transferring a mask mark onto a resist and forming a resist mark is required.

この工程は、レジスト塗布−レシストベーク−露光−視
像−ベークと工程数が多く、非常に時間を要する。
This step requires a large number of steps, including resist coating, resist baking, exposure, visual image, and baking, and is very time consuming.

また、レジスト塗布むらなどによって、レジストマーク
が一様に形成できなかったり、レジストマークの崩れに
より精度よく評価できないという間層があった。
Furthermore, due to unevenness in resist coating, resist marks could not be formed uniformly, or the resist marks could not be accurately evaluated due to collapse of the resist marks.

(課題を解決するための手段) この問題を解決するために本発明は、X線を透過する物
質からなるウェハ上に輝尽性蛍光体を一様に塗布した擬
似ウェハを用いて、前記擬似ウェハへ第1のX線マスク
上の読み取りマークパターンを転写し、次にこの転写部
分をレーザービームで走査し、同転写部分の前記輝尽性
蛍光体からの第1の発光を読み取り、再び、第2のX線
マスク上の読み取りマークパターンを転写し、ついで、
第2の発光読み取りを行い、前記第1.第2の発光読み
取りの発光強度の差から精度を評価するものである。
(Means for Solving the Problem) In order to solve this problem, the present invention uses a pseudo wafer made of a substance that transmits X-rays and uniformly coated with a stimulable phosphor. Transferring the reading mark pattern on the first X-ray mask to the wafer, then scanning this transferred area with a laser beam, reading the first light emission from the stimulable phosphor in the transferred area, and again, Transfer the reading mark pattern on the second X-ray mask, and then
A second luminescence reading is performed, and the first. Accuracy is evaluated based on the difference in the light emission intensity of the second light emission reading.

(作 用) 本発明を用いることにより、レジストプロセスが不要と
なり、簡単に位置合わせ精度の評価が行えるようになる
。また、−度使用した位置合わせ用擬似ウェハ全面に可
視光を照射すれば、X線でマスクパターンを転写する前
の状態に戻すことが可能で、簡単に再使用できる。
(Function) By using the present invention, a resist process becomes unnecessary, and alignment accuracy can be easily evaluated. Furthermore, by irradiating the entire surface of the used positioning pseudo wafer with visible light, it is possible to return it to the state before the mask pattern was transferred using X-rays, and it can be easily reused.

(実施例) 本発明の実施例について以下に詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図は本発明にかかるX線露光用位置合わせ用擬似ウ
ェハの使用方法を示す過程類断面図であり、第1図を参
照してX線露光用位置合わせ用擬似ウェハについて説明
する。
FIG. 1 is a process sectional view showing a method of using the pseudo wafer for positioning for X-ray exposure according to the present invention, and the pseudo wafer for positioning for X-ray exposure will be explained with reference to FIG.

第1図(a)に示すように、本発明のX線露光用位置合
わせ用擬似ウェハ1は、X線を透過する物質からなるウ
ェハ、例えば石英(Sin、)ガラスウェハ1.上に輝
尽性蛍光体く例えば、 BaFBr:Er″*)2を一様に塗布したものである
As shown in FIG. 1(a), a pseudo wafer 1 for positioning for X-ray exposure according to the present invention is a wafer made of a material that transmits X-rays, such as a quartz (Sin) glass wafer 1. A stimulable phosphor, for example, BaFBr:Er''*)2, is uniformly applied thereon.

第1図(b)に示すように、ウェハ1上へX線3を照射
することにより、前記蛍光体2中に準安定な色中心4が
生成する。この色中心4は可視光の照射により消滅する
が、同時に輝尽性蛍光を発光する。この発光スペクトル
は、390nm付近にピークをもち、発光強度は入射し
たX線の強度に比例している。したがって、読み取りの
励起光源にHe−N6レーザー(波長633nrII)
 6を用い、X線の照射部を走査し、発光強度を光電子
増倍管により測定する。
As shown in FIG. 1(b), by irradiating the wafer 1 with X-rays 3, a metastable color center 4 is generated in the phosphor 2. This color center 4 disappears upon irradiation with visible light, but at the same time emits stimulable fluorescence. This emission spectrum has a peak around 390 nm, and the emission intensity is proportional to the intensity of incident X-rays. Therefore, the excitation light source for reading is a He-N6 laser (wavelength 633nrII).
6, the X-ray irradiation area is scanned, and the emission intensity is measured using a photomultiplier tube.

第2図に輝尽性蛍光強度と入射X線量との関係を示す。FIG. 2 shows the relationship between the photostimulable fluorescence intensity and the incident X-ray dose.

同図かられかるように発光強度と入射X線量との間には
、比例関係がある。
As can be seen from the figure, there is a proportional relationship between the emission intensity and the incident X-ray dose.

また、読み取り後、第1図(d)に示すように、擬似ウ
ェハ全面に可視光7を照射すると色中心4が消滅し、X
線3を照射する前の状態、すなわち、第1図(a)の状
態へ再生することができる。
After reading, as shown in FIG. 1(d), when visible light 7 is irradiated onto the entire surface of the pseudo wafer, the color center 4 disappears and the
It is possible to reproduce the state before irradiating the line 3, that is, the state shown in FIG. 1(a).

複数のマスクの位置合わせ方法の実施例を第3図に基づ
いて説明する。まず、第3図(a)に示すように、第1
図で説明した位置合わせ用擬似ウェハの輝尽性蛍光体2
に、基準となるアラインメントマーク9aと第1の読み
取り評価用マーク10aの設けられた第1のX線マスク
llaを通してX線を照射する0次に、第3図(b)に
示すように、この上から、第2のX@マスクllbの第
2のアラインメントマーク9bを当て、He−Neレー
ザー6で走査する。この時の拡大図を第4図に示す。H
e−Ne光を照射すると、第4図(a)に示すように、
第1のX線マスクllaを用いて位置合わせ用擬似ウェ
ハの輝尽性蛍光体2上にX線を照射したX線照射部12
と、X線マスクllbのアラインメントマーク9bの位
置がずれていれば、アラインメントマーク9bの一方の
端■、■では、位置合わせ用擬似ウェハからの発光5が
検出されない。
An embodiment of a method for aligning a plurality of masks will be described based on FIG. 3. First, as shown in Figure 3(a), the first
Stimulable phosphor 2 of the pseudo wafer for positioning explained in the figure
Then, as shown in FIG. 3(b), X-rays are irradiated through a first X-ray mask lla provided with an alignment mark 9a serving as a reference and a first reading evaluation mark 10a. The second alignment mark 9b of the second X@mask llb is applied from above and scanned with the He-Ne laser 6. An enlarged view at this time is shown in FIG. H
When e-Ne light is irradiated, as shown in FIG. 4(a),
X-ray irradiation unit 12 that irradiates X-rays onto the stimulable phosphor 2 of the alignment pseudo wafer using the first X-ray mask lla
If the position of the alignment mark 9b of the X-ray mask llb is shifted, the light emission 5 from the alignment pseudo wafer will not be detected at one end (2), (2) of the alignment mark 9b.

しかし、第4図(b)に示すように、アラインメントマ
ーク9bとX線照射部12の位置が一致していれば、■
、■、■、■すべての部分で発光5が検出できる。
However, as shown in FIG. 4(b), if the alignment mark 9b and the X-ray irradiation unit 12 are aligned,
, ■, ■, ■ Luminescence 5 can be detected in all parts.

以上のようにアラインメントを行った後、第3図(C)
のように、第2の読み取り評価用マーク10bを通して
X線を位置合わせ用擬似ウェハの輝尽性蛍光体2へ照射
する。
After performing the alignment as described above, Figure 3 (C)
As shown, X-rays are irradiated onto the stimulable phosphor 2 of the alignment pseudo wafer through the second reading evaluation mark 10b.

次に、位置合わせ用擬似ウェハ上の読み取り評価用X線
照射部13を、He−Neレーザー6で走査し発光部分
の発光強度から(第5図のように)、第1、第2の読み
取りマーク転写部13a、 13b間の距離X、および
X、を求め、(X、−X、)/2から位置合わせ精度を
求める。前記X線照射部13の上面図と発光強度の測定
例を第5図に示す。図かられかるように、第2の読み取
りマーク転写部13bからは、第1の読み取りマーク転
写部13aの2倍の発光強度が検出され、He−Neレ
ーザー走査距離と発光強度からX、、 X、が測定でき
る。
Next, the reading evaluation X-ray irradiation unit 13 on the alignment pseudo wafer is scanned with the He-Ne laser 6, and the first and second readings are obtained from the light emission intensity of the light emitting part (as shown in FIG. 5). The distances X and X between the mark transfer parts 13a and 13b are determined, and the alignment accuracy is determined from (X, -X,)/2. FIG. 5 shows a top view of the X-ray irradiation section 13 and a measurement example of the emission intensity. As can be seen from the figure, from the second reading mark transfer part 13b, twice the emission intensity is detected as from the first reading mark transfer part 13a, and from the He-Ne laser scanning distance and the emission intensity, X, , X , can be measured.

第6図はマスク3枚の位置合わせの場合の測定方法の例
を示すもので、x、、 x、、 x、、 x、から精度
を測定するものであり、第7図は、マスクの正確度を測
定した例を示したもので、複数のマスクの位置合わせの
場合、各マスクの位置ずれの状況が正確にわかることを
示している。
Figure 6 shows an example of the measurement method when aligning three masks, and the accuracy is measured from x,, x, , x, , x, and Figure 7 shows the accuracy of the masks. This shows an example of measuring the degree of deviation, and shows that when aligning multiple masks, the situation of misalignment of each mask can be accurately determined.

(発明の効果) 以上詳述したように、本発明を用いることにより、レジ
ストプロセスを用いることなく、簡単に合わせ精度、マ
スク間重ね合わせ精度およびマスクの安定性評価を行う
ことができる。また、評価後、擬似ウェハ全面に可視光
を照射するだけで、擬似ウェハは評価前の初期状態に戻
るので何回でも繰り返して、使用することが可能である
(Effects of the Invention) As described in detail above, by using the present invention, it is possible to easily evaluate alignment accuracy, mask-to-mask overlay accuracy, and mask stability without using a resist process. Further, after evaluation, simply by irradiating the entire surface of the pseudo wafer with visible light, the pseudo wafer returns to its initial state before evaluation, so it can be used any number of times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるX線露光用位置合わせ用ウェハ
を示す断面図、第2図は輝尽性蛍光積度と入射X線量と
の関係を表わす図、第3図は位置合わせ方法の実施例を
説明するための断面図、第4図は位置合わせ方法を説明
するための拡大図、第5図は実際に位置合わせ精度を発
光強度から測定した例を示す図、第6図はマスク間重ね
合わせ精度測定例を示す図、第7図はマスクの正確度を
測定した例を示す図、第8図は従来のマスクの位置合わ
せ方法の一例を示す図である。 1、・・・石英ガラスウェハ、 l ・・・擬似ウェハ
、 2・・・輝尽性蛍光体、 3−・・X線、 4 ・
・・色中心、 5 ・・・発光、 6・・・He−Ne
レーザー  7 ・・・可視光、9a、9b・・・アラ
インメントマーク、10a・・・第1の読み取り評価用
マーク、10b・・・第2の読み取り評価用マーク、1
1a、 llb・・・X線マスク、 12・・・ X線
照射部、13・・・読み取り評価用X線照射部、13a
・・・第1の読み取りマーク転写部、13b・・・第2
の読み取りマーク転写部、13c・・・第3の読み取り
マーク転写部、13a’ ・・・X線照射後の第1の読
み取りマーク転写部。 特許出願人 松下電子工業株式会社 代 理 人   星  野  恒  司、゛2 第1図 第3図 第2図 AIt X 裸/ (01mrn’ )第5図 第7図 第6図 距離X(、um) 第8図
FIG. 1 is a cross-sectional view showing the alignment wafer for X-ray exposure according to the present invention, FIG. 2 is a diagram showing the relationship between the photostimulable fluorescence product and the incident X-ray dose, and FIG. 3 is a diagram showing the alignment method. 4 is an enlarged view to explain the alignment method, FIG. 5 is a diagram showing an example of actually measuring alignment accuracy from light emission intensity, and FIG. 6 is a mask FIG. 7 is a diagram showing an example of measuring mask accuracy; FIG. 8 is a diagram showing an example of a conventional mask alignment method. 1.... Quartz glass wafer, l... Pseudo wafer, 2... Stimulable phosphor, 3-... X-ray, 4.
...Color center, 5...Light emission, 6...He-Ne
Laser 7... visible light, 9a, 9b... alignment mark, 10a... first reading evaluation mark, 10b... second reading evaluation mark, 1
1a, llb... X-ray mask, 12... X-ray irradiation section, 13... X-ray irradiation section for reading evaluation, 13a
...first reading mark transfer section, 13b...second
reading mark transfer part, 13c... third reading mark transfer part, 13a'... first reading mark transfer part after X-ray irradiation. Patent applicant: Matsushita Electronics Co., Ltd. Representative: Koji Hoshino, ゛2 Figure 1 Figure 3 Figure 2 AIt X Bare/ (01mrn') Figure 5 Figure 7 Figure 6 Distance Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)X線を透過する物質からなるウェハ上に輝尽性蛍
光体が塗布された擬似ウェハ上に、アラインメントマー
クおよび読み取り評価用マークパターンを備えたX線マ
スクを通してX線を照射する工程と、X線で照射された
擬似ウェハ上のX線照射部をレーザビームで走査してX
線照射の発光を読み取ることを特徴とするマスク位置合
わせ検査方法。
(1) A step of irradiating X-rays onto a pseudo wafer made of a material that transmits X-rays and coated with a stimulable phosphor through an X-ray mask equipped with alignment marks and a mark pattern for reading and evaluation. , the X-ray irradiation area on the pseudo wafer that has been irradiated with X-rays is scanned with a laser beam.
A mask alignment inspection method characterized by reading light emitted from radiation.
(2)X線照射部の両端縁部の発光量の差異により、マ
スクの位置ずれの程度を判断することを特徴とする請求
項(1)記載のマスク位置合わせ検査方法。
(2) The mask alignment inspection method according to claim (1), wherein the degree of misalignment of the mask is determined based on the difference in the amount of light emitted at both end edges of the X-ray irradiation section.
(3)X線を透過する物質からなるウェハ上に輝尽性蛍
光体を塗布したことを特徴とする擬似ウェハ。
(3) A pseudo wafer characterized by coating a stimulable phosphor on a wafer made of a substance that transmits X-rays.
(4)輝尽性蛍光体がBaFBr:Er^2^+の微結
晶であることを特徴とする請求項(3)記載の擬似ウェ
ハ。
(4) The pseudo wafer according to claim (3), wherein the stimulable phosphor is a microcrystal of BaFBr:Er^2^+.
(5)X線を透過する物質がSiO_2であることを特
徴とする請求項(3)記載の擬似ウェハ。
(5) The pseudo wafer according to claim (3), wherein the substance that transmits X-rays is SiO_2.
JP18045890A 1990-07-10 1990-07-10 Mask alignment inspection method Expired - Fee Related JP2704454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18045890A JP2704454B2 (en) 1990-07-10 1990-07-10 Mask alignment inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18045890A JP2704454B2 (en) 1990-07-10 1990-07-10 Mask alignment inspection method

Publications (2)

Publication Number Publication Date
JPH0468518A true JPH0468518A (en) 1992-03-04
JP2704454B2 JP2704454B2 (en) 1998-01-26

Family

ID=16083579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18045890A Expired - Fee Related JP2704454B2 (en) 1990-07-10 1990-07-10 Mask alignment inspection method

Country Status (1)

Country Link
JP (1) JP2704454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024264A1 (en) * 1999-09-29 2001-04-05 Infineon Technologies North America Corp. Wafer alignment marks and manufacturing methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512144A (en) * 1978-07-12 1980-01-28 Fuji Photo Film Co Ltd Conversion of radiation image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512144A (en) * 1978-07-12 1980-01-28 Fuji Photo Film Co Ltd Conversion of radiation image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024264A1 (en) * 1999-09-29 2001-04-05 Infineon Technologies North America Corp. Wafer alignment marks and manufacturing methods

Also Published As

Publication number Publication date
JP2704454B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US7081948B2 (en) System for automated focus measuring of a lithography tool
US6498640B1 (en) Method to measure alignment using latent image grating structures
US9915878B2 (en) Exposure apparatus, exposure method, and device manufacturing method
CN107621749A (en) Mask, measuring method, exposure method and article manufacturing method
CN102696095A (en) Optical characteristic measurement method, exposure method and device manufacturing method
US3982837A (en) Method and apparatus for calibrating Reseau grids
KR101288398B1 (en) Lithographic apparatus, computer program product and devicd manufacturing method
JPH0468518A (en) Inspection method for mask registration and pseudo wafer used for it
JPS598058B2 (en) Alignment method and masks and substrates used in this alignment method
JPH09166416A (en) Method and device for measuring amount of relative position deviation of reticle pattern
JP2009147332A (en) Device for transmission image detection for use in lithographic projection apparatus and method for determining third order distortion of patterning device and/or projection system of such a lithographic apparatus
TW201248338A (en) Exposure apparatus, exposure method, inspecting method of exposure apparatus and manufacturing method of display panel substrate
US20080153012A1 (en) Method of measuring the overlay accuracy of a multi-exposure process
JP4425214B2 (en) Exposure apparatus, tilting apparatus, method for performing tilt focusing test, and device manufactured thereby
CN107810447A (en) For indicia patterns to be transferred to method, calibration method and the lithographic equipment of substrate
TWI277843B (en) Alignment using latent images
JPH07243814A (en) Measuring method of line width
JP2696962B2 (en) Line width measurement method and exposure apparatus inspection method using the method
JPS63296339A (en) Positioning method
KR100301139B1 (en) Projection Exposure Equipment and Methods
JP2003031467A (en) Projection aligner, projection exposure method, and manufacturing method of semiconductor
KR100598263B1 (en) Stepper and method for aligning shot using the same
US6753963B1 (en) Method of calibration of magnification of optical devices
CN111752112B (en) Mask alignment mark combination, mask alignment system, photoetching device and method thereof
KR100201099B1 (en) Basis panel and method for confirming light-exposing setting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees