JPH0468512B2 - - Google Patents

Info

Publication number
JPH0468512B2
JPH0468512B2 JP60056596A JP5659685A JPH0468512B2 JP H0468512 B2 JPH0468512 B2 JP H0468512B2 JP 60056596 A JP60056596 A JP 60056596A JP 5659685 A JP5659685 A JP 5659685A JP H0468512 B2 JPH0468512 B2 JP H0468512B2
Authority
JP
Japan
Prior art keywords
pipe
joint
ground
length
subsidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056596A
Other languages
Japanese (ja)
Other versions
JPS61215879A (en
Inventor
Takehiro Ito
Kazuaki Sanjo
Hiroaki Irioka
Shiro Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP60056596A priority Critical patent/JPS61215879A/en
Publication of JPS61215879A publication Critical patent/JPS61215879A/en
Publication of JPH0468512B2 publication Critical patent/JPH0468512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Joints Allowing Movement (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は沈下が想定される地盤中の構造物に接
続して形成される埋設管路の配管設計方法に関す
るものである。 [従来の技術] 管体の埋設される地盤については、(1)極めて強
固であり一般的条件下では沈下を考える必要がな
い場合と、(2)上記とは逆に沈下性が高いと考えら
れる場合がある。後者の場合は配管に先だつて地
盤改良工事を施したり、補強杭を打込むこともあ
るがこれらの対策によつて沈下の恐れが完全に解
消するとは限らず、又特別の方策を立てずに配管
することも多い。従つてこの様な沈下性地盤にお
ける配管に際しては、上述の如き事前対策の有無
にかかわらず配管後の地盤沈下は避けられないも
のと考えて安全性の高い管路設計を行なうことが
必要になつてくる。但し一言に地盤沈下といつて
も配管部が全面的に沈下する均等沈下と、局部的
な沈下が生じる不等沈下が考えられる。ところが
前者の均等沈下においては、管路が全体に亘つて
等しい影響を受けている為さほど重要な問題はな
く、また不等沈下においても管長方向に見たとき
の沈下量が徐々に変化している場合は問題が少な
い。即ち不等沈下においてもつとも大きな問題と
なるのは、不沈下部と沈下部が隣り合つて存在す
る場合であり、一般に各種構造物(建築物等)や
埋設物(マンホール等)は不沈下部となり、これ
らに接合され更に延長される配管が沈下部とな
る。ところで上記の様な不沈下部と沈下部が隣り
合つている不等沈下部配管における沈下状況につ
いては十分解明されておらず、極く常識的に第2
図に示す様なものであろうと考えられていた。図
においてMはマンホール、Gは沈下性地盤(以下
単に地盤という)を示し、マンホールMに直結さ
れる管から順番に第1番管1、第2番管2、第3
番管3、…、第N番管Nと称することとする。尚
管体を接続する継手については、第1番継手1
j、第2番目継手2j、第3番継手3j,…、第
N番継手Njと称することにする。そしてマンホ
ールMと第1番管1との接合部Rは完全固着状態
(非屈曲・非伸縮状態)とするが、その他の継手
部1j,2j,3j,…Njについてはいずれも
屈曲性および伸縮性を有するものとする。従つて
第2図に示す様な従来想像されていた不等沈下状
況の下では、継手部1j,2j,3j,4j等が
少しずつ屈曲並びに伸長されながら、かなりの管
路長さに亘つて全体的に撓む様な状態が推察され
ており、この撓みに参加する管体の数(第2図で
は第2〜4番管の3本)が多いほど安定した不等
沈下状況を示すものと考えられていた。換言すれ
ばこの様な部位に使用する管体には有効長の短い
ものを採用し、これをたくさん接続して上述の撓
みに対応することが一般的であつた。しかしなが
ら本発明者等の研究によると実際の不等沈下に際
しては、第1番継手1j及び第2番継手2jにお
ける離脱事故の発生がもつとも懸念されるべきで
あるという実体が明らかになつてきた。 [発明が解決しようとする問題点] かねてより本出願人は屈曲角の許容限界が大き
い管継手を形成するという観点から色々研究を重
ねており、合成樹脂管の受口を内懐の広い多段拡
径形状としたものを開発している(第3図参照)。
この様な多段拡径受口を有する片受片挿の合成樹
脂管を接合した管路では、第3図中に1点鎖線で
示す如く接合部における屈曲角を大きくとること
ができるので、地盤の軟弱さや地震等が原因とな
る上述の如き不等沈下に対して適応性が高いもの
と期待されている。そこで不等沈下の恐れが強い
マンホールとの直結管路に、前記の様な許容屈曲
角の大きい継手を有する管体を用いて不等沈下に
対する挙動を調べてみたところ、次の様なことが
分つた。即ち実際の不等沈下では、前記第2図に
示した状態、即ちマンホールMから遠ざかるにつ
れて各管体が徐々に沈下していくというのではな
く、第1図に示す様に第2番管2が大きく傾斜
し、第3番管3以遠の管体はほぼ同心状態を保つ
たままでいつせいに等沈下を起こすという傾向が
見られた。 この様な沈下状況の下では第1番継手1jと第
2番継手2jにおいて屈曲角が極めて大きくな
り、まず挿口管が第3図の1点鎖線で示した様に
受口管の開口端縁に当接し、更に管体特性(管体
の材質、口径、肉厚等の諸特性)の許す範囲で管
体に変形が加えられつつ屈曲が進んでいく。この
様な大きい屈曲角が形成されると、(1)管継手部分
における応力の増大、(2)パツキンの圧縮が周方向
で不均一になることにより水漏れの恐れ、(3)電力
管や電信管の様にケーブル類を挿通する場合にお
ける挿通作業性の低下等といつた不都合が生じ、
遂には継手部の離脱や破損等を惹起するに至るも
のである。即ち不等沈下に耐え得る管路全体とし
ての限界は、第1番継手1jと第2番継手2jに
おける接合維持限界によつて支配されているとい
う背景を確認することができた。又第1図に示し
た様な不等沈下状況の下では第1番管1が大幅な
撓みを見せて第1番継手1jの沈下に対応してい
く様な状態が発生し、継手部における事故が発生
する前に第1番管1の根元接合部Rが過大応力を
受けて破損する場合があるということも確認し
た。 そこで上記の接合維持限界を左右している因子
について検討したが、継手部自体の許容屈曲角に
ついては管体自体の特性或は継手形状からくる制
限等があるので、ある程度以上の改善は望めな
い。又構造物等との接合部Rにおける破損は許容
屈曲角以外の因子によつて大きな影響を受けるで
あろうとも考えられた。そこで上記以外の因子に
ついて設計乃至改良を加えることによつて対応す
る必要があると考えられ、種々検討した結果本発
明を完成するに至つた。即ち不等沈下を起こすこ
とが考えられる地盤において、想定沈下量の下で
各管体の継手部が前に述べた様な継手機能を維持
し、且つ脱離を起こさないと共に、管体の破損
(主として構造物等との接合部における破損)を
も防止し得る様な管路を設計するにあたつてこれ
に資すことができる方法を提供すべく研究し、本
発明に到達したのである。 [問題点を解決する為の手段] 上記目的を達成した本発明とは、構造物に第1
番管を固定的に接続し、該構造物に対し相対的に
沈下することが予想される第2番、第3番以降の
管体を上記第1番管に順次接続して埋設管路を形
成していくにあたり、上記地盤の想定沈下量を求
めると共に、管体の形状及び材質等の管体特性
と、継手部の形状及びパツキン等により定まる継
手特性と、地盤ばね定数として与えられる地盤特
性をもとにして管路の応答解析を行なうことによ
り、第1番管または第2番管の長さを固定したと
きの、管路を構成する該管体に発生する応力と継
手部における屈曲角及び伸縮量がそれぞれの許容
値を満足する様な第2番管または第1番管の長さ
の許容範囲を求め、当該許容範囲の中から第1番
管及び第2番管の有効長を選定し、地盤沈下に対
する最適管路を設計することを要旨とするもので
ある。 [作用] 以下第19図に基づいて本発明の設計手順を説
明する。尚以下の説明は本発明における上述の必
須的構成要件要素の他、関連項目を包含するもの
とする。 [] まず不等沈下地盤における埋設管路を設計
するにあたり、種々の解析を行なう上で基本と
なるインプツトデータを得る。この様な基本デ
ータを大別すれば(A)管体特性、(B)継手特性、(C)
地盤特性に分類できる。 (A) 管体特性 不等沈下が発生すると埋設管体には色々な
方向からの外力が加えられるものであり、次
の様な特性値を承知しておくことが必要であ
る。 形状…外径、肉厚、長さ等 材質…ヤング率、ポアソン比等 (B) 継手特性 継手部の形状や装着パツキンの特性等によ
つて定まる特性、即ち屈曲特性、伸縮特
性を得ることも不可欠である。 屈曲特性 屈曲特性とは、継手部の屈曲角度と屈曲
方向に作用する回転モーメントの関係によ
つて表わされるもので、一般に第4図の様
になつており、継手部における屈曲角度θ
が第3図の1点鎖線状態に至るまでの範囲
(−θ1≦θ≦θ1)にあるときは継手機能が
十分に発揮され回転モーメントもわずかで
ある。しかしこの状態を超えると管体(受
口の先端及びこれと当接する挿口)に応力
を発生し、屈曲に要する回転モーメントも
急激に増大していく。この間の回転モーメ
ント変化は多次関数的に表わされるべきで
あるが、解析の便を考慮すれば第4図に示
した様な変位点(安全率を見込んだ許容屈
曲角)を含む非線形1次関数とすることが
推奨される。但し必要により2次又は3次
関数的に把握して解析することもできる。 伸縮特性 伸縮特性とは、継手部の軸心方向に作用
する外力とこれによる伸縮[抜ける方向へ
の伸び(プラス方向)と更に挿込まれる方
向への縮み(マイナス方向)]の関係によ
つて表わされるもので、一般に第5図の様
になつている。図では伸縮量(−A1)〜
(A1)の間が安全率を見込んだ伸縮許容範
囲ということになり、伸縮量(−A1)以
上に挿込もうとすれば過大な外力が必要で
あり管体に大きな応力が発生する。一方伸
縮量(A1)以上に伸ばそうとすればわず
かな外力で引抜かれることになり、更に伸
縮量(A2)を越えると所謂継手の離脱が
発生する。 (C) 地盤特性 一方地盤についてもその特性を承知してお
く必要があり、例えば次の様なものが挙げら
れる。 地盤ばね定数k1(Kgf/cm3) 非線型1次関数の屈曲点における管と土
との相対変位Δ1(cm) この状態は第6図の様に表わすことができ
縦軸に示した単位摩擦力τ(Kgf/cm2)とは、
土と土との摩擦力であつて土が互いに滑り始
めて崩れるときの力に相当する。そして図示
する如く管と土との相対変位Δ(cm)が一定
の値(Δ1)に達する迄は単位摩擦力との間
にばね定数k1で表わされる比例関係を有する
が、Δ1に至つて土が崩れ始めた後のばね定
数k2は上記ばね定数k1の約1/100になること
が知られている。 [] 次に行なうことは配管予定地盤における不
等沈下量の想定であり、テルツアギー
(Terzagy)の理論[参照:株式会社建設産業
調査会発行、土木・建築技術者のための最新軟
弱地盤ハンドブツク第134〜136頁(昭和57年1
月10日)]に従つて解析することができる。 [] さらに管接合部における許容屈折角及び許
容伸縮量並びに管体の許容応力の設定を行なう
が、ここでは前述の管体特性や継手特性(屈曲
特性や伸縮特性等)について検討資料乃至検討
結果が利用される。 [] こうして与えられた管体特性、継手特性、
地盤特性及び想定沈下量を入力して、種々の形
状及び管長さの管体を用いた管路について応答
解析を行う。 [] 応力継手屈曲角等のすべての応答値が夫々
の許容値を満足する値を求めてこれを管路の許
容沈下量とする。 尚解析手法の大略について説明すると下記の如
くである。 (a) 解析モデル 次のようなモデルを解析の対象とする。 (1) 埋設管路を弾性床上のはりと見なす。 (2) 地盤の運動は強制変形としてのみ作用し、
その地点での地盤変位が地盤ばねを介して管
路に作用する。 (3) 埋設管路と地盤との間のばねは非線形特性
を持つ。すなわち、管軸方向では管路と土の
間に働く摩擦力により管路は地盤の働きに追
随するが、最大摩擦力を越えると、管路と土
の間にすべりが生じ、管軸直角方向では、あ
る値を超えると土が弾性状態から塑性状態に
なるものと考える。いずれの方向のばねにつ
いても完全弾塑性型の非線形特性を持つもの
とする。 (4) 埋設管路は継手を持つものを対象とし、伸
縮ばね、回転ばねによつて継手で管体が連結
されており、継手位置では管軸方向について
は軸力を伝え、管軸直角方向については、せ
ん断力を伝える。また、曲げモーメントは回
転ばねを介して伝えられる。また、継手のば
ねは、継手特性に応じた非線形特性を持つ。
なお、継手位置での断面力を連続と見なすこ
とによつて、継手のない溶接などの解析も可
能となることはいうまでもない。 (5) 管体は変形後も弾性範囲内にある。 第7図に解析モデル図を示している。 (b) 管体の釣合方程式 上記の仮定にもとづいて、弾性域における埋
設管路の基礎方程式は次に示す2式となる。 管軸方向(軸ひずみ) −EAd2U/dx2+ksx・U=ksx・Usx ……(1) 管軸直角方向(曲げひずみ) EId4V/dx4+ksy・V=ksy・Vsy ……(2) ここに、U:管の管軸方向変位(cm)、V:管
の管軸直角方向変位(cm)、E:管体の弾性定数
(Kg/cm2)、I:管体の断面二次モーメント(cm
)、A:管体の断面積(cm2) ksx:地盤の管軸方向単位長さ当りのばね係数
(Kg/cm2) ksy:地盤の管軸直角方向単位長さ当りのばね
係数(Kg/cm2) Usx:管軸方向の地盤変化(cm) Vsy:管軸直角方向の地盤変化(cm) (c) 継手の釣合方程式 埋設管路の継手部の釣合いを考える。埋設管
路は継手において軸方向ばね(ばね定数kT)及
び回転ばね(ばね定数kR)により連結されてい
る。継手部における応力及び変形量の釣合いを
第8図に示す。第8図より継手における連続条
件は次式となる。 U V ΦL k+1 =U V ΦR k +−N/kT −M/kRR k ……(3) N M QR k =N M QL k+1 ……(4) ここに、U、V、Φ、N、M、Qは、それぞ
れ管体の軸方向、軸直角方向変位、たわみ角、
軸力、モーメント、せん断力を表わしている。 (d) 伝達マトリツクス方法 式(1)、(2)より管体lkの両端における状態量ベ
クトルVL k、VR kの間には次式が成立する。 VR k=Fk・VL k ……(5) また、式(3)、(4)より継手k点の左右の状態量
ベクトルの間に次式が成立する。 VL k+1=Pk・VR k ……(6) 式(5)、(6)でFk、Pkは格間及び格点伝達マト
リツクスと呼ばれる。 式(6)に式(5)を代入すると次式が得られる。 VL k+1=Pk・Fk・VL k ……(7) 式(7)は、はりlk左側の状態量ベクトルVが、
格間伝達マトリツクスFkと格点伝達マトリツ
クスPkとの前掛けによつて、はりlk=l1、l2
…について、格間伝達マトリツクスと格点伝達
マトリツクスが求められるから、式(7)に示す伝
達計算を、はりl1より順番に繰り返し行うと、
連続ばりの左端の状態量ベクトルは、右端まで
伝達される。すなわち、 VR N=FN・PN-1…P2・F2・P1・F1・VL 1 ……(8) 式(8)は、連続ばりの両端の物理量のみに関係
する線形方程式である。この式(8)に両端の境界
条件を代入することにより次式を得る。 R′・FN・PN-1・FN-1…P1・F1・R・AL 1=0
……(9) 式(9)を解くと、左端の未知量が求められ、ふ
たたび、はりl1より格間伝達式及び格点伝達式
を繰り返し用いて、すべての径間のはりの状態
量ベクトルが計算される。 ところで、伝達マトリツクス法は、前述のよ
うにマトリツクスの掛算を繰り返す。したがつ
て数値計算においてけた落ちが生じることが予
想される。 したがつて、このけた落ちの問題を避けるた
め、任意の基準定数を用いて、伝達マトリツク
スの数値要素を無次元化し、1に近い数値に変
換する必要がある。 なお、式(9)を荷重増分法によつて解析するこ
とにより、地盤ばね、継手ばねの非線形特性が
導入されている。 上記解析に従えば、設定したある形状及び管長
さの管路について、継手屈曲角(θ)と沈下量
(δ)の関係[第9図a]、継手伸縮量(Δ)と沈
下量(δ)の関係[第9図b]並びに管体に発生
する最大応力(σ)と沈下量の関係(第10図)
が夫々図示する如く得られる。 これらの図より、継手屈曲角がその許容屈曲角
に達した際の沈下量(以下許容沈下量δB criとい
う)、継手伸縮量がその許容伸縮量に達した際の
沈下量(以下許容沈下量δE criという)及び管体に
発生する応力がその最大応力に達した際の(以下
許容沈下量δS criという)が得られる。このような
計算を管長さを種々変化させて行い、許容沈下量
が最大となるような管長さを求める。たとえば、
第2番管以降の管長さを固定して第1番管の長さ
を種々変化させると第1番管の管長さと許容沈下
量の関係が第11図の如く得られる。 管路の許容沈下量はδB cri、δE criとδS criのうち最
も低
い値に律せられるとの考え方から、第11図にお
いて第1番管の最適長さはlopである。 同様にして第2番管の長さを任意の値に固定
し、夫々の第2番管長さのものについて第1番管
の長さを種々変化させると、たとえば後記第20
図に示す如く許容沈下量δB cri、δE cri、δS criに適合
し得
る第1番管長さ許容範囲を求めることができる。 また上記の説明では第2番管の管長を固定して
第1番管長さの許容範囲を求めたが、第1番管長
さを任意の値に固定し、第1番管長さのものにつ
いて第2番管長さを種々変化させると、たとえば
第20図における横軸を固定された第1番管長
さ、縦軸を第2番管長さとするグラフとして、同
様に第2番管長さの許容範囲が求められる。 即ち本発明では、第1番管または第2番管の長
さを固定したときの第2番管または第1番管の長
さの許容範囲を上記の用にして求めた後、第1番
管及び/又は第2番管の有効長を前記許容範囲の
中から選定するものである。 [発明の効果] 本発明は上記の様に構成されているので、不等
沈下を生じる地盤における配管設計を適切に行な
うことができ、安全で効率的な配管形成に寄与す
ることができた。 [実施例] 以下の実施例の説明において、特に示さない限
り、全ての計算は電子計算機(図示せず)によつ
て行うものとする。 第12図に示す管路において、管路の許容沈下
量が想定される地盤沈下量以上となるように、第
1番管長さl1を決定するものとする。尚、本例で
は第2番管以降の管長さを2mに固定した。又想
定沈下量については15cmと仮定する。 応答解析に必要な入力データとしての管体特性
を第1表に、継手特性を第13図に示す。地盤特
性としての地盤ばね定数及び地盤ばねの滑り限界
変位については、本発明者らの実験結果により、
土被りを1.2mと設定し第14図のように定めた。
[Industrial Field of Application] The present invention relates to a piping design method for a buried conduit formed to be connected to a structure in the ground that is expected to subside. [Prior art] The ground in which the pipe is buried is either (1) extremely strong and there is no need to consider subsidence under normal conditions, or (2) contrary to the above, it is considered to be highly susceptible to subsidence. There may be cases where In the latter case, ground improvement work or reinforcement piles may be driven in advance of piping, but these measures may not completely eliminate the risk of subsidence, and if no special measures are taken. It is often piped. Therefore, when installing piping in such subsidence-prone ground, it is necessary to design highly safe pipelines by assuming that ground subsidence after piping is unavoidable, regardless of whether the above-mentioned precautions are taken or not. It's coming. However, when we talk about ground subsidence, we can think of two types: uniform subsidence, in which the piping subsides entirely, and uneven subsidence, in which local subsidence occurs. However, in the former case of uniform settlement, there is no serious problem because the entire pipe is affected equally, and even in uneven settlement, the amount of subsidence when viewed in the length direction of the pipe changes gradually. If there is, there are few problems. In other words, a big problem with uneven settlement is when an unsettled part and a submerged part exist next to each other, and in general, various structures (buildings, etc.) and buried objects (manholes, etc.) become unsettled parts. , the piping that is joined to these and further extended becomes the submerged part. By the way, the settlement situation in the uneven settlement section piping where the non-subsidence section and subsidence section are adjacent to each other is not fully understood, and common sense suggests that
It was thought that it would be something like the one shown in the figure. In the figure, M indicates a manhole, G indicates subsidence ground (hereinafter simply referred to as ground), and in order from the pipe directly connected to manhole M, the first pipe 1, the second pipe 2, and the third pipe
Number pipe 3, . . . will be referred to as number N pipe N. As for the joints that connect the pipes, use No. 1 joint 1.
j, the second joint 2j, the third joint 3j,..., and the N-th joint Nj. The joint R between the manhole M and the first pipe 1 is completely fixed (non-bending and non-stretchable), but the other joints 1j, 2j, 3j,...Nj are all flexible and non-stretchable. shall have a gender. Therefore, under the conventionally imagined uneven settlement situation as shown in FIG. It is assumed that the entire structure is bent, and the more pipes that participate in this bending (3 pipes No. 2 to 4 in Figure 2), the more stable the uneven settlement situation is. It was thought that In other words, it has been common practice to use tubes with short effective lengths for use in such areas, and to connect many tubes to accommodate the above-mentioned flexure. However, according to the research conducted by the present inventors, it has become clear that there is a need to be concerned about the occurrence of breakaway accidents at the first joint 1j and the second joint 2j in the event of actual uneven settlement. [Problems to be Solved by the Invention] The present applicant has been conducting various researches for some time from the viewpoint of forming pipe joints with a large allowable limit for bending angles, and has developed a multi-stage structure with wide internal pockets for synthetic resin pipe sockets. A version with an expanded diameter is being developed (see Figure 3).
In a conduit in which synthetic resin pipes with single-sided sockets and one-sided sockets with multi-stage enlarged diameter sockets are joined together, the bending angle at the joint can be made large, as shown by the dashed-dotted line in Fig. 3, so that the ground It is expected that it will be highly adaptable to the above-mentioned uneven subsidence caused by weak soils and earthquakes. Therefore, when we investigated the behavior against uneven settlement using a pipe body with a joint with a large allowable bending angle as described above for a pipe directly connected to a manhole where there is a strong risk of uneven settlement, we found the following. Divided. That is, in actual uneven settlement, instead of the situation shown in FIG. 2, where each pipe gradually sinks as it moves away from the manhole M, the second pipe 2 as shown in FIG. There was a tendency for the pipe body beyond No. 3 pipe 3 to maintain a nearly concentric state and eventually undergo equal subsidence. Under such subsidence conditions, the bending angle at the first joint 1j and the second joint 2j becomes extremely large, and the inlet pipe first bends over the open end of the socket pipe as shown by the dashed line in Figure 3. The tube comes into contact with the edge, and the tube continues to bend while being deformed to the extent permitted by the tube characteristics (characteristics of the tube material, diameter, wall thickness, etc.). When such a large bending angle is formed, (1) stress increases at the pipe joint, (2) compression of the packing becomes uneven in the circumferential direction, leading to the risk of water leakage, and (3) power pipes and When inserting cables such as telegraph tubes, there are inconveniences such as reduced insertion workability, etc.
Eventually, this will lead to the joint becoming detached or damaged. That is, it was confirmed that the limit of the pipe as a whole that can withstand uneven settlement is controlled by the joint maintenance limit of the first joint 1j and the second joint 2j. Furthermore, under the condition of uneven settlement as shown in Fig. 1, a situation occurs in which the No. 1 pipe 1 shows significant flexure and responds to the subsidence of the No. 1 joint 1j, causing damage at the joint. It was also confirmed that the root joint R of No. 1 pipe 1 may receive excessive stress and break before an accident occurs. Therefore, we investigated the factors that influence the above-mentioned joint maintenance limit, but since there are restrictions on the allowable bending angle of the joint itself due to the characteristics of the pipe itself or the shape of the joint, no improvement beyond a certain level can be expected. . It was also thought that damage at the joint R with a structure etc. would be greatly influenced by factors other than the allowable bending angle. Therefore, it is thought that it is necessary to deal with this by adding design or improvement to factors other than those mentioned above, and as a result of various studies, the present invention has been completed. In other words, in the ground where uneven settlement is likely to occur, the joints of each pipe maintain the joint function as described above under the assumed amount of subsidence, do not dislodge, and prevent damage to the pipe. In order to design a conduit that can prevent damage (mainly damage at joints with structures, etc.), we conducted research to provide a method that can contribute to this, and arrived at the present invention. [Means for Solving the Problems] The present invention that achieves the above object includes
A buried pipe is constructed by permanently connecting the pipe, and sequentially connecting the pipes from No. 2, No. 3, etc. that are expected to sink relative to the structure to the No. 1 pipe. In forming the formation, in addition to calculating the expected amount of ground subsidence, we also calculate the pipe properties such as the shape and material of the pipe, the joint properties determined by the shape and packing of the joint, and the ground properties given as the ground spring constant. By conducting a response analysis of the pipe based on the above, we can calculate the stress generated in the pipe body that makes up the pipe and the bending at the joint when the length of the first pipe or the second pipe is fixed. Find the allowable range of the length of the second pipe or the first pipe such that the angle and the amount of expansion/contraction satisfy the respective tolerance values, and calculate the effective length of the first pipe and the second pipe from within the permissible range. The purpose of this project is to select and design optimal pipelines to prevent ground subsidence. [Operation] The design procedure of the present invention will be explained below based on FIG. 19. Note that the following description includes related items in addition to the above-mentioned essential constituent elements of the present invention. [] First, we will obtain input data that will be the basis for various analyzes when designing buried pipelines in unevenly settled ground. These basic data can be roughly divided into (A) pipe characteristics, (B) joint characteristics, and (C)
It can be classified into ground characteristics. (A) Pipe characteristics When uneven settlement occurs, external forces are applied to buried pipes from various directions, so it is necessary to be aware of the following characteristic values. Shape: Outer diameter, wall thickness, length, etc. Material: Young's modulus, Poisson's ratio, etc. (B) Joint properties Characteristics determined by the shape of the joint and the characteristics of the attached packing, i.e., bending properties, elastic properties, etc. can be obtained. It is essential. Bending characteristics Bending characteristics are expressed by the relationship between the bending angle of the joint and the rotational moment acting in the bending direction, and are generally as shown in Figure 4, where the bending angle θ at the joint is
When is in the range up to the one-dot chain line state in FIG. 3 (-θ 1 ≦θ≦θ 1 ), the joint function is fully exerted and the rotational moment is small. However, when this state is exceeded, stress is generated in the tube body (the tip of the socket and the socket that comes into contact with it), and the rotational moment required for bending increases rapidly. The change in rotational moment during this period should be expressed as a multidimensional function, but for convenience of analysis, it can be expressed as a nonlinear first-order function including a displacement point (allowable bending angle taking into account the safety factor) as shown in Figure 4. It is recommended to use a function. However, if necessary, it can also be grasped and analyzed as a quadratic or cubic function. Stretching characteristics Stretching characteristics are determined by the relationship between the external force acting in the axial direction of the joint and the resulting expansion and contraction [elongation in the direction of withdrawal (plus direction) and contraction in the direction of insertion (minus direction)]. It is generally shown as shown in Figure 5. In the figure, the amount of expansion and contraction (−A 1 ) ~
The range between (A 1 ) is the allowable expansion and contraction range that takes into account the safety factor, and if you try to insert it beyond the amount of expansion and contraction (-A 1 ), an excessive external force will be required and large stress will occur in the pipe body. . On the other hand, if an attempt is made to extend it beyond the amount of expansion/contraction (A 1 ), it will be pulled out by a slight external force, and if it further exceeds the amount of expansion/contraction (A 2 ), so-called detachment of the joint will occur. (C) Ground characteristics On the other hand, it is also necessary to be aware of the characteristics of the ground, such as the following. Ground spring constant k 1 (Kgf/cm 3 ) Relative displacement between the pipe and the soil at the bending point of the nonlinear linear function Δ 1 (cm) This state can be expressed as shown in Figure 6, and is shown on the vertical axis. What is unit friction force τ (Kgf/cm 2 )?
This is the frictional force between soil and soil, and corresponds to the force when the soil begins to slide against each other and collapse. As shown in the figure, until the relative displacement Δ (cm) between the pipe and the soil reaches a certain value (Δ 1 ), there is a proportional relationship between the unit frictional force and the spring constant k 1 , but when Δ 1 It is known that the spring constant k 2 after the soil begins to collapse is approximately 1/100 of the above spring constant k 1 . [] The next step is to assume the amount of uneven settlement in the ground where the piping is planned, based on Terzagy's theory [Reference: Latest Soft Ground Handbook for Civil Engineers and Architectural Engineers, published by Construction Industry Research Group Co., Ltd. pp. 134-136 (1981)
(10th day of the month)]. [] Furthermore, we will set the allowable bending angle and allowable amount of expansion/contraction at the pipe joint, as well as the allowable stress of the pipe body, but here we will discuss the above-mentioned pipe body characteristics and joint characteristics (bending characteristics, expansion/contraction characteristics, etc.) using study materials and study results. is used. [] The pipe properties and joint properties given in this way,
By inputting ground characteristics and estimated settlement amounts, response analysis is performed for pipelines using pipes of various shapes and lengths. [] Find a value that satisfies each allowable value for all response values, such as stress joint bending angles, and use this as the allowable amount of settlement of the pipeline. The outline of the analysis method is as follows. (a) Analysis model The following model is the subject of analysis. (1) Consider the buried pipe as a beam on an elastic floor. (2) Ground motion acts only as forced deformation;
Ground displacement at that point acts on the pipe via the ground spring. (3) The spring between the buried pipe and the ground has nonlinear characteristics. In other words, in the direction of the pipe axis, the pipe follows the movement of the ground due to the frictional force acting between the pipe and the soil, but when the maximum frictional force is exceeded, slippage occurs between the pipe and the soil, and the pipe moves in the direction perpendicular to the pipe axis. Now, consider that when a certain value is exceeded, the soil changes from an elastic state to a plastic state. It is assumed that the spring in any direction has completely elastic-plastic nonlinear characteristics. (4) Buried pipelines are intended for those with joints, and the pipe bodies are connected by joints using expansion and contraction springs and rotation springs. At the joint position, axial force is transmitted in the direction of the pipe axis, and axial force is transmitted in the direction perpendicular to the pipe axis. For convey the shear force. The bending moment is also transmitted via the rotation spring. Furthermore, the spring of the joint has nonlinear characteristics depending on the characteristics of the joint.
It goes without saying that by considering the cross-sectional force at the joint position as continuous, it is possible to analyze welding without a joint. (5) The tube remains within its elastic range even after deformation. Figure 7 shows an analytical model diagram. (b) Balance equation for pipes Based on the above assumptions, the basic equations for buried pipes in the elastic region are the following two equations. Tube axis direction (axial strain) -EAd 2 U/dx 2 +k sx・U=k sx・U sx ……(1) Tube axis perpendicular direction (bending strain) EId 4 V/dx 4 +k sy・V=k sy・V sy ...(2) Where, U: Displacement of the tube in the tube axis direction (cm), V: Displacement of the tube in the direction perpendicular to the tube axis (cm), E: Elastic constant of the tube body (Kg/cm 2 ), I: Moment of inertia of the pipe body (cm
4 ), A: Cross-sectional area of the pipe (cm 2 ) k sx : Spring coefficient per unit length of the ground in the direction of the pipe axis (Kg/cm 2 ) k sy : Spring per unit length of the ground in the direction perpendicular to the pipe axis Coefficient (Kg/cm 2 ) U sx : Ground change in the direction of the pipe axis (cm) V sy : Ground change in the direction perpendicular to the pipe axis (cm) (c) Balance equation of joints Consider the balance of joints of buried pipes . The buried pipes are connected at the joint by an axial spring (spring constant k T ) and a rotational spring (spring constant k R ). Figure 8 shows the balance between stress and deformation in the joint. From FIG. 8, the continuity condition at the joint is as follows. U V Φ L k+1 = U V Φ R k +−N/k T −M/k R 0 R k ……(3) N M Q R k =N M Q L k+1 ……(4) Here, U, V, Φ, N, M, and Q are the axial direction, axis-perpendicular direction displacement, and deflection angle of the tube, respectively.
It represents axial force, moment, and shear force. (d) Transfer matrix method From equations (1) and (2), the following equation holds between the state quantity vectors V L k and V R k at both ends of the tube l k . V R k =F k ·V L k (5) Furthermore, from equations (3) and (4), the following equation holds true between the state quantity vectors on the left and right sides of joint k point. V L k+1 =P k ·V R k (6) In equations (5) and (6), F k and P k are called case and case transfer matrices. Substituting equation (5) into equation (6) yields the following equation. V L k+1 = P k・F k・V L k ……(7) Equation (7) shows that the state quantity vector V on the left side of beam l k is
By apron of case transfer matrix F k and case transfer matrix P k , beams l k = l 1 , l 2 ...
Since the case transfer matrix and the case transfer matrix are found for ..., repeating the transfer calculation shown in equation (7) in order from beam l 1 , we get
The state quantity vector at the left end of the continuous beam is transmitted to the right end. In other words, V R N =F N・P N-1 …P 2・F 2・P 1・F 1・V L 1 …(8) Equation (8) is related only to the physical quantities at both ends of the continuous beam. It is a linear equation. By substituting the boundary conditions at both ends into this equation (8), the following equation is obtained. R′・F N・P N-1・F N-1 …P 1・F 1・R・A L 1 = 0
...(9) By solving Equation (9), the unknown quantity at the left end is found, and by repeatedly using the case transfer formula and case transfer formula from beam l 1 , the state quantities of the beams in all spans are calculated. A vector is calculated. By the way, the transfer matrix method repeats matrix multiplication as described above. Therefore, it is expected that a loss of digits will occur in numerical calculations. Therefore, in order to avoid this problem of dropped digits, it is necessary to make the numerical elements of the transfer matrix dimensionless and convert them into numerical values close to 1 using an arbitrary reference constant. By analyzing equation (9) using the load increment method, nonlinear characteristics of the ground spring and joint spring are introduced. According to the above analysis, for a pipeline with a certain shape and pipe length, the relationship between the joint bending angle (θ) and the amount of settlement (δ) [Figure 9a], the amount of expansion and contraction of the joint (Δ) and the amount of settlement (δ) ) [Figure 9b] and the relationship between the maximum stress (σ) generated in the pipe body and the amount of settlement (Figure 10)
are obtained as shown in the figure. From these figures, the amount of settlement when the joint bending angle reaches its allowable bending angle (hereinafter referred to as allowable settlement amount δ B cri ), and the amount of settlement when the amount of joint expansion and contraction reaches its allowable amount of expansion and contraction (hereinafter referred to as allowable settlement amount) (referred to as δ E cri ) and the amount of settlement when the stress generated in the tube reaches its maximum stress (hereinafter referred to as allowable amount of settlement δ S cri ). Such calculations are performed by varying the pipe length to determine the pipe length that maximizes the allowable sinkage amount. for example,
If the lengths of the second and subsequent pipes are fixed and the length of the first pipe is varied, the relationship between the length of the first pipe and the allowable settlement amount is obtained as shown in FIG. 11. Based on the idea that the allowable sinkage amount of the pipe is controlled by the lowest value among δ B cri , δ E cri and δ S cri , the optimum length of the first pipe in FIG. 11 is lop. Similarly, if the length of the second pipe is fixed to an arbitrary value and the length of the first pipe is varied for each of the second pipe lengths, for example,
As shown in the figure, the allowable range of the length of the first pipe that can be adapted to the allowable settlement amounts δ B cri , δ E cri , and δ S cri can be determined. In addition, in the above explanation, the length of the second pipe was fixed and the allowable range of the length of the first pipe was determined, but the length of the first pipe was fixed to an arbitrary value, and the length of the first pipe was When the length of the second pipe is varied, for example, in a graph in which the horizontal axis is the fixed length of the first pipe and the vertical axis is the fixed length of the second pipe in Fig. 20, the allowable range of the length of the second pipe is similarly shown. Desired. That is, in the present invention, after determining the allowable range of the length of the second pipe or the first pipe when the length of the first pipe or the second pipe is fixed, The effective length of the pipe and/or the second pipe is selected from within the above-mentioned allowable range. [Effects of the Invention] Since the present invention is configured as described above, it is possible to appropriately design piping in the ground where uneven settlement occurs, contributing to safe and efficient piping formation. [Example] In the description of the following examples, all calculations are performed by an electronic computer (not shown) unless otherwise specified. In the pipeline shown in FIG. 12, the length l1 of the first pipe shall be determined so that the allowable amount of subsidence of the conduit is greater than or equal to the expected amount of ground subsidence. In this example, the length of the pipes after the second pipe was fixed at 2 m. Also, the estimated amount of subsidence is assumed to be 15cm. Table 1 shows the pipe characteristics as input data necessary for response analysis, and Fig. 13 shows the joint characteristics. Based on the experimental results of the present inventors, the ground spring constant and the slip limit displacement of the ground spring as ground characteristics are as follows.
The soil cover was set at 1.2m as shown in Figure 14.

【表】 応答解析結果より得られた第1番管長さ:l1
許容沈下量δB cri、δS criの関係を第15図に示す。
尚、継手伸縮量については応答値が許容値を大き
く下まわり、十分安全であると判断された為本例
では省略した。本図よりl1を50〜70cmとすること
で、管路の許容沈下量が想定される地盤沈下量で
ある15cm以上となるような管路が形成されるとの
結果を得た。 上記例においては第2番管長さを2mに固定し
たときの例を示しているが、第2番管長さを1
m、3m、4mと固定化する長さを変更したとき
の第1番管の有効長は第20図に示す通りであ
り、第2番管長さに応じた第1番管長さの許容範
囲が求められる。また同様にして第1番管長さを
任意の長さに固定すれば、第2番管長さの許容範
囲を求めることができる。 しかしながら更に大きな地盤沈下が想定される
場合がある。例えば想定沈下量が30cmである場
合、第15図に示すように、第1番管長さl1を工
夫することによる地盤沈下対策は不可能である。
本発明者等は耐応力性の優れた管体として第16
図に示す様な異肉厚管を開発している。本異肉厚
管について、上述と同様の解析により得た第1番
管長さl1と許容沈下量δB cri、δS criの関係を第18図
に示す。本図よりl1を95〜100cmとすることで管
路の許容沈下量を想定される地盤沈下量30cm以上
となるような管路が形成されるとの結果を得た。
尚本管の管体特性を第2表に示す。
[Table] Figure 15 shows the relationship between the length of the first pipe: l 1 and the allowable settlement amounts δ B cri and δ S cri obtained from the response analysis results.
The amount of joint expansion and contraction was omitted in this example because the response value was well below the allowable value and it was judged to be sufficiently safe. From this figure, we obtained the result that by setting l 1 to 50 to 70 cm, a pipe can be formed in which the allowable amount of subsidence of the pipe is 15 cm or more, which is the expected amount of ground subsidence. In the above example, the length of the second pipe is fixed at 2 m, but the length of the second pipe is set to 1 m.
The effective length of the first pipe when the fixed length is changed to m, 3 m, and 4 m is as shown in Figure 20, and the allowable range of the first pipe length according to the second pipe length is Desired. Similarly, by fixing the length of the first pipe to an arbitrary length, the allowable range of the length of the second pipe can be determined. However, even greater ground subsidence may be expected. For example, if the expected amount of subsidence is 30 cm, as shown in Figure 15, it is impossible to counter ground subsidence by modifying the length of the first pipe l1 .
The present inventors have developed the 16th tube body with excellent stress resistance.
We are developing pipes with different wall thicknesses as shown in the figure. FIG. 18 shows the relationship between the first pipe length l 1 and the allowable settlement amounts δ B cri and δ S cri for this pipe with different wall thicknesses, obtained by the same analysis as described above. From this figure, we obtained the result that by setting l1 to 95 to 100 cm, a conduit can be formed in which the allowable amount of ground subsidence for the conduit is at least 30 cm.
The characteristics of the main pipe body are shown in Table 2.

【表】 上述の様な異肉厚管を第1番管として用いたと
きには、第2番管に最大応力の発生を見る場合も
ある。しかるに最大応力は構造物等に固定された
第1番管に発生させるのが配管の安全面から見て
得策であるのでこの場合、第17図に示す様に中
太の異肉厚管を第2番管として採用し、第1、2
番管共に異肉厚管とすることが推奨される。
[Table] When a pipe of different wall thickness as described above is used as the first pipe, the maximum stress may be observed in the second pipe. However, from the perspective of piping safety, it is best to generate the maximum stress in the first pipe fixed to a structure, etc. In this case, as shown in Figure 17, it is better to generate the maximum stress in the first pipe with a different wall thickness. Adopted as the second pipe, the first and second
It is recommended that both pipes be of different wall thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明者等が明らかにし得た不等沈下
状況説明図、第2図は従来考えられていた不等沈
下状況説明図、第3図は本発明者等の開発に係る
許容屈曲角の大きい管体を示す説明図、第4,5
図は継手の屈曲・伸縮特性を示すグラフ、第6図
は地盤特性を示すグラフ、第7,8図は弾性床上
のはり理論による解析モデル図、第9,10図は
沈下量と管路応答値との対応図、第11図は許容
沈下量と管路長さの関係を示すグラフ、第12図
は実施例で採用した管路を示す概略説明図、第1
3図は実施例における応答解析で用いた継手特性
を示すグラフ、第14図は実施例における応答解
析で用いた地盤特性を示すグラフ、第15,1
7,18図は実施例における応答解析で得られた
許容沈下量と第1番管長さの関係を示すグラフ、
第16図は異肉厚管の一部破断側面図である。第
19図は本発明に係る設計手順を示す説明図、第
20図は本発明実施例における第2番管長さと第
1番管の有効長の関係を示すグラフである。
Figure 1 is an explanatory diagram of the unequal settlement situation that the inventors were able to clarify, Figure 2 is an explanatory diagram of the unequal settlement situation that was conventionally considered, and Figure 3 is the allowable bending according to the development of the inventors. Explanatory diagram showing a pipe body with a large angle, 4th and 5th
The figure is a graph showing the bending and expansion characteristics of the joint, Figure 6 is a graph showing the ground characteristics, Figures 7 and 8 are analysis model diagrams based on beam theory on an elastic floor, and Figures 9 and 10 are settlement amount and pipe response. Fig. 11 is a graph showing the relationship between allowable settlement amount and pipe length, Fig. 12 is a schematic explanatory diagram showing the pipe line adopted in the example, Fig. 1
Figure 3 is a graph showing the joint characteristics used in the response analysis in the example, Figure 14 is a graph showing the ground characteristics used in the response analysis in the example, and Figure 15.
Figures 7 and 18 are graphs showing the relationship between the allowable settlement amount and the length of the first pipe obtained by the response analysis in the example,
FIG. 16 is a partially cutaway side view of a tube of different wall thickness. FIG. 19 is an explanatory diagram showing the design procedure according to the present invention, and FIG. 20 is a graph showing the relationship between the length of the second pipe and the effective length of the first pipe in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 構造物に第1番管を固定的に接続し、該構造
物に対し相対的に沈下することが予想される第2
番、第3番以降の管体を上記第1番管に順次接続
して埋設管路を形成するにあたり、 上記地盤の想定沈下量を求めると共に、管体の
形状及び材質等の管体特性と、継手部の形状及び
パツキン等により定まる継手特性と、地盤ばね定
数として与えられる地盤特性をもとにして管路の
応答解析を行なうことにより、第1番管または第
2番管の長さを固定したときの、管路を構成する
該管体に発生する応力と継手部における屈曲角及
び伸縮量がそれぞれの許容値を満足する様な第2
番管または第1番管の有効長の許容範囲を求め、
当該範囲の中から第1番管及び第2番管の有効長
を選定することを特徴とする地盤沈下に対する最
適管路を設計することを特徴とする埋設管路の配
管設計方法。
[Claims] 1. A first pipe is fixedly connected to a structure, and a second pipe is fixedly connected to a structure, and a second pipe is expected to sink relative to the structure.
When forming a buried pipeline by sequentially connecting the pipes from No. 3 to the No. 1 pipe, we calculate the expected amount of subsidence of the ground, and also determine the pipe characteristics such as the shape and material of the pipe. The length of the first or second pipe can be determined by analyzing the response of the pipe based on the joint characteristics determined by the joint shape and packing, and the ground characteristics given as the ground spring constant. The second pipe is such that the stress generated in the pipe body constituting the pipe line and the bending angle and expansion/contraction amount at the joint part satisfy the respective allowable values when fixed.
Find the allowable range of the effective length of the first pipe or the first pipe,
A piping design method for a buried pipeline, characterized by designing an optimal pipeline for ground subsidence, characterized by selecting effective lengths of the first pipe and the second pipe from the range.
JP60056596A 1985-03-20 1985-03-20 Method of designing piping of sinking type buried duct Granted JPS61215879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056596A JPS61215879A (en) 1985-03-20 1985-03-20 Method of designing piping of sinking type buried duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056596A JPS61215879A (en) 1985-03-20 1985-03-20 Method of designing piping of sinking type buried duct

Publications (2)

Publication Number Publication Date
JPS61215879A JPS61215879A (en) 1986-09-25
JPH0468512B2 true JPH0468512B2 (en) 1992-11-02

Family

ID=13031580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056596A Granted JPS61215879A (en) 1985-03-20 1985-03-20 Method of designing piping of sinking type buried duct

Country Status (1)

Country Link
JP (1) JPS61215879A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378113B2 (en) * 2009-08-28 2013-12-25 東京瓦斯株式会社 Stress evaluation method and stress evaluation apparatus for piping structure
JP6570861B2 (en) * 2015-04-08 2019-09-04 株式会社クボタ Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline

Also Published As

Publication number Publication date
JPS61215879A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
Katona A simple contact–friction interface element with applications to buried culverts
Shen et al. Ground movement analysis of earth support system
Lim et al. Stiffness prediction for bolted moment-connections between cold-formed steel members
Detournay et al. Design charts for a deep circular tunnel under non-uniform loading
Lukassen et al. Tension-bending analysis of flexible pipe by a repeated unit cell finite element model
Pi et al. Lateral buckling strengths of cold-formed channel section beams
JPH0468512B2 (en)
KR100752618B1 (en) H shaped steel beam and wall using the same
US4171176A (en) Flexible bar reinforced concrete pile and method of construction
Dareing et al. Marine pipeline analysis based on Newton’s method with an arctic application
Prevost et al. Basics of flexible pipe structural design
Newman Finite element analysis of coiled tubing forces
Suleiman et al. Analysis of deeply buried flexible pipes
Ibrahim et al. Nonlinear analysis of simply supported composite steel-concrete beam
Fertis et al. Equivalent systems for inelastic analysis of prismatic and nonprismatic members
Miyazaki et al. Effect of tension on collapse performance of flexible pipes
Zarghamee et al. Thrust restraint of buried pipelines
Wu et al. Study on the failure mechanism of flexible pipes under large torsion considering the layer interaction
Sohal et al. Large bending of pipes
JP3644981B2 (en) Precast joint groove construction method
Katona CANDE: a versatile soil—structure design and analysis computer program
Miura et al. The effects of liquefaction-induced lateral spreading on pile foundations
Makhutov et al. Deformation of a trunk pipeline under the effect of a seismic shift
Sehlström et al. Should Torroja’s prestressed concrete Alloz aqueduct be thought of as a beam or a shell?
Zarghamee Design of concrete pressure pipelines for thrust restraint using AWWA manual M9

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term