JPH0468312B2 - - Google Patents

Info

Publication number
JPH0468312B2
JPH0468312B2 JP3076183A JP3076183A JPH0468312B2 JP H0468312 B2 JPH0468312 B2 JP H0468312B2 JP 3076183 A JP3076183 A JP 3076183A JP 3076183 A JP3076183 A JP 3076183A JP H0468312 B2 JPH0468312 B2 JP H0468312B2
Authority
JP
Japan
Prior art keywords
polynuclear
group
ether
phenol
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3076183A
Other languages
Japanese (ja)
Other versions
JPS59157114A (en
Inventor
Shigeru Katayama
Takayuki Nakano
Nobuyuki Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP3076183A priority Critical patent/JPS59157114A/en
Priority to US06/583,636 priority patent/US4614826A/en
Priority to EP84301295A priority patent/EP0117759B1/en
Priority to DE8484301295T priority patent/DE3466528D1/en
Publication of JPS59157114A publication Critical patent/JPS59157114A/en
Publication of JPH0468312B2 publication Critical patent/JPH0468312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多核多価フエノール類のポリグリシ
ジルエーテルからなる新規なポリエポキシ化合物
およびその製法に関する。さらに詳細には、ガラ
ス転移点、熱変形温度、耐熱弾性特性などの耐熱
特性に優れたエポキシ樹脂硬化型組成物を形成さ
せることができ、耐熱特性に優れたエポキシ樹脂
成形材料、印刷回路用積層板または先進複合材料
などとして利用できるポリエポキシ化合物を提供
するものである。 従来、エポキシ樹脂硬化型組成物に使用される
ポリエポキシ化合物として種々の化合物が提案さ
れている。最近、成形材料、ワニス、印刷回路用
積層板、先進複合材料(AcM)などの分野では、
ガラス転移点、熱変形温度、耐熱弾性特性などの
耐熱特性に優れたエポキシ樹脂硬化型組成物が要
望されている。従来、耐熱性のエポキシ樹脂硬化
型組成物を構成するポリエポキシ化合物として
は、エポキシ化フエノールノボラツク樹脂、エポ
キシ化オルトクレゾールノボラツク樹脂、1,
1,2,2−テトラキス(p−ヒドロキシフエニ
ル)エタンのテトラグリシジルエーテルなどの多
核フエノール類のポリグリシジルエーテル、キシ
リレンジアミンのテトラグリシジル化物、1,
3,5−トリアミノメチルベンゼンのヘキサグリ
シジル化物、イソシアヌル酸のトリグリシジル化
物などの芳香族ポリアミンのポリグリシジル化物
などが広く利用されている。しかし、これらのポ
リエポキシ化合物を用いたエポキシ樹脂硬化型組
成物は前述の耐熱特性はいずれも充分ではなく、
耐熱特性の要求される分野の用途に利用すること
ができず、さらに耐熱特性の優れたエポキシ樹脂
硬化型組成物の開発が要望されている。 本発明者らは、このような認識にもとづいて耐
熱特性に優れたエポキシ樹脂硬化型組成物の開発
を検討した結果、特定の構造を有する多核多価フ
エノール類のポリグリシジルエーテルからなるポ
リエポキシ化合物を使用すると前記目的を達成し
たエポキシ樹脂硬化型組成物が得られることを見
出し、本発明に到達した。本発明によれば、本発
明の多核多価フエノール類のポリグリジルエーテ
ルからなるポリエポキシ化合物は新規化合物であ
り、該ポリエポキシ化合物および硬化剤からなる
エポキシ樹脂硬化型組成物はガラス転移点、熱変
形温度、耐熱弾性特性などの耐熱特性にとくに優
れ、曲げ強度、アイゾツト衝撃強度、ロツクウエ
ル硬度などの機械的特性にも優れているという特
徴を有している。 本発明を概設すれば、本発明は、一般式[] [式中、R1およびR2は水素原子を示し、R3
水素原子、アルキル基、アリール基またはハロゲ
ン原子を示し、nは0ないし10の整数を示す。]
で表わされる多核多価フエノール類のポリグリシ
ジルエーテルからなるポリエポキシ化合物、を物
質発明の要旨とし、一般式[] [式中、R1およびR2は水素原子を示し、R3
水素原子、アルキル基、アリール基またはハロゲ
ン原子を示し、nは0ないし10の整数を示す。]
で表わされる多核多価フエノール類とエピハロヒ
ドリンとを触媒の存在下に反応させることによ
り、該多核多価フエノール類のハロヒドリンエー
テルを生成させた後、該多核多価フエノール類の
ハロヒドリンエーテルと水酸化アルカリとを反応
させることを特徴とする前記一般式[]で表わ
される多核多価フエノール類のポリグリシジルエ
ーテルからなるポリエポキシ化合物の製造方法、 を製法発明の要旨とするものである。 本発明のポリエポキシ化合物は、一般式[] [式中、R1およびR2は水素原子を示し、R3
水素原子、アルキル基、アリール基またはハロゲ
ン原子を示し、nは0ないし10の整数を示す。]
で表わされる多核多価フエノール類のポリグリシ
ジルエーテルからなるポリエポキシ化合物であ
る。前記一般式〔〕で表わされる多核多価フエ
ノール類を構成するジヒドロキシフエニル基は、
3,4−ジヒドロキシフエニル基、2,4−ジヒ
ドロキシフエニル基または2,5−ジヒドロキシ
フエニル基であり、ジヒドロキシフエニレン基は
3,4−ジヒドロキシ−1,6−フエニレン基、
2,4−ジヒドロキシ−1,5−フエニレン基ま
たは2,5−ジヒドロキシ−1,3−フエニレン
基であり、いずれもカテコール成分単位、レゾル
シン成分単位またはヒドロキノン成分単位に相当
する。1分子の多核多価フエノール類中にこれら
の2種以上のジヒドロキシフエニル基が含まれて
いても差しつかえない。また、前記一般式[]
で表わされる多核多価フエノール類を構成する
R1およびR2はそれぞれ水素原子であらり、R3
しては、水素原子、メチル基、エチル基、プロピ
ル基、ブチル基、ペンチル基、ヘキシル基、オク
チル基、ノニル基、デシル基、ドデシル基などの
アルキル基、フエニル基、トリル基、クロロフエ
ニル基などのアリール基、弗素、塩素、臭素など
のハロゲン原子を例示することができ、これらの
R3は水酸基に対してオルト位またはパラ位のい
ずれの位置に結合していても差しつかえない。ま
た、前記一般式〔〕で表わされる多核多価フエ
ノール類においてnは0ないし10を示す整数であ
り、これらの整数を示す2種以上の多核多価フエ
ノール類の混合物である場合もある。 本発明のポリエポキシ化合物を構成する一般式
〔〕で表わされる多核多価フエノール類として
さらに具体的には、次の一般式〔〕ないし一般
式〔〕で表わされる多核多価フエノール類を例
示することができる。 本発明のポリエポキシ化合物は前記一般式
〔〕で表わされる多核多価フエノール類のポリ
グリシジルエーテルであり、該多核多価フエノー
ル類のフエノール性水酸基の通常80%以上、好ま
しくは90%以上、とくに好ましくは95%以上がグ
リシジルエーテル化されたポリエポキシ化合物で
ある。ここで、グリシジルエーテルとは、該多核
多価フエノール類のフエノール性水酸基1個に対
して1分子のエピハロヒドリンが反応して形成さ
れる一般式〔〕 で表わされるグリシジルエーテルの他に、フエノ
ール性水酸基と生成したグリシジルエーテルとが
反応して形成される一般式〔〕 で表わされるグリシジルエーテルの混合物であつ
ても差しつかえない。本発明のポリエポキシ化合
物中の全グリシジル基に対する全部の前記2−ヒ
ドロキシオキシ−1,3−プロピレン基の含有モ
ル比は通常0.5以下、好ましくは0.1以下の範囲で
ある。本発明のポリエポキシ化合物のエポキシ当
量は通常122ないし500g/1当量、好ましくは
125ないし400g/1当量の範囲にあり、フエノー
ル性ヒドロキシル当量は通常1220g/1当量以
上、好ましくは2500g/1当量以上の範囲であ
る。 本発明のポリエポキシ化合物は、前記一般式
〔〕で表わされる多核多価フエノール類とエピ
ハロヒドリンとを触媒の存在下に反応させること
により、該多核多価フエノール類のハロヒドリン
エーテルを生成させた後、該多核多価フエノール
類のハロヒドリンエーテルと水酸化アルカリとを
反応させることにより製造される。本発明の方法
において使用されるエピハロヒドリンとして具体
的には、エピクロルヒドリン、エピブロモヒドリ
ン、エピヨードヒドリンなどを例示することがで
きる。該エピハロヒドリンの使用割合は前記多核
多価フエノール類のフエノール性水酸基1モルに
対して通常2ないし15モル、好ましくは3ないし
7モルの範囲である。 本発明の方法において使用される触媒としては
塩基またはアンモニウム塩化合物などを例示する
ことができる。具体的には、水酸化ナトリウム、
水酸化カリウム、水酸化リチウムなどの水酸化ア
ルカリ、プロピルアミン、ブチルアミン、ヘキシ
ルアミン、オクチルアミンなどの第一アミン、ジ
エチルアミン、ジプロピルアミン、ジブチルアミ
ンなどの第二アミン、トリエチルアミン、トリプ
ロピルアミン、トリブチルアミンなどの第三アミ
ン、塩化テトラメチルアンモニウム、ヨウ化テト
ラメチルアンモニウム、塩化テトラエチルアンモ
ニウム、臭化テトラエチルアンモニウム、ヨウ化
テトラエチルアンモニウム、塩化テトラプロピル
アンモニウム、塩化テトラブチルアンモニウム、
塩化ベンジルトリメチルアンモニウム、臭化ベン
ジルトリメチルアンモニウム、ヨウ化ベンジルト
リメチルアンモニウム、塩化コリンなどの第四ア
ンモニウム塩、トリメチルアミン塩酸塩、トリエ
チルアミン塩酸塩、ジメチルアミン臭化水素酸
塩、ジエチルアミン塩酸塩などのアミン塩などを
例示することができる。これらの触媒の使用割合
は、前記多核多価フエノール類1モル当量に対し
て通常0.005ないし5モル、好ましくは0.01ない
し1モルの範囲である。 本発明の方法において、このハロヒドリンエー
テル化反応は通常50ないし110℃、好ましくは70
ないし100℃の温度で実施される。このハロヒド
リンエーテル化反応工程では、前記多核多価フエ
ノール類のフエノール性水酸基がほとんど完全に
ハロヒドリンエーテル化させる方法を採用するこ
ともできるし、前記多核多価フエノール類のフエ
ノール性水酸基を部分的に、例えば通常40ないし
80%、好ましくは50ないし70%の範囲までハロヒ
ドリンエーテル化することにより、多核多価フエ
ノール類のハロヒドリンエーテルおよび原料から
なる反応混合物を得、該反応混合物に水酸化アル
カリを反応させることにより、ハロヒドリンエー
テル化反応と脱ハロゲン化水素化反応とを同時に
進行させる方法を採用することもできる。 本発明の方法において、該ハロヒドリンエーテ
ルの脱ハロゲン化水素化反応は水酸化アルカリの
存在下に実施される。水酸化アルカリとして具体
的には、水酸化ナトリウム、水酸化カリウム、水
酸化リチウムなどを例示することができるが、水
酸化ナトリウムを使用するのが好適である。水酸
化アルカリの使用割合はハロヒドリンエーテル化
反応工程に供給される原料の前記多核多価フエノ
ール類のフエノール性水酸基1モル当量に対して
通常0.80ないし1.2モル、好ましくは0.95ないし
1.1モルの範囲である。該ハロヒドリンエーテル
の脱ハロゲン化水素化反応は、反応で生成した水
を反応系外に除去しながら進行させるのが好まし
く、水を除去する方法としては生成水を反応系内
のエピハロヒドリンと共に共沸蒸留により留出さ
せ、留出液を水相およびエピハロヒドリン相に分
液した後、水相を除去し、エピハロヒドリン相を
反応系に循環する方法を例示することができる。
該ハロヒドリンエーテルの脱ハロゲン化水素化反
応は一段階の反応で実施する方法を採用すること
もできるし、二段もしくは多段階の反応で実施す
る方法を採用することもできる。脱ハロゲン化水
素化反応は通常前記ハロヒドリンエーテル化反応
工程の原料であるエピハロヒドリン溶媒中で実施
されるが、メチルエチルケトン、メチルイソブチ
ルケトンなどのケトン類、ベンゼン、トルエン、
キシレン、クメン、シメン、エチルベンゼンなど
の芳香族炭化水素溶媒中で実施することもでき
る。これらの溶媒の使用割合は原料の前記多核多
価フエノール類に対する重量比で通常4ないし10
倍、好ましくは5ないし7倍の範囲である。該脱
ハロゲン化水素化反応は通常70ないし110℃、好
ましくは80ないし100℃の温度で実施される。 本発明の方法において、前記脱ハロゲン化水素
化反応の終了した反応混合物から該多核多価フエ
ノール類のポリグリシジルエーテルが分離され
る。その方法としては、通常の方法、例えば、反
応混合物中の未反応の水酸化アルカリをリン酸、
リン酸アルカリ、酢酸などの水溶液で中和した
後、次いで塩を抽出、吸着または過などの処理
によつて除去し、溶媒を蒸留によつて除去するこ
とにより、該多核多価フエノール類のポリグリシ
ジルエーテルが得られる。 本発明のポリエポキシ化合物は硬化剤と共に配
合することによりエポキシ樹脂硬化型組成物の用
途に利用される。本発明のエポキシ樹脂硬化型組
成物に配合される硬化剤としては従来からエポキ
シ樹脂の硬化剤として知られているあらゆる化合
物を使用することができる。例えば具体的には、
ジエチレントリアミン、トリエチレンテトラミ
ン、テトラエチレンペンタミン、ジプロピレンジ
アミン、ジエチルアミノプロピルアミンなどの鎖
状脂肪族系ポリアミン、メンタンジアミン、n−
アミノエチルピペラジン、イソホロジアミン、
1,3−ジアミノシクロヘキサンなどの環状脂肪
族系ポリアミン、ジエチレントリアミンとエチレ
ンオキサイドあるいはプロピレンオキサイドとの
付加物などの脂肪族系ポリアミンアダクト、ジエ
チレントリアミンとアセトンとの縮合物などのケ
トイミン、シアノエチル化ジエチレントリアミン
などの変性脂肪族系ポリアミン、ダイマー酸・ジ
エチレンアミン縮合物、ダイマー酸・トリエチレ
ンテトラミン縮合物などのポリアミドアミン、
4,4′−メチレンジアニリン、m−フエニレンジ
アミン、キシリレンジアミンなどの芳香族系アミ
ン、4,4′−メチレンジアニリン・フエニルグリ
シジルエーテルアダクトなどの芳香族系変性アミ
ン、ポリスルフイド樹脂などのメルカプタン系硬
化剤、無水ヘキサヒドロフタル酸、無水メチルテ
トラヒドロフタル酸、無水フタル酸などの酸無水
物系硬化剤、エチレン・無水マレイン酸共重合体
などのように酸無水物基を有する共重合体、ノボ
ラツク型またはレゾール型のフエノール樹脂初期
縮合物などのようにフエノール性水酸基を有する
化合物、ジシアンジアミド、アニリン・ホルムア
ルデヒド樹脂、メラミン樹脂、尿素樹脂などを例
示することができる。使用目的に応じてこれらの
中から、適宜なものを配合することが好ましい。
該硬化剤の配合割合は、前記ポリエポキシ化合物
100重量部に対して通常1ないし200重量部、好ま
しくは3ないし100重量部の範囲である。 本発明のエポキシ樹脂硬化型組成物には、前記
ポリエポキシ化合物、前記硬化剤の他に、必要に
応じて硬化促進剤、無機または有機の充填剤、難
燃剤、耐熱安定剤、抗酸化剤、滑剤などの種々の
配合剤が配合される。また、ポリエポキシ化合物
として本発明のポリエポキシ化合物の他に、従来
から公知のポリエポキシ化合物を併用することも
可能である。 硬化促進剤としては、従来から公知の硬化促進
剤が使用される。具体的には、ベンジルジメチル
アミン、2−(ジメチルアミノメチル)フエノー
ル、2,4,6−トリス(ジメチルアミノメチ
ル)フエノール、N,N′−ジメチルピペラジン、
2−エチル−4−メチルイミダゾールなどを例示
することができる。該硬化促進剤の配合割合は、
前記ポリエポキシ化合物100重量部に対して通常
0.1ないし10重量部、好ましくは1ないし5重量
部の範囲である。 無機充填剤として具体的には、シリカ、シリ
カ・アルミナ、アルミナ、ガラス粉末、ガラスビ
ーズ、ガラス繊維、アスベスト、マイカ、グラフ
アイト、カーボン繊維、酸化チタン、二酸化モリ
ブデン、酸化ベリリウム、酸化マグネシウム、酸
化カルシウム、水酸化マグネシウム、水酸化カル
シウム、タルク、セライト、金属粉末、金属繊
維、などを例示することができる。これらの無機
充填剤のいずれを配合した場合にも耐熱特性なら
びに機械的特性は向上する。これらの無機充填剤
のうちで、ガラス繊維、、カーボン繊維、アスベ
ストなどを配合すると耐熱特性がさらに改善さ
れ、グラフアイト、酸化チタン、二硫化モリブデ
ンなどを配合すると耐摩耗性がさらに改善され、
マイカ、アスベスト、ガラス粉末などを配合する
と耐アーク性がさらに改善され、カーボンブラツ
ク、金属繊維、金属粉末、グラフアイトなどを配
合すると導電性などの電気特性が改善され、さら
にアルミナ、酸化チタン、酸化ベリリウムなどを
配合すると熱伝導性が改善される。これらの無機
充填剤の配合割合は、そのエポキシ樹脂硬化型組
成物に配合される該無機充填剤の種類ならびに該
エポキシ樹脂硬化型組成物の使用目的によつて大
きく異なるが、前記ポリエポキシ化合物100重量
部に対して通常10ないし250重量部の範囲であり、
好ましくは30ないし200重量部、とくに好ましく
は60ないし150重量部の範囲である。 有機充填剤としては、種々の高分子重合体、繊
維状重合体などが配合される。高分子重合体とし
て具体的には、ポリテトラフロロエチレンなどの
弗素系重合体などを例示することができる。 有機繊維状充填剤としては具体的には、ポリテ
レフタロイル−p−フエニレンジアミン、ポリテ
レフタロイルイソフタロイル−p−フエニレンジ
アミン、ポリイソフタロイル−p−フエニレンジ
アミン、ポリイソフタロイル−m−フエニレンジ
アミンなどの全芳香族ポリアミド、ナイロン66、
ナイロン10、ナイロン12などのポリアミド繊維、
ポリアミドイミド繊維、ポリベンズイミダゾール
繊維、ポリエチレンテレフタレート、ポリ−1,
4−ブチレンテレフタレートなどのポリエステル
繊維等の重縮合型合成繊維;ポリビニルアルコー
ル型合成繊維、ポリアクリロニトリルなどのアク
リル系繊維等の付加重合型合成繊維;木綿、麻、
亜麻、毛、生糸などの天然繊維などを例示するこ
とができる。有機繊維状充填剤のうちでは有機合
成繊維充填剤を配合することが好ましく、とくに
重縮合型合成繊維からなる充填剤を配合すること
が好ましくく、とりわけ全芳香族ポリアミドから
なる繊維状充填剤を配合することが好ましい。該
有機繊維状充填剤は、通常の単繊維状、ストラン
ド状、クロス状のいずれの形状でも使用し得る。
これらの有機繊維状充填剤の繊維の太さは、通常
3ないし20μ、好ましくは5ないし15μの範囲で
ある。また、これらの繊維状物は短繊維状物、長
繊維状物のいずれでも使用することができ、その
繊維状物の長さはその使用目的に応じて適宜に選
択できるが、その繊維長は通常0.1ないし1.2cm、
好ましくは0.3ないし0.6cmの範囲である。該有機
繊維状充填剤の配合割合は、前記ポリエポキシ化
合物100重量部に対して通常1ないし60重量部、
好ましくは5ないし40重量部、とくに好ましくは
10ないし30重量部の範囲である。前記無機または
有機充填剤がクロス状物またはマツト状基材であ
る場合には、前記エポキシ樹脂硬化型組成物を有
機溶媒に溶解させたワニスとして該基材に含浸さ
せてプリプレグとし、さらにこのプリプレグを必
要に応じて複数枚重ねてプレスキユアーすること
により成形し、本発明の組成物からなる積層体を
得ることができる。該無機または有機充填剤が単
繊維状またはストランド状である場合には、従来
から公知の配合方法によつて配合することができ
る。 難燃剤として具体的には、ハロゲン化脂肪族炭
化水素、ハロゲン化脂環族炭化水素、ハロゲン化
芳香族炭化水素、ハロゲン化芳香族エーテル、ハ
ロゲン化フエノール類、ハロゲン化多核多価フエ
ノール類、ハロゲン化芳香族カルボン酸またはそ
の酸無水物、ハロゲン化ノボラツク型フエノール
樹脂、ハロゲン化エポキシノボラツク型フエノー
ル樹脂などの有機ハロゲン化合物;ホウ素化合
物;無機リン化物、有機リン化合物などのリン化
合物;無機アンチモン化合物、有機アンチモン化
合物などのアンチモン化合物;ビスマス化合物;
ヒ素化合物などを例示することができる。該難燃
剤の配合割合は、前記ポリエポキシ化合物100重
量部に対して通常1ないし100重量部、好ましく
は3ないし50重量部の範囲である。 本発明のエポキシ樹脂硬化型組成物は、ガラス
転移点、熱変形温度、耐熱弾性特性などの耐熱特
性にとくに優れ、曲げ強度、アイゾツト衝撃強
度、ロツクウエル硬度などの機械的特性にも優れ
ているという特徴を有しているので、広範な種々
の用途に利用できる。具体的には、接着剤、ワニ
ス、塗料、絶縁材料、プリプレグ、構造用積層
板、印刷回路用積層板、配電盤、トランジスタ、
IC、LSIなどの封止用材料、スイツチ、コネクタ
ーなどの電気器具用成形材料、ワツシヤー、軸受
などの摺動材料などを例示することができる。 次に、本発明を実施例によつて具体的に説明す
る。なお、実施例および比較例において使用した
多核多価フエノール類の製造法を参考例に具体的
に示した。 参考例 1 レゾルシン1980g(18モル)、2,6−ジメチ
ロール−p−クレゾール504g(3モル)、p−ト
ルエンスルホン酸9g(0.05モル)エタノール
4500gを反応器に入れ、還流下に4時間反応させ
た。次いで300mmHg減圧下に脱エタノール濃縮
し、さらに内容物を水26中に投入して生成物を
析出させた。これを過、水洗、乾燥して樹脂
740gを得た。 顕微鏡により求めたこの樹脂の融点は128〜135
℃であり、ゲルパーミエーシヨンクロマトグラフ
イーにより求めたこの樹脂の数平均分子量nは
360であつた。この化合物のIRスペクトルには
3500cm-1付近にフエノール性OH、1600および
1500cm-1付近に芳香族、1450cm-1付近にメチル基
の特性吸収が認められた。またこの樹脂をジメチ
ルスルホキシド−d6中に溶解して測定したH1
磁気共鳴スペクトルの結果を表1に示した。
The present invention relates to a novel polyepoxy compound consisting of polyglycidyl ether of polynuclear polyhydric phenols and a method for producing the same. More specifically, it is possible to form an epoxy resin curable composition with excellent heat resistance properties such as glass transition temperature, heat distortion temperature, and heat resistance elastic properties, and to produce an epoxy resin molding material with excellent heat resistance properties and a laminated layer for printed circuits. The present invention provides polyepoxy compounds that can be used as plates or advanced composite materials. Conventionally, various compounds have been proposed as polyepoxy compounds used in epoxy resin curable compositions. Recently, in the fields of molding materials, varnishes, printed circuit laminates, advanced composite materials (AcM), etc.
There is a demand for an epoxy resin curable composition that has excellent heat resistance properties such as glass transition temperature, heat distortion temperature, and heat elastic properties. Conventionally, as polyepoxy compounds constituting heat-resistant epoxy resin curable compositions, epoxidized phenol novolak resins, epoxidized orthocresol novolak resins, 1,
Polyglycidyl ether of polynuclear phenols such as tetraglycidyl ether of 1,2,2-tetrakis(p-hydroxyphenyl)ethane, tetraglycidyl compound of xylylene diamine, 1,
Polyglycidylated aromatic polyamines such as hexaglycidylated 3,5-triaminomethylbenzene and triglycidylated isocyanuric acid are widely used. However, epoxy resin curable compositions using these polyepoxy compounds do not have sufficient heat resistance properties as described above.
It cannot be used in fields where heat resistance is required, and there is a demand for the development of an epoxy resin curable composition with even better heat resistance. Based on this recognition, the present inventors investigated the development of an epoxy resin curable composition with excellent heat resistance properties, and as a result, the present inventors developed a polyepoxy compound consisting of polyglycidyl ether of polynuclear polyhydric phenols having a specific structure. The inventors have discovered that an epoxy resin curable composition that achieves the above objectives can be obtained by using the above methods, and have thus arrived at the present invention. According to the present invention, the polyepoxy compound of the present invention comprising polyglydyl ether of polynuclear polyhydric phenols is a new compound, and the epoxy resin curable composition comprising the polyepoxy compound and a curing agent has a glass transition point, It has particularly excellent heat resistance properties such as heat distortion temperature and heat elasticity resistance, and also has excellent mechanical properties such as bending strength, Izot impact strength, and Rockwell hardness. To outline the present invention, the present invention is based on the general formula [] [In the formula, R 1 and R 2 represent a hydrogen atom, R 3 represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and n represents an integer of 0 to 10. ]
The gist of the material invention is a polyepoxy compound consisting of polyglycidyl ether of polynuclear polyhydric phenols represented by the general formula [] [In the formula, R 1 and R 2 represent a hydrogen atom, R 3 represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and n represents an integer of 0 to 10. ]
A halohydrin ether of the polynuclear polyvalent phenol is produced by reacting a polynuclear polyvalent phenol represented by the formula with epihalohydrin in the presence of a catalyst, and then a halohydrin ether of the polynuclear polyvalent phenol is produced. The gist of the invention is a method for producing a polyepoxy compound comprising a polyglycidyl ether of a polynuclear polyhydric phenol represented by the general formula [], which is characterized by reacting the compound with an alkali hydroxide. The polyepoxy compound of the present invention has the general formula [] [In the formula, R 1 and R 2 represent a hydrogen atom, R 3 represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and n represents an integer of 0 to 10. ]
This is a polyepoxy compound consisting of polyglycidyl ether of polynuclear polyhydric phenols represented by: The dihydroxyphenyl group constituting the polynuclear polyhydric phenol represented by the general formula [] is
3,4-dihydroxyphenyl group, 2,4-dihydroxyphenyl group or 2,5-dihydroxyphenyl group, and dihydroxyphenylene group is 3,4-dihydroxy-1,6-phenylene group,
It is a 2,4-dihydroxy-1,5-phenylene group or a 2,5-dihydroxy-1,3-phenylene group, and each corresponds to a catechol component unit, a resorcin component unit, or a hydroquinone component unit. There is no problem even if two or more of these dihydroxyphenyl groups are contained in one molecule of polynuclear polyhydric phenol. In addition, the general formula []
Consists of polynuclear polyvalent phenols represented by
R 1 and R 2 are each a hydrogen atom, and R 3 is a hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group. Examples include alkyl groups such as phenyl groups, tolyl groups, aryl groups such as chlorophenyl groups, and halogen atoms such as fluorine, chlorine, and bromine.
R 3 may be bonded to either the ortho or para position relative to the hydroxyl group. Further, in the polynuclear polyhydric phenols represented by the above general formula [], n is an integer from 0 to 10, and it may be a mixture of two or more types of polynuclear polyhydric phenols representing these integers. More specifically, as the polynuclear polyhydric phenols represented by the general formula [] constituting the polyepoxy compound of the present invention, polynuclear polyhydric phenols represented by the following general formula [] or general formula [] are exemplified. be able to. The polyepoxy compound of the present invention is a polyglycidyl ether of polynuclear polyhydric phenols represented by the above general formula [], and usually accounts for 80% or more, preferably 90% or more, of the phenolic hydroxyl groups of the polynuclear polyhydric phenols, and particularly Preferably, it is a polyepoxy compound in which 95% or more is glycidyl etherified. Here, glycidyl ether is a general formula formed by the reaction of one molecule of epihalohydrin with one phenolic hydroxyl group of the polynuclear polyhydric phenol [] In addition to the glycidyl ether represented by the general formula [] A mixture of glycidyl ethers represented by the formula may also be used. The molar ratio of all the 2-hydroxyoxy-1,3-propylene groups to all the glycidyl groups in the polyepoxy compound of the present invention is generally 0.5 or less, preferably 0.1 or less. The epoxy equivalent of the polyepoxy compound of the present invention is usually 122 to 500 g/1 equivalent, preferably
It is in the range of 125 to 400 g/1 equivalent, and the phenolic hydroxyl equivalent is usually in the range of 1220 g/1 equivalent or more, preferably 2500 g/1 equivalent or more. The polyepoxy compound of the present invention is produced by reacting a polynuclear polyhydric phenol represented by the general formula [] with epihalohydrin in the presence of a catalyst to produce a halohydrin ether of the polynuclear polyhydric phenol. After that, it is produced by reacting the halohydrin ether of the polynuclear polyhydric phenol with an alkali hydroxide. Specific examples of the epihalohydrin used in the method of the present invention include epichlorohydrin, epibromohydrin, and epiiodohydrin. The proportion of epihalohydrin used is generally 2 to 15 mol, preferably 3 to 7 mol, per 1 mol of the phenolic hydroxyl group of the polynuclear polyhydric phenol. Examples of the catalyst used in the method of the present invention include bases and ammonium salt compounds. Specifically, sodium hydroxide,
Alkali hydroxides such as potassium hydroxide and lithium hydroxide; primary amines such as propylamine, butylamine, hexylamine, and octylamine; secondary amines such as diethylamine, dipropylamine, and dibutylamine; Tertiary amines such as butylamine, tetramethylammonium chloride, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium chloride, tetrabutylammonium chloride,
Quaternary ammonium salts such as benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, choline chloride, amine salts such as trimethylamine hydrochloride, triethylamine hydrochloride, dimethylamine hydrobromide, diethylamine hydrochloride, etc. can be exemplified. The proportion of these catalysts used is generally 0.005 to 5 mol, preferably 0.01 to 1 mol, per 1 molar equivalent of the polynuclear polyhydric phenol. In the method of the present invention, this halohydrin etherification reaction is usually carried out at 50 to 110°C, preferably at 70°C.
It is carried out at temperatures between 100°C and 100°C. In this halohydrin etherification reaction step, a method may be adopted in which the phenolic hydroxyl groups of the polynuclear polyhydric phenols are almost completely converted into halohydrin etherification, or a method may be adopted in which the phenolic hydroxyl groups of the polynuclear polyhydric phenols are almost completely converted into halohydrin etherification. Partially, for example usually 40 or
By etherifying halohydrin to 80%, preferably in the range of 50 to 70%, a reaction mixture consisting of halohydrin ether of polynuclear polyhydric phenols and raw materials is obtained, and the reaction mixture is reacted with alkali hydroxide. Accordingly, it is also possible to employ a method in which the halohydrin etherification reaction and the dehydrohalogenation reaction proceed simultaneously. In the method of the present invention, the dehydrohalogenation reaction of the halohydrin ether is carried out in the presence of an alkali hydroxide. Specific examples of the alkali hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., but it is preferable to use sodium hydroxide. The ratio of alkali hydroxide used is usually 0.80 to 1.2 mol, preferably 0.95 to 1.2 mol, per 1 molar equivalent of the phenolic hydroxyl group of the polynuclear polyhydric phenol as the raw material supplied to the halohydrin etherification reaction step.
It is in the range of 1.1 mol. The dehydrohalogenation reaction of the halohydrin ether is preferably carried out while removing the water produced in the reaction from the reaction system, and the method for removing water is to co-produce the produced water with the epihalohydrin in the reaction system. An example of a method is to perform distillation by boiling distillation, separate the distillate into an aqueous phase and an epihalohydrin phase, remove the aqueous phase, and circulate the epihalohydrin phase to the reaction system.
The dehydrohalogenation reaction of the halohydrin ether may be carried out in one step, or may be carried out in two or multiple steps. The dehydrohalogenation reaction is usually carried out in an epihalohydrin solvent, which is the raw material for the halohydrin etherification reaction step, but ketones such as methyl ethyl ketone and methyl isobutyl ketone, benzene, toluene,
It can also be carried out in aromatic hydrocarbon solvents such as xylene, cumene, cymene, ethylbenzene. The proportion of these solvents used is usually 4 to 10 in terms of weight ratio to the polynuclear polyhydric phenols as raw materials.
times, preferably in the range of 5 to 7 times. The dehydrohalogenation reaction is usually carried out at a temperature of 70 to 110°C, preferably 80 to 100°C. In the method of the present invention, the polyglycidyl ether of the polynuclear polyhydric phenol is separated from the reaction mixture after the dehydrohalogenation reaction. As a method, a conventional method can be used, for example, replacing unreacted alkali hydroxide in the reaction mixture with phosphoric acid,
After neutralization with an aqueous solution of alkali phosphate, acetic acid, etc., the salts are removed by extraction, adsorption, filtration, etc., and the solvent is removed by distillation, thereby converting the polynuclear polyhydric phenols into polyphenols. Glycidyl ether is obtained. The polyepoxy compound of the present invention can be used as an epoxy resin curable composition by being blended with a curing agent. As the curing agent to be added to the epoxy resin curable composition of the present invention, any compound conventionally known as a curing agent for epoxy resins can be used. For example, specifically,
Chain aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylene diamine, diethylaminopropylamine, menthanediamine, n-
aminoethylpiperazine, isophorodiamine,
Modifications such as cycloaliphatic polyamines such as 1,3-diaminocyclohexane, aliphatic polyamine adducts such as adducts of diethylenetriamine and ethylene oxide or propylene oxide, ketoimines such as condensates of diethylenetriamine and acetone, and cyanoethylated diethylenetriamine. Polyamide amines such as aliphatic polyamines, dimer acid/diethyleneamine condensates, dimer acid/triethylenetetramine condensates,
Aromatic amines such as 4,4'-methylene dianiline, m-phenylene diamine, xylylene diamine, aromatic modified amines such as 4,4'-methylene dianiline/phenyl glycidyl ether adduct, polysulfide resins, etc. mercaptan curing agents, acid anhydride curing agents such as hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and phthalic anhydride, and copolymers with acid anhydride groups such as ethylene/maleic anhydride copolymers. Examples include compounds having a phenolic hydroxyl group, such as a phenolic resin initial condensate of a combination, novolak type, or resol type, dicyandiamide, aniline/formaldehyde resin, melamine resin, and urea resin. It is preferable to mix an appropriate one out of these depending on the purpose of use.
The blending ratio of the curing agent is as follows:
The amount is generally 1 to 200 parts by weight, preferably 3 to 100 parts by weight per 100 parts by weight. In addition to the polyepoxy compound and the curing agent, the curable epoxy resin composition of the present invention may optionally include a curing accelerator, an inorganic or organic filler, a flame retardant, a heat stabilizer, an antioxidant, Various additives such as lubricants are added. Furthermore, in addition to the polyepoxy compound of the present invention, conventionally known polyepoxy compounds can also be used in combination. As the curing accelerator, conventionally known curing accelerators are used. Specifically, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, N,N'-dimethylpiperazine,
Examples include 2-ethyl-4-methylimidazole. The blending ratio of the curing accelerator is
Normally per 100 parts by weight of the polyepoxy compound
It ranges from 0.1 to 10 parts by weight, preferably from 1 to 5 parts by weight. Specifically, inorganic fillers include silica, silica/alumina, alumina, glass powder, glass beads, glass fiber, asbestos, mica, graphite, carbon fiber, titanium oxide, molybdenum dioxide, beryllium oxide, magnesium oxide, and calcium oxide. , magnesium hydroxide, calcium hydroxide, talc, celite, metal powder, metal fiber, and the like. When any of these inorganic fillers is blended, the heat resistance properties and mechanical properties are improved. Among these inorganic fillers, heat resistance properties are further improved when glass fiber, carbon fiber, asbestos, etc. are blended, and abrasion resistance is further improved when graphite, titanium oxide, molybdenum disulfide, etc. are blended.
Arc resistance is further improved by blending mica, asbestos, glass powder, etc., electrical properties such as conductivity are improved by blending carbon black, metal fiber, metal powder, graphite, etc., and alumina, titanium oxide, oxidation etc. Adding beryllium or the like improves thermal conductivity. The blending ratio of these inorganic fillers varies greatly depending on the type of inorganic filler blended into the epoxy resin curable composition and the purpose of use of the epoxy resin curable composition. Usually ranges from 10 to 250 parts by weight,
The amount is preferably from 30 to 200 parts by weight, particularly preferably from 60 to 150 parts by weight. As the organic filler, various high molecular weight polymers, fibrous polymers, etc. are blended. Specific examples of the polymer include fluorine-based polymers such as polytetrafluoroethylene. Specifically, the organic fibrous fillers include polyterephthaloyl-p-phenylenediamine, polyterephthaloyl isophthaloyl-p-phenylenediamine, polyisophthaloyl-p-phenylenediamine, and polyisophthaloyl-p-phenylenediamine. Fully aromatic polyamides such as phthaloyl-m-phenylenediamine, nylon 66,
Polyamide fibers such as nylon 10 and nylon 12,
Polyamideimide fiber, polybenzimidazole fiber, polyethylene terephthalate, poly-1,
Polycondensation synthetic fibers such as polyester fibers such as 4-butylene terephthalate; addition polymerization synthetic fibers such as polyvinyl alcohol synthetic fibers and acrylic fibers such as polyacrylonitrile; cotton, hemp,
Examples include natural fibers such as flax, wool, and raw silk. Among organic fibrous fillers, organic synthetic fiber fillers are preferably blended, and fillers made of polycondensed synthetic fibers are particularly preferably blended, and in particular, fibrous fillers made of wholly aromatic polyamide are preferably blended. It is preferable to mix them. The organic fibrous filler can be used in any of the usual single fiber, strand, and cross shapes.
The fiber thickness of these organic fibrous fillers is usually in the range of 3 to 20μ, preferably 5 to 15μ. In addition, these fibrous materials can be used in either short or long fibrous materials, and the length of the fibrous material can be selected as appropriate depending on the purpose of use. Usually 0.1 to 1.2cm,
Preferably it is in the range of 0.3 to 0.6 cm. The blending ratio of the organic fibrous filler is usually 1 to 60 parts by weight per 100 parts by weight of the polyepoxy compound.
Preferably 5 to 40 parts by weight, particularly preferably
It ranges from 10 to 30 parts by weight. When the inorganic or organic filler is a cloth-like or mat-like base material, the base material is impregnated with the epoxy resin curable composition as a varnish dissolved in an organic solvent to form a prepreg, and the prepreg A laminate made of the composition of the present invention can be obtained by stacking and press-curing a plurality of sheets as necessary. When the inorganic or organic filler is in the form of a single fiber or a strand, it can be blended by a conventionally known blending method. Specifically, flame retardants include halogenated aliphatic hydrocarbons, halogenated alicyclic hydrocarbons, halogenated aromatic hydrocarbons, halogenated aromatic ethers, halogenated phenols, halogenated polynuclear polyhydric phenols, and halogenated organic halogen compounds such as halogenated aromatic carboxylic acids or their acid anhydrides, halogenated novolac type phenolic resins, and halogenated epoxy novolac type phenolic resins; boron compounds; phosphorus compounds such as inorganic phosphides and organic phosphorus compounds; inorganic antimony compounds , antimony compounds such as organic antimony compounds; bismuth compounds;
Examples include arsenic compounds. The blending ratio of the flame retardant is usually 1 to 100 parts by weight, preferably 3 to 50 parts by weight, per 100 parts by weight of the polyepoxy compound. The curable epoxy resin composition of the present invention is said to be particularly excellent in heat resistance properties such as glass transition point, heat distortion temperature, and heat elastic properties, and also excellent in mechanical properties such as bending strength, Izot impact strength, and Rockwell hardness. Due to its unique characteristics, it can be used in a wide variety of applications. Specifically, adhesives, varnishes, paints, insulating materials, prepregs, structural laminates, printed circuit laminates, switchboards, transistors,
Examples include sealing materials for ICs and LSIs, molding materials for electrical appliances such as switches and connectors, and sliding materials such as washers and bearings. Next, the present invention will be specifically explained using examples. Note that the method for producing polynuclear polyhydric phenols used in Examples and Comparative Examples is specifically shown in Reference Examples. Reference example 1 1980 g (18 mol) of resorcin, 504 g (3 mol) of 2,6-dimethylol-p-cresol, 9 g (0.05 mol) of p-toluenesulfonic acid, ethanol
4500g was put into a reactor and reacted under reflux for 4 hours. Then, the mixture was concentrated to remove ethanol under a reduced pressure of 300 mmHg, and the contents were poured into water 26 to precipitate the product. This is filtered, washed with water, dried and made into resin.
Obtained 740g. The melting point of this resin determined using a microscope is 128-135
℃, and the number average molecular weight Mn of this resin determined by gel permeation chromatography is
It was 360. The IR spectrum of this compound has
Phenolic OH, 1600 and
A characteristic absorption of aromatic groups was observed near 1500 cm -1 and a characteristic absorption of methyl groups was observed near 1450 cm -1 . Table 1 also shows the results of H1 nuclear magnetic resonance spectra measured by dissolving this resin in dimethyl sulfoxide- d6 .

【表】 以上の結果からこの樹脂は次のような構造であ
ることが確認された。 参考例 2 参考例1において2,6−ジメチロール−p−
クレゾール1512g(9モル)を使用した以外は参
考例1と同様に行つて樹脂2750gを得た。 顕微鏡法により求めたこの樹脂の融点は157な
し172℃であり、ゲルパーミエーシヨンクロマト
グラフイーにより求めた数平均分子量(n)は
900、重合度nは2、分子量分布(w/n)
は1.42であつた。 この樹脂をジメチルスルホキシド−d6中に溶解
して測定したH1核磁気共鳴スペクトルはピーク
の線巾がブロードになつた以外は表1記載の位置
にピークが見られた。 これらの結果からこの樹脂は次のような構造で
あることを確認した。 参考例 3〜4 参考例1においてレゾルシンの代りにヒドロキ
ノン、カテコールを使用した以外は参考例1と同
様に行つて表2の結果を得た。 また参考例1と同様な方法で構造解析を行つて
ヒドロキノンあるいはカテコールとp−クレゾー
ル骨格がメチレン基で結合し構造であることを確
認した。
[Table] From the above results, it was confirmed that this resin had the following structure. Reference Example 2 In Reference Example 1, 2,6-dimethylol-p-
2750 g of resin was obtained in the same manner as in Reference Example 1 except that 1512 g (9 mol) of cresol was used. The melting point of this resin determined by microscopy is 157-172°C, and the number average molecular weight ( Mn ) determined by gel permeation chromatography is:
900, degree of polymerization n is 2, molecular weight distribution ( M w / M n)
was 1.42. In the H1 nuclear magnetic resonance spectrum measured by dissolving this resin in dimethyl sulfoxide- d6 , peaks were observed at the positions listed in Table 1, except that the line width of the peaks became broader. From these results, it was confirmed that this resin had the following structure. Reference Examples 3 to 4 The same procedure as in Reference Example 1 was performed except that hydroquinone and catechol were used instead of resorcinol in Reference Example 1, and the results shown in Table 2 were obtained. Further, structural analysis was performed in the same manner as in Reference Example 1, and it was confirmed that the structure was one in which hydroquinone or catechol and p-cresol skeleton were bonded through a methylene group.

【表】 参考例 5〜8 参考例2において2,6−ジメチロール−p−
クレゾールの代りに2,6−ジメチロ−p−tert
−ブチルフエノール、2,6−ジメチロール−p
−クロルフエノール、2,6−ジメチロールフエ
ノールおよび2,6−ジメチロール−p−フエニ
ルフエノールをそれぞれ表3記載の如く使用した
以外は参考例2と同様に行つて表3の結果を得
た。 また参考例2と同様な方法で構造解析を行つて
レゾルシンとp−tert−ブチルフエノール骨格、
p−クロルフエノール骨格あるいはフエノール骨
格が交互にメチレン基で結合されて線状に繋つた
構造であることを確認した。
[Table] Reference Examples 5 to 8 In Reference Example 2, 2,6-dimethylol-p-
2,6-dimethylo-p-tert instead of cresol
-butylphenol, 2,6-dimethylol-p
The results shown in Table 3 were obtained in the same manner as in Reference Example 2, except that -chlorophenol, 2,6-dimethylolphenol, and 2,6-dimethylol-p-phenylphenol were used as shown in Table 3. In addition, structural analysis was performed in the same manner as in Reference Example 2, and resorcin and p-tert-butylphenol skeletons,
It was confirmed that the p-chlorophenol skeleton or phenol skeleton was alternately bonded with methylene groups to form a linearly connected structure.

【表】 参考例 9 参考例2において2,6−ジメチロール−p−
クレゾールの代りに2,6−ジ(1−クロロプロ
ピル)−4−メチルフエノール2241g(9モル)
を使用した以外は参考例2と同様に行つて樹脂
3000gを得た。ゲルパーミエーシヨンクロマトグ
ラフイーにより求めた数平均分子量(n)は
1000、重合度nは2、分布量分布(w/n)
は1.40であつた。 また参考例1と同様な方法で構造解析を行つて
レゾルシンとp−クレゾールがイソプロピリデン
基で結合された構造であることを確認した。 実施例 1 参考例1に示した方法で得られる樹脂615g
(1.7モル)、エピクロルヒドリン4023g(43.5モ
ル)、テトラメチルアンモニウムクロリド50%水
溶液57.2g(0.26モル)、水64gを反応器に入れ、
撹拌しながら90℃で4時間反応させた。 これに48%カセイソーダ水溶液798g(9.6モ
ル)を1.5時間かけて滴下した。この間凝縮した
蒸留物は分離され、上層の水層を除去し下層のエ
ピクロルヒドリン層は反応器に戻し、反応混合物
の水の濃度は約2%に維持した。 反応後、反応混合物を水2250中に投入し、充
分に撹拌して有機層を洗浄した後分離した。さら
に水2250を加えて充分に撹拌し、有機層を洗浄
した。有機層を分離した後17%リン酸ソーダ水溶
液240mlを加えて中和した。有機層を加熱して脱
水した後過し、液をさらに濃縮してエポキシ
樹脂960gを得た。 ゲルパーミエーシヨンクロマトグラフイーによ
り求めたこの樹脂の数平均分子量(n)は
1120、分子量分布(w/n)は1.42、顕微鏡
法により測定した融点は53〜58℃、塩酸・ジオキ
サン法により求めたエポキシ当量は150g/eqで
あつた。 この樹脂のIRスペクトルには参考例1に示し
たフエニル基およびメチル基の特性吸収が認めら
れる以外に3500cm-1付近のフエノール性OHの吸
収が消失し、新たに840cm-1および900cm-1付近に
エポキシ基の特性吸収が認められ、参考例1の樹
脂がグリシジルエーテル化されていることを確認
した。 また、この樹脂をCDCl3に溶解して測定した′
H核磁気共鳴スペクトルから次の構造を確認し
た。
[Table] Reference Example 9 In Reference Example 2, 2,6-dimethylol-p-
2,6-di(1-chloropropyl)-4-methylphenol 2241g (9 moles) instead of cresol
The resin was prepared in the same manner as in Reference Example 2 except that
Obtained 3000g. The number average molecular weight ( Mn ) determined by gel permeation chromatography is
1000, degree of polymerization n is 2, distribution amount distribution ( M w / M n)
was 1.40. Further, structural analysis was performed in the same manner as in Reference Example 1, and it was confirmed that resorcinol and p-cresol were bonded through an isopropylidene group. Example 1 615g of resin obtained by the method shown in Reference Example 1
(1.7 mol), 4023 g (43.5 mol) of epichlorohydrin, 57.2 g (0.26 mol) of a 50% aqueous solution of tetramethylammonium chloride, and 64 g of water were placed in a reactor.
The reaction was carried out at 90° C. for 4 hours while stirring. To this was added dropwise 798 g (9.6 mol) of a 48% caustic soda aqueous solution over 1.5 hours. During this time, the condensed distillate was separated, the upper aqueous layer was removed and the lower epichlorohydrin layer was returned to the reactor, maintaining the water concentration in the reaction mixture at about 2%. After the reaction, the reaction mixture was poured into 2250 ml of water, thoroughly stirred, and the organic layer was washed and separated. Furthermore, 2250 ml of water was added and thoroughly stirred to wash the organic layer. After separating the organic layer, 240 ml of 17% aqueous sodium phosphate solution was added to neutralize it. The organic layer was heated to dehydrate, filtered, and the liquid was further concentrated to obtain 960 g of epoxy resin. The number average molecular weight ( Mn ) of this resin determined by gel permeation chromatography is
1120, the molecular weight distribution ( Mw / Mn ) was 1.42, the melting point measured by microscopy was 53-58°C, and the epoxy equivalent determined by the hydrochloric acid/dioxane method was 150 g/eq. In the IR spectrum of this resin, in addition to the characteristic absorption of phenyl and methyl groups shown in Reference Example 1, the absorption of phenolic OH around 3500 cm -1 disappeared, and new absorption around 840 cm -1 and 900 cm -1 was observed. Characteristic absorption of epoxy groups was observed in , confirming that the resin of Reference Example 1 was glycidyl etherified. In addition, this resin was dissolved in CDCl 3 and measured.
The following structure was confirmed from H nuclear magnetic resonance spectrum.

【表】 実施例 2〜6 参考例2、参考例5、参考例6、参考例7、参
考例8の方法で得た樹脂を表5記載の如く使用し
た以外は実施例1と同様に行つた。 得られた樹脂の特性値を実施例1と同様な方法
で測定し、表5に示した。 また、これらの樹脂のIRスペクトルおよびジ
メチルスルホキシド−d6中に溶解して測定した′
H核磁気共鳴スペクトルから、それぞれレゾルシ
ンとp−クレゾール、p−tert−ブチルフエノー
ル、p−クロルフエノール、フエノール、および
p−フエニルフエノール骨格とが交互にメチレン
基で結合して繋り、エポキシ化された構造である
ことが確認された。
[Table] Examples 2 to 6 The procedure was carried out in the same manner as in Example 1, except that the resins obtained by the methods of Reference Example 2, Reference Example 5, Reference Example 6, Reference Example 7, and Reference Example 8 were used as shown in Table 5. Ivy. The characteristic values of the obtained resin were measured in the same manner as in Example 1 and are shown in Table 5. In addition, the IR spectra of these resins and the
From the H nuclear magnetic resonance spectrum, resorcinol and p-cresol, p-tert-butylphenol, p-chlorophenol, phenol, and p-phenylphenol skeletons are alternately bonded with methylene groups and connected, resulting in epoxidation. It was confirmed that the structure was

【表】 実施例 7〜8 参考例3および参考例4の方法で得た樹脂を使
用した以外は実施例1と同様に行つた。また得ら
れた樹脂の特性値を実施例1と同様な方法で測定
し、表6に示した。 また、これらの樹脂のIRスペクトルおよびジ
メチルスルホキシド−d6中に溶解して測定した′
H核磁気共鳴スペクトルから、それぞれヒドロキ
ノン、カテコールとp−クレゾール骨格がメチレ
ン基で結合して繋り、エポキシ化された構造であ
ることが確認された。
[Table] Examples 7-8 The same procedure as in Example 1 was carried out except that the resins obtained by the methods of Reference Examples 3 and 4 were used. Further, the characteristic values of the obtained resin were measured in the same manner as in Example 1, and are shown in Table 6. In addition, the IR spectra of these resins and the
From H nuclear magnetic resonance spectroscopy, it was confirmed that the hydroquinone, catechol, and p-cresol skeletons were connected by methylene groups and had an epoxidized structure.

【表】 実施例 9 参考例9の方法で得た樹脂を使用した以外は実
施例1と同様に行つた。また、得られた樹脂の特
性値を実施例1と同様な方法で測定し、nは
1300、w/nは1.50、融点80〜85℃、エポキ
シ当量は180であつた。 実施例10、比較例1 実施例1の方法で得た樹脂150g、ジアミノジ
フエニルメタン49.5gを80℃で溶融、混合し、注
型成形を行つた。これを100℃で2時間、さらに
150℃で4時間加熱して硬化させた。得られた成
形物の物性を測定して表7の結果を得た(実施例
10)。 また、一般に使用されているビスフエノールA
型エポキシ樹脂(三井石油化学エポキシ社製、
EPOMIK R−140)190gを使用した以外は実施
例8と同様に行い、成形物の物性を測定した。そ
の結果も合せて表7に示した(比較例1)。
[Table] Example 9 The same procedure as Example 1 was carried out except that the resin obtained by the method of Reference Example 9 was used. In addition, the characteristic values of the obtained resin were measured in the same manner as in Example 1, and M n was
1300, Mw / Mn was 1.50, melting point was 80-85°C, and epoxy equivalent was 180. Example 10, Comparative Example 1 150 g of the resin obtained by the method of Example 1 and 49.5 g of diaminodiphenylmethane were melted and mixed at 80° C., and cast molding was performed. This was heated to 100℃ for 2 hours, and then
It was cured by heating at 150°C for 4 hours. The physical properties of the obtained molded product were measured and the results shown in Table 7 were obtained (Example
Ten). In addition, commonly used bisphenol A
Type epoxy resin (manufactured by Mitsui Petrochemical Epoxy Co., Ltd.,
The physical properties of the molded product were measured in the same manner as in Example 8 except that 190 g of EPOMIK R-140) was used. The results are also shown in Table 7 (Comparative Example 1).

【表】 実施例 11〜18 実施例2〜9の方法で得た樹脂を表8記載の如
く使用した以外は実施例10同様に行つた。得られ
た成形物の物性を測定して表8の結果を得た。
[Table] Examples 11-18 The same procedure as Example 10 was carried out except that the resins obtained by the methods of Examples 2-9 were used as shown in Table 8. The physical properties of the obtained molded product were measured and the results shown in Table 8 were obtained.

【表】 比較例 2〜4 市販の耐熱性エポキシ樹脂を表9記載の如く使
用した以外は実施例10と同様に行つた。得られた
成形物の物性を測定して表9の結果を得た。
[Table] Comparative Examples 2 to 4 The same procedure as in Example 10 was carried out except that a commercially available heat-resistant epoxy resin was used as shown in Table 9. The physical properties of the obtained molded product were measured and the results shown in Table 9 were obtained.

【表】 実施例19、比較例5 実施例2の方法で得たエポキシ樹脂688g、ジ
シアンジアミド37g、ベンジルジメチルアミン
2.1gをジメチルホルムアミド373gに溶解させて
ワニスを調製した。これを日東紡社製ガラスクロ
ス(WE−18K−BZ2)に含浸させ、140℃で4分
間乾燥してプリプレグを調製した。このプリプレ
グを9枚、更に両面に銅箔を2枚積層して170℃、
1時間プレス成形を行つた。得られた積層板の物
性を表10に示した(実施例19)。 また、ビスフエノールA型エポキシ樹脂(三井
石油化学エポキシ社製、EPOMIK R−301)80
g、同、(EPOMIK R−140)20gをメチルエチ
ルケトン20gに溶解させ、これにジシアンジアミ
ド4g、ジメチルホルムアミド15gの溶液および
ベンジルジメチルアミン0.2g、メチルセロソル
ブ15gの溶液を混合してワニスを調製した。この
ワニスをガラスクロスに含浸させ、プリプレグ作
成条件を130℃、8分とした以外は実施例10と同
様に行つた。得られた積層板の物性を表10に示し
た(比較例5)。
[Table] Example 19, Comparative Example 5 688 g of epoxy resin obtained by the method of Example 2, 37 g of dicyandiamide, benzyldimethylamine
A varnish was prepared by dissolving 2.1 g in 373 g of dimethylformamide. A glass cloth (WE-18K-BZ2) manufactured by Nittobo Co., Ltd. was impregnated with this and dried at 140°C for 4 minutes to prepare a prepreg. Nine sheets of this prepreg were laminated with two sheets of copper foil on both sides and heated at 170℃.
Press molding was performed for 1 hour. The physical properties of the obtained laminate are shown in Table 10 (Example 19). In addition, bisphenol A type epoxy resin (manufactured by Mitsui Petrochemical Epoxy Co., Ltd., EPOMIK R-301) 80
A varnish was prepared by dissolving 20 g of EPOMIK R-140 in 20 g of methyl ethyl ketone, and mixing with this a solution of 4 g of dicyandiamide and 15 g of dimethylformamide, and a solution of 0.2 g of benzyldimethylamine and 15 g of methyl cellosolve. The same procedure as in Example 10 was carried out except that glass cloth was impregnated with this varnish and the prepreg preparation conditions were 130° C. and 8 minutes. The physical properties of the obtained laminate are shown in Table 10 (Comparative Example 5).

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式[] [式中、R1およびR2は水素原子を示し、R3
水素原子、アルキル基、アリール基またはハロゲ
ン原子を示し、nは0ないし10の整数を示す。]
で表わされる多核多価フエノール類のポリグリシ
ジルエーテルからなるポリエポキシ化合物。 2 一般式[] [式中、R1およびR2は水素原子を示し、R3
水素原子、アルキル基、アリール基またはハロゲ
ン原子を示し、nは0ないし10の整数を示す。]
で表わされる多核多価フエノール類とエピハロヒ
ドリンとを触媒の存在下に反応させることによ
り、該多核多価フエノール類のハロヒドリンエー
テルを生成させた後、該多核多価フエノール類の
ハロヒドリンエーテルと水酸化アルカリとを反応
させることを特徴とする前記一般式[]で表わ
される多核多価フエノール類のポリグリシジルエ
ーテルからなるポリエポキシ化合物の製造方法。
[Claims] 1. General formula [] [In the formula, R 1 and R 2 represent a hydrogen atom, R 3 represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and n represents an integer of 0 to 10. ]
A polyepoxy compound consisting of polyglycidyl ether of polynuclear polyhydric phenols represented by: 2 General formula [] [In the formula, R 1 and R 2 represent a hydrogen atom, R 3 represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and n represents an integer of 0 to 10. ]
A halohydrin ether of the polynuclear polyvalent phenol is produced by reacting a polynuclear polyvalent phenol represented by the formula with epihalohydrin in the presence of a catalyst, and then a halohydrin ether of the polynuclear polyvalent phenol is produced. A method for producing a polyepoxy compound comprising a polyglycidyl ether of a polynuclear polyhydric phenol represented by the general formula [], characterized by reacting the polyglycidyl ether of a polynuclear polyhydric phenol with an alkali hydroxide.
JP3076183A 1983-02-28 1983-02-28 Epoxy compound, its manufacture and use Granted JPS59157114A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3076183A JPS59157114A (en) 1983-02-28 1983-02-28 Epoxy compound, its manufacture and use
US06/583,636 US4614826A (en) 1983-02-28 1984-02-27 Polyglycidyl ethers of polynuclear polyhydric phenols
EP84301295A EP0117759B1 (en) 1983-02-28 1984-02-28 Polynuclear polyhydric phenols and process for preparation thereof
DE8484301295T DE3466528D1 (en) 1983-02-28 1984-02-28 Polynuclear polyhydric phenols and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076183A JPS59157114A (en) 1983-02-28 1983-02-28 Epoxy compound, its manufacture and use

Publications (2)

Publication Number Publication Date
JPS59157114A JPS59157114A (en) 1984-09-06
JPH0468312B2 true JPH0468312B2 (en) 1992-11-02

Family

ID=12312665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076183A Granted JPS59157114A (en) 1983-02-28 1983-02-28 Epoxy compound, its manufacture and use

Country Status (1)

Country Link
JP (1) JPS59157114A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394941B2 (en) * 2014-06-13 2018-09-26 Dic株式会社 Epoxy compound, phenolic hydroxyl group-containing compound, curable composition, cured product thereof, semiconductor sealing material, semiconductor device, prepreg, circuit board, buildup film, buildup board, fiber reinforced composite material, and fiber reinforced resin molded product
EP3858885B1 (en) * 2018-09-28 2024-05-08 FUJIFILM Corporation Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film

Also Published As

Publication number Publication date
JPS59157114A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JP4632077B2 (en) Epoxy resin composition, method for producing epoxy resin, novel epoxy resin, and novel phenol resin
EP0117759B1 (en) Polynuclear polyhydric phenols and process for preparation thereof
JP2016190891A (en) Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP3146320B2 (en) Epoxy resin composition
JP2823057B2 (en) Manufacturing method of epoxy resin
JP2769590B2 (en) Epoxy resin composition
JP2761403B2 (en) Heat resistant epoxy resin composition
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
JPH0468312B2 (en)
JP6924292B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPH0468313B2 (en)
JPH0428712B2 (en)
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2702228B2 (en) Heat-resistant flame-retardant epoxy resin composition
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
JP2702227B2 (en) Heat-resistant flame-retardant epoxy resin composition
JPH07330645A (en) Compound of polyphenols, epoxy resin, epoxy resin composition and cured material thereof
CA2017613A1 (en) Heat-resistant, flame-retardant epoxy resin compositions
JP3436794B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2702226B2 (en) Heat-resistant flame-retardant epoxy resin composition
JP3989458B2 (en) Method for producing phenolic compound and epoxy resin
JP3938592B2 (en) Phenolic compounds
JPH0254812B2 (en)
JPH09255758A (en) New epoxy resin, its intermediate, production thereof, epoxy resin composition made using the same, and cured item thereof
JPH046207B2 (en)