JPH046799B2 - - Google Patents

Info

Publication number
JPH046799B2
JPH046799B2 JP59258304A JP25830484A JPH046799B2 JP H046799 B2 JPH046799 B2 JP H046799B2 JP 59258304 A JP59258304 A JP 59258304A JP 25830484 A JP25830484 A JP 25830484A JP H046799 B2 JPH046799 B2 JP H046799B2
Authority
JP
Japan
Prior art keywords
electrolyte
wire
electrolytic
guide
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59258304A
Other languages
Japanese (ja)
Other versions
JPS61136698A (en
Inventor
Hajime Fukiganehara
Mamoru Murahashi
Kazuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25830484A priority Critical patent/JPS61136698A/en
Publication of JPS61136698A publication Critical patent/JPS61136698A/en
Publication of JPH046799B2 publication Critical patent/JPH046799B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高電流密度で且つ低電解電圧の電気め
つき操業を可能とした線材電気めつき用電解セル
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic cell for wire electroplating that enables electroplating operations at high current density and low electrolytic voltage.

[従来の技術] 線材に電気めつきを施すに当たつては、従来例
えば第7図に示す様な電解セルを用いている。即
ちタンク1からポンプPで抜き出した電解めつき
液(以下電解液という)Lを電解セル2内へ上方
から注入し、電解セル2内を満たすだけでなく更
に積極的に大量注入してオーバフローさせ、オー
バフロー分をタンク1へ戻している。そして電解
セル2内の電解液La中には陽極3を浸漬してお
り、線材Wをローラ(陰極)4と接触させながら
上記電解セル2内へ通すことによつて線材Wに対
する電気めつきを施している。
[Prior Art] Conventionally, when electroplating a wire, an electrolytic cell as shown in FIG. 7, for example, has been used. That is, the electrolytic plating solution (hereinafter referred to as electrolytic solution) L drawn out from the tank 1 by the pump P is injected into the electrolytic cell 2 from above, not only to fill the electrolytic cell 2 but also to actively inject a large amount to cause overflow. , the overflow is returned to tank 1. The anode 3 is immersed in the electrolytic solution La in the electrolytic cell 2, and the wire W is electroplated by passing it through the electrolytic cell 2 while contacting the roller (cathode) 4. are giving.

ところでこうした線材電気めつき用電解セルを
用いて効率良く且つ経済的に電気めつき操業を行
なおうとすれば、電解条件を高電流密度(電解速
度の向上)且つ低電解電圧(電力コストの低減)
とする必要がある。
By the way, in order to perform electroplating operations efficiently and economically using such an electrolytic cell for wire electroplating, it is necessary to set the electrolytic conditions to high current density (improvement of electrolysis speed) and low electrolysis voltage (reduction of power cost). )
It is necessary to do so.

しかるに電解時の電流密度をある一定の値(こ
の値を最大電解電流密度という)を超えるまで上
昇させると線材のめつき面は金属光沢のない黒味
を帯びた状態(これを焼け現象という)となる為
むやみに電解電流密度を上げることができず、従
つてめつき操業の効率向上は現在頭打ち状況にあ
る。尚上記の様な焼け現像が生じる原因について
は、線材めつき面近傍におけるめつき金属イオン
の欠乏にあると考えられている。
However, when the current density during electrolysis is increased to exceed a certain value (this value is called the maximum electrolytic current density), the plated surface of the wire becomes blackish with no metallic luster (this is called a burning phenomenon). Therefore, it is not possible to increase the electrolytic current density unnecessarily, and therefore the efficiency improvement of plating operations has currently reached a plateau. It is believed that the cause of the burnt development described above is a lack of plating metal ions in the vicinity of the wire plating surface.

一方電解電圧の低下に関しては電解電圧の構成
を考察する必要がある。即ち電解電圧は1陽極分
解電圧V1、2陰極分解電圧V2、3線材の固有抵
抗による電圧V3、4めつき液の抵抗による電圧
V4、5回路抵抗による電圧V5及び6陽極で発生
するガスによる遮断抵抗電圧V6の和に相当する
ものであるから、各構成々分の一部又は全部を低
圧化すればそれらの和である電解電圧を低減する
ことができると考えられる。しかしながら上記の
うち陽極分解電圧V1及び陰極分解電圧V2は、下
記(1)式で示される電解反応を行なう為の電圧であ
り、理論上一定である。
On the other hand, regarding the decrease in electrolytic voltage, it is necessary to consider the structure of the electrolytic voltage. That is, the electrolytic voltages are 1: anodic decomposition voltage V 1 , 2: cathodic decomposition voltage V 2 , 3: voltage due to the specific resistance of the wire material V 3 , 4: voltage due to the resistance of the plating liquid
V 4 , corresponds to the sum of the voltage V 5 due to the 5 circuit resistance and the cutoff resistance voltage V 6 due to the gas generated at the 6 anodes, so if the voltage of some or all of the components is lowered, the sum of them can be reduced. It is considered that the electrolytic voltage can be reduced. However, among the above, the anodic decomposition voltage V 1 and the cathodic decomposition voltage V 2 are voltages for carrying out the electrolytic reaction shown by the following formula (1), and are theoretically constant.

M−SO4+H2O→M+1/2O2+H2SO4 ……(1) M:めつき金属元素 又線材の固有抵抗による電圧V3は線材の材質、
太さ及び長さによつて決定される電圧であり操業
上はやはり一定と考えなければならない。更に
V5は実用機では無視できる値である。従つてめ
つき液の抵抗による電圧V4及びガスによる遮断
抵抗電圧V6を低減せざるを得ないことになる。
このうちガスにより遮断抵抗電圧V6は上記(1)式
で示される反応に従つて発生したO2が陽極面に
付着・蓄積して生じる電圧であり、その値はかな
りの割合を占めており、改善の余地が大きいと思
われる。よつて電解電圧の低減に対してはガスに
よる遮断抵抗電圧を何らかの手段によつて低減す
ることが有望であると考えられる。尚めつき液の
抵抗による電圧V4については電解セルの規模に
よつてほぼ決定されてしまう為ガスによる遮断抵
抗電圧V6ほどの低減効果が期待できない。
M-SO 4 +H 2 O→M+1/2O 2 +H 2 SO 4 ...(1) M: Plating metal element Also, the voltage V3 due to the specific resistance of the wire is the material of the wire,
The voltage is determined by the thickness and length and must be considered constant during operation. Furthermore
V 5 is a value that can be ignored in a practical machine. Therefore, it is necessary to reduce the voltage V 4 due to the resistance of the plating liquid and the cutoff resistance voltage V 6 due to the gas.
Among these, the gas-induced cutoff resistance voltage V 6 is the voltage generated when O 2 generated according to the reaction shown in equation (1) above adheres and accumulates on the anode surface, and its value accounts for a considerable proportion. , there seems to be a lot of room for improvement. Therefore, in order to reduce the electrolysis voltage, it is considered to be promising to reduce the gas-induced cutoff resistance voltage by some means. Note that the voltage V 4 due to the resistance of the plating liquid is almost determined by the scale of the electrolytic cell, so it cannot be expected to have the same reduction effect as the cutoff resistance voltage V 6 due to gas.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたもの
であり、線材めつき面近傍におけるめつき金属イ
オンの欠乏を解決することにより電解密度を高め
て電気めつき効率の向上をはかると共にガス遮断
抵抗電圧値を低減することにより電解電圧を低減
して電力コストを低減することのできる電解セル
であつて、しかも線材通過孔のシール性が確保さ
れた電解セルを提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and improves electrolytic plating by increasing the electrolytic density by solving the deficiency of plating metal ions near the wire plating surface. An electrolytic cell that can improve efficiency and reduce electric power costs by reducing electrolysis voltage by reducing the gas cutoff resistance voltage value, and which also ensures the sealing performance of the wire passage hole. This is what we are trying to provide.

[問題点を解決する為の手段] 上記目的を達成した本発明の電解セルとは、線
材通過様貫通孔を有する筒状陽極体の少なくとも
一端側には電解液注入ガイドを設け、該電解液注
入ガイドには線材の走行軌跡と交叉する方向から
供給される電解液を前記貫通孔内へ旋回流にして
導入する螺旋状ガイド板を設けると共に、上記筒
状陽極体の他端側若しくは略中央部に電解液排出
ガイドを設け、該電解液排出ガイドには線材通過
軌跡と交叉する方向に電解液を排出する螺旋翼が
配設された回転子を内蔵させ、且つ該回転子の軸
部に相当する線材通過孔には上記回転子の螺旋回
転方向と逆方向の螺旋溝を形成してなる点に要旨
を有するものである。
[Means for Solving the Problems] The electrolytic cell of the present invention that achieves the above object is such that an electrolytic solution injection guide is provided at least on one end side of a cylindrical anode body having a through hole for passing a wire, and the electrolytic solution is The injection guide is provided with a spiral guide plate that introduces the electrolytic solution supplied from a direction intersecting the running trajectory of the wire into the through hole in a swirling flow, and a spiral guide plate is provided on the other end side or approximately the center of the cylindrical anode body. An electrolyte discharge guide is provided in the section, and the electrolyte discharge guide has a built-in rotor equipped with a helical blade that discharges the electrolyte in a direction intersecting the wire passing trajectory, and an electrolyte discharge guide is provided in the shaft portion of the rotor. The gist is that the corresponding wire passing hole is formed with a spiral groove in a direction opposite to the helical rotation direction of the rotor.

[作用及び実施例] 本発明者等は、高電流密度操業及び停電解電圧
操業を可能にする為には被めつき線材及び陽極が
浸漬される領域における電解液の通過速度を高め
るのが良いと考えて研究に着手した。しかし従来
の様なオープンタイプの電解セルでは電解液通過
速度を高めることができない。即ちオープンタイ
プの場合において電解液通過速度を高めようとす
ればオーバフロー部により上方の電解セル槽高さ
をかなり高くしてオーバフロー部における液圧を
高める必要があるが、その為には電解セル槽を相
当に大規模とする必要があり実用的には問題があ
る。しかもこれによつて増速できるのはオーバフ
ロー部近傍の流速に限られ、必ずしも全部分の流
速を有効に高める得る訳ではない。そこで本発明
においては陽極体を筒状に形成し、該筒状陽極体
の線材通過様貫通孔(閉鎖系)を電解液流通部分
にするという基本構成を採用し、筒状陽極体の少
なくとも一端に電解液注入ガイドを設けると共に
筒状陽極体の他端若しくは略中央部に電解液排出
ガイドを設け、前記線材通過様貫通孔内を一端か
ら他端へあるいは両端から中央へ電解液を強制的
に流す様に構成している。即ち電解液の強制流通
を可能にすることによつて電解液の通過速度を飛
躍的に高めることができ、これらの手段は前記2
つの課題に対する共通且つ相互補完の解決手段と
なつている。即ち電解液流速を高めることによつ
て線材めつき面近傍の電解液[電解めつきによつ
て金属イオン濃度が下がつた電解液]を流し去
り、金属イオン濃度の高い新たな電解液を供給し
てめつき反応を効率良く進行させ、高電流密度と
しても焼け現像が起こるのを防止し得たのであ
る。又電解液流速を高めるとによつて陽極表面に
滞留するO2ガスを流し去り、電解液を陽極面に
十分接触させることによつてガス遮断抵抗電圧が
低減し、低い電解電圧でも電解めつき反応が十分
に進行させることができる様になつた。
[Operations and Examples] The present inventors believe that in order to enable high current density operation and power failure voltage operation, it is desirable to increase the passage speed of the electrolyte in the area where the coated wire and the anode are immersed. With this in mind, I began research. However, in conventional open type electrolytic cells, it is not possible to increase the electrolyte passing rate. In other words, in the case of an open type, in order to increase the electrolyte passage speed, it is necessary to considerably increase the height of the electrolytic cell tank above the overflow part to increase the liquid pressure in the overflow part. need to be made on a considerably large scale, which poses a practical problem. Furthermore, the speed can be increased only in the vicinity of the overflow portion, and it is not necessarily possible to effectively increase the flow speed in all parts. Therefore, in the present invention, a basic configuration is adopted in which the anode body is formed into a cylindrical shape, and the wire passing through hole (closed system) of the cylindrical anode body is used as an electrolyte flow part, and at least one end of the cylindrical anode body is An electrolyte injection guide is provided at the cylindrical anode body, and an electrolyte discharge guide is provided at the other end or approximately at the center of the cylindrical anode body, so that the electrolyte is forced to flow from one end to the other end or from both ends to the center within the wire passage through hole. It is configured so that it flows to That is, by enabling forced flow of the electrolyte, the passage speed of the electrolyte can be dramatically increased, and these means are the same as those described in 2 above.
It has become a common and mutually complementary means of solving two problems. In other words, by increasing the electrolyte flow rate, the electrolyte near the wire plating surface [the electrolyte whose metal ion concentration has decreased due to electrolytic plating] is washed away, and a new electrolyte with a high metal ion concentration is supplied. This allowed the plating reaction to proceed efficiently and prevent burnt development even at high current densities. In addition, by increasing the flow rate of the electrolyte, the O 2 gas remaining on the anode surface is flushed away, and by bringing the electrolyte into sufficient contact with the anode surface, the gas cutoff resistance voltage is reduced, and electrolytic plating can be achieved even at low electrolytic voltages. It became possible for the reaction to proceed sufficiently.

尚筒状陽極の形状については特に制限はなく、
円形あるいは多角形のいずれであつてもよい。
There are no particular restrictions on the shape of the cylindrical anode;
It may be either circular or polygonal.

第1図は本発明に係る電解セルを示す断面説明
図で、電解セル2aは、線材通過用貫通孔5を有
する円筒状陽極体3aの一端(図面では右端)に
第2図に示す形状の電解液導入ガイド6(詳細は
後述)を設け、且つ他端(図面では左端)に第5
図に示す形状の電解液排出ガイド8(詳細は後
述)を設けて構成される。そして電解液導入ガイ
ド6に対しては供給ライン9を接続し、一方電解
液排出ガイド8に対しては電解液排出ライン10
を接続してある。そして線材Wを陰極ローラ4に
挟持しつつ電解液排出側から電解セル2a内へ導
入し、円筒状陽極体3aの貫通孔5内を通過させ
て電解液導入側より抜き出している。尚円筒状陽
極体3aの内周壁には線材Wとの短絡を防止する
目的で多孔絶縁板7が添設されている。
FIG. 1 is an explanatory cross-sectional view showing an electrolytic cell according to the present invention, and the electrolytic cell 2a has a shape shown in FIG. An electrolyte introduction guide 6 (details will be described later) is provided, and a fifth
It is constructed by providing an electrolyte discharge guide 8 (details will be described later) having the shape shown in the figure. A supply line 9 is connected to the electrolyte introduction guide 6, and an electrolyte discharge line 10 is connected to the electrolyte discharge guide 8.
is connected. Then, the wire W is introduced into the electrolytic cell 2a from the electrolyte discharge side while being held between the cathode rollers 4, passed through the through hole 5 of the cylindrical anode body 3a, and extracted from the electrolyte introduction side. A porous insulating plate 7 is attached to the inner circumferential wall of the cylindrical anode body 3a for the purpose of preventing short circuit with the wire W.

この様な電解セル2aを用いて線材Wにめつき
に施すに当たつては、ポンプPによりタンク1か
ら抜き出した電解液を供給ライン9を経て電解液
導入ガイド6から円筒状陽極体3a内へ強制的に
導入し電解液排出ガイド8から排出ライン10を
経由してタンク1へ戻している。一方円筒状陽極
体3aと陰極ローラ4の間に電解電圧を加え、図
中左から右へ線材Wを走行させる。これによつて
線材表面に対する電解液の供給効率殊にめつき金
属イオンの供給効率が高まり、めつき金属イオン
の欠乏という事態を回避される。その結果高電流
密度による電解めつきが可能となり短時間で電解
めつきを完了することができる。又円筒状陽極体
3aの線材通過用貫通孔5の内面に滞留するO2
は電解液流に流し去られ、円筒状陽極体3aの内
面はO2に被包されずに露出するので、O2ガスに
よる遮断抵抗電圧が小さくて済み、低い電解電圧
で電解めつきを行なうことができる。
When plating the wire W using such an electrolytic cell 2a, the electrolytic solution extracted from the tank 1 by the pump P is passed through the supply line 9 from the electrolytic solution introduction guide 6 into the cylindrical anode body 3a. The electrolyte is forcibly introduced into the tank 1 via the electrolyte discharge guide 8 and the discharge line 10. On the other hand, an electrolytic voltage is applied between the cylindrical anode body 3a and the cathode roller 4, and the wire W is run from left to right in the figure. This increases the efficiency of supplying the electrolyte to the wire surface, particularly the efficiency of supplying plating metal ions, and avoids a situation where the plating metal ions become depleted. As a result, electrolytic plating with high current density becomes possible, and electrolytic plating can be completed in a short time. In addition, O 2 remains on the inner surface of the wire passing through hole 5 of the cylindrical anode body 3a.
is washed away by the electrolyte flow, and the inner surface of the cylindrical anode body 3a is exposed without being encapsulated in O 2 , so the cutoff resistance voltage due to O 2 gas can be small, and electrolytic plating can be performed at a low electrolytic voltage. be able to.

但し上記の電解セルにおいては、線材通過孔に
おける液漏れが懸念される。そこで本発明におい
ては線材の走行軌跡と交叉する方向から供給され
る電解液を前記貫通孔内へ旋回流にして導入する
電解液導入ガイドを設けると共に、上記電解液を
線材の走行軌跡と交叉する方向へ排出する電解液
排出ガイドを設け、液漏れを防止するものであ
る。
However, in the above-mentioned electrolytic cell, there is a concern about liquid leakage from the wire passage hole. Therefore, in the present invention, an electrolytic solution introduction guide is provided which introduces the electrolytic solution supplied from a direction intersecting the running trajectory of the wire into the through hole in a swirling flow, and the electrolytic solution is caused to intersect with the running trajectory of the wire. An electrolyte discharge guide is provided to discharge the electrolyte in the direction to prevent electrolyte leakage.

第2図は本発明に係る電解液導入ガイドの代表
例を示す概略説明図である。該電解液導入ガイド
6は、導入部材13とアダプタ14及び蓋板24
からなり、導入部材13は、段差を有する円筒体
11の先端面に複数の螺旋状ガイド板12を設け
ており、又アダプタ14は段差状円筒体の大径部
14bに導入部材収納孔部15aを有すると共に
該収納孔部15aに連通して供給ライン9が接続
されており、且つ小径部14aには第3図(第2
図における−線断面矢視図)に示す様に線材
通過用筒部21に対して放射状の整流板16を設
けている。更に蓋板24は皿形状円板の中央部に
線材通過孔22を穿設している。この様な電解液
導入ガイド6を円筒状陽極体3aに取付けるに当
たつては、まず始めに円筒状陽極体3aの端部拡
径孔5aにアダプタ14の小径部14aを挿入し
た後、アダプタ14の導入部材収納孔部15aに
導入部材13を図示する向きに収納し、その後蓋
板24をアダプタ14の大径部14b端面に対設
する様に嵌着する。
FIG. 2 is a schematic explanatory diagram showing a typical example of the electrolyte introduction guide according to the present invention. The electrolyte introduction guide 6 includes an introduction member 13, an adapter 14, and a cover plate 24.
The introduction member 13 is provided with a plurality of spiral guide plates 12 on the distal end surface of the stepped cylindrical body 11, and the adapter 14 is provided with an introduction member storage hole 15a in the large diameter portion 14b of the stepped cylindrical body. The supply line 9 is connected to the storage hole 15a in communication with the storage hole 15a, and the small diameter portion 14a is
As shown in the cross-sectional view taken along the line (-) in the figure, a radial rectifier plate 16 is provided for the wire passage tube portion 21. Furthermore, the lid plate 24 has a wire passing hole 22 formed in the center of the dish-shaped disk. When attaching such an electrolyte introduction guide 6 to the cylindrical anode body 3a, first insert the small diameter portion 14a of the adapter 14 into the enlarged diameter hole 5a at the end of the cylindrical anode body 3a, and then The introduction member 13 is stored in the introduction member storage hole 15a of the adapter 14 in the direction shown in the figure, and then the cover plate 24 is fitted so as to be opposed to the end surface of the large diameter portion 14b of the adapter 14.

この様に構成される電解液導入ガイド6取付部
において、供給ライン9から電解液Lを注入する
と、電解液は導入部材13の小径円筒部11aと
アダプタ14の収納孔部15a内壁の間に流入
し、円筒状陽極体3a側へ流れて螺旋状ガイド板
12に案内されて中心側へ流れ込む。このとき電
解液流には旋回性が付与され、液は遠心力によつ
て外周側へ押し付けられた状態となる。次いでア
ダプタ小径部14aの貫通孔15に入り、慣性力
によつて上記の如く外周側へ押し付けられた状態
を維持しつつ整流板15によつて整流されて中空
状の直進流となり、さらにアダプタ14から円筒
状陽極体3aへ移るテーパ状縮径部分3bで絞ら
れて充実流となり、円筒状陽極体3aの貫通孔5
へ導入される。
When the electrolyte L is injected from the supply line 9 at the attachment part of the electrolyte introduction guide 6 configured as described above, the electrolyte flows between the small diameter cylindrical part 11a of the introduction member 13 and the inner wall of the storage hole part 15a of the adapter 14. Then, it flows toward the cylindrical anode body 3a, is guided by the spiral guide plate 12, and flows toward the center. At this time, swirling properties are imparted to the electrolyte flow, and the liquid is pressed toward the outer circumferential side by centrifugal force. The flow then enters the through hole 15 of the small diameter portion 14a of the adapter, and is rectified by the rectifying plate 15 while maintaining the state of being pressed toward the outer circumferential side as described above due to inertial force, resulting in a hollow rectilinear flow. The flow is constricted at the tapered diameter-reduced portion 3b that moves from the cylindrical anode body 3a to the through hole 5 of the cylindrical anode body 3a.
will be introduced to

電解液導入ガイド6は上記の如く構成され、導
入電解液は外周側に押し付けられた状態で円筒状
陽極体3a方向へ流れるので線材が通過する中心
部への電解液の流れ込みは防止され、線材挿入側
における電解液の漏れは防止される。しかも絞り
部分において中空流中心部分の空気は絞り込まれ
て液が流れる方向と反対側へ押し戻されるので導
入電解液に空気が巻込まれることもなく、空気巻
込みによりガス遮断抵抗が増大する恐れもない。
その他の電解液導入ガイドの例としては第4図に
示す様な導入部材13aの先端に取付けられた螺
旋子17をアダプタ14の小径部14a内に挿入
するものが挙げられ、該電解液導入ガイドを用い
ることによつて前記と同様の効果を得ることがで
きる。
The electrolyte introduction guide 6 is configured as described above, and the introduced electrolyte flows toward the cylindrical anode body 3a while being pressed against the outer periphery, so that the electrolyte is prevented from flowing into the center through which the wire passes. Leakage of electrolyte on the insertion side is prevented. Moreover, the air in the center of the hollow flow is squeezed in the throttle part and pushed back to the opposite side of the flow direction of the liquid, so there is no chance of air being dragged into the introduced electrolyte, and there is no risk of increased gas cutoff resistance due to air entrainment. .
Examples of other electrolyte introduction guides include a guide in which a spiral 17 attached to the tip of an introduction member 13a is inserted into the small diameter portion 14a of the adapter 14 as shown in FIG. By using , the same effect as above can be obtained.

第5図は本発明に係る電解液排出ガイドの代表
例を示す概略説明図である。該電解排出ガイド8
は、螺旋翼21を有する回転子22を内蔵し、該
回転子22の軸部相当部分の線材通過孔に回転方
向と逆方向の螺旋溝23を形成して構成される。
該電解液排出ガイド8を用いることによつて円筒
状陽極体3aの貫通孔5を通り供給されてきた電
解液は、流れに押されて自転する該回転子22に
よつて遠心側へ振り分けられ排出ライン10へ集
められてタンク(図示せず)へ戻される。このと
き電解液排出ガイド8における液漏れは上記遠心
力による振り分け効果並びに逆螺旋溝23による
押し戻し効果によつて回避される。
FIG. 5 is a schematic explanatory diagram showing a typical example of the electrolyte discharge guide according to the present invention. The electrolytic discharge guide 8
The rotor 22 has a built-in rotor 22 having a helical blade 21, and is configured by forming a helical groove 23 in a direction opposite to the rotational direction in a wire passing hole in a portion corresponding to the shaft portion of the rotor 22.
By using the electrolyte discharge guide 8, the electrolyte that is supplied through the through hole 5 of the cylindrical anode body 3a is distributed to the centrifugal side by the rotor 22, which rotates due to the flow. It is collected in a discharge line 10 and returned to a tank (not shown). At this time, liquid leakage in the electrolyte discharge guide 8 is avoided by the distribution effect of the centrifugal force and the pushing back effect of the reverse spiral groove 23.

第6図は他の実施例1に係る電解セルを示す断
面説明図で、円筒状陽極体3aの両端に電解液導
入ガイド6を夫々設け、ポンプPから抜き出され
た電解液を両端から円筒状陽極体3aの貫通孔5
へ導入し、円筒状陽極体3aの略中央部に設けた
電解液排出ガイド8aから電解液を抜き出してタ
ンク1に戻している。
FIG. 6 is a cross-sectional explanatory view showing an electrolytic cell according to another embodiment 1, in which electrolytic solution introduction guides 6 are provided at both ends of the cylindrical anode body 3a, and the electrolytic solution extracted from the pump P is introduced from both ends into the cylindrical anode body 3a. Through hole 5 of shaped anode body 3a
The electrolyte is introduced into the tank 1, and the electrolyte is extracted from an electrolyte discharge guide 8a provided approximately at the center of the cylindrical anode body 3a and returned to the tank 1.

上記電解セルにおいて前記と同様の効果を得る
ことができる。
Effects similar to those described above can be obtained in the electrolytic cell described above.

[発明の効果] 本発明は以上の様に構成されており、最大電解
電流密度を高めることができる為短時間で効率良
く線材の電解めつきを行なうことができる。又低
い電解電圧で電解めつきを実施できるので消費電
力を低減することができる。さらに線材通過孔の
シール性が確保されているので液漏れの恐れもな
い。
[Effects of the Invention] The present invention is configured as described above, and since the maximum electrolytic current density can be increased, wire rods can be electrolytically plated efficiently in a short time. Furthermore, since electrolytic plating can be performed at a low electrolytic voltage, power consumption can be reduced. Furthermore, since the wire passage hole is sealed well, there is no risk of liquid leakage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電解セルを示す概略説明
図、第2図は電解液導入ガイドを示す斜視説明
図、第3図は第2図における−線断面矢視
図、第4図は他の電解液導入ガイドを示す斜視説
明図、第5図は電解液排出ガイドを示す断面説明
図、第6図は他の電解セルを示す概略説明図、第
7図は従来の電解セルを示す概略説明図である。 1……タンク、2,2a……電解セル、3a…
…円筒状陽極体、4……陰極ローラ、5……線材
通過貫通孔、6……電解液導入ガイド、8……電
解液排出ガイド、9……供給ライン、10……排
出ライン、W……線材。
FIG. 1 is a schematic explanatory diagram showing an electrolytic cell according to the present invention, FIG. 2 is a perspective explanatory diagram showing an electrolyte introduction guide, FIG. 3 is a cross-sectional view taken along the line - in FIG. 2, and FIG. Figure 5 is a cross-sectional diagram showing an electrolyte discharge guide, Figure 6 is a schematic diagram showing another electrolytic cell, and Figure 7 is a schematic diagram showing a conventional electrolytic cell. It is an explanatory diagram. 1... Tank, 2, 2a... Electrolytic cell, 3a...
... Cylindrical anode body, 4 ... Cathode roller, 5 ... Wire passing through hole, 6 ... Electrolyte introduction guide, 8 ... Electrolyte discharge guide, 9 ... Supply line, 10 ... Discharge line, W ... …wire.

Claims (1)

【特許請求の範囲】[Claims] 1 線材通過用貫通孔を有する筒状陽極体の少な
くとも一端側には電解液注入ガイドを設け、該電
解液注入ガイドには線材の走行軌跡と交叉する方
向から供給される電解液を前記貫通孔内へ旋回流
にして導入する螺旋状ガイド板を設けると共に、
上記筒状陽極体の他端側若しくは略中央部には電
解液排出ガイドを設け、該電解液排出ガイドには
線材通過軌跡と交叉する方向に電解液を排出する
螺旋翼が配設された回転子を内蔵させ、且つ該回
転子の軸部に相当する線材通過孔には上記回転子
の螺旋回転方向と逆方向の螺旋溝を形成してなる
ことを特徴とする線材の電気めつき用電解セル。
1. An electrolyte injection guide is provided on at least one end side of the cylindrical anode body having a through hole for passing the wire, and the electrolyte injection guide is supplied with an electrolyte supplied from a direction intersecting the traveling locus of the wire through the through hole. In addition to providing a spiral guide plate to introduce the swirling flow into the interior,
An electrolyte discharge guide is provided on the other end side or approximately in the center of the cylindrical anode body, and the electrolyte discharge guide is equipped with a rotating spiral blade that discharges the electrolyte in a direction intersecting the wire passing trajectory. Electrolytic electroplating for wire rods, characterized in that the wire rod passage hole corresponding to the shaft portion of the rotor is formed with a spiral groove in a direction opposite to the helical rotation direction of the rotor. cell.
JP25830484A 1984-12-06 1984-12-06 Electrolytic cell for electroplating of wire Granted JPS61136698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25830484A JPS61136698A (en) 1984-12-06 1984-12-06 Electrolytic cell for electroplating of wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25830484A JPS61136698A (en) 1984-12-06 1984-12-06 Electrolytic cell for electroplating of wire

Publications (2)

Publication Number Publication Date
JPS61136698A JPS61136698A (en) 1986-06-24
JPH046799B2 true JPH046799B2 (en) 1992-02-06

Family

ID=17318394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25830484A Granted JPS61136698A (en) 1984-12-06 1984-12-06 Electrolytic cell for electroplating of wire

Country Status (1)

Country Link
JP (1) JPS61136698A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547945B2 (en) * 2000-07-31 2003-04-15 United Technologies Corporation Method and apparatuses for electrochemically treating an article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508020A (en) * 1973-05-28 1975-01-28
JPS523604A (en) * 1975-06-23 1977-01-12 Shell Int Research Method of converting hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508020A (en) * 1973-05-28 1975-01-28
JPS523604A (en) * 1975-06-23 1977-01-12 Shell Int Research Method of converting hydrocarbon

Also Published As

Publication number Publication date
JPS61136698A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
JP3107170B2 (en) Method and apparatus for applying surface treatment to metal foil
WO2017209100A1 (en) Zinc cell and zinc flow cell
KR920014955A (en) Replenishment electrolyte cell for replenishing metal to aqueous electrolyte solution, with an improvement that the cathode is a gas diffusion electrode
EP0034492B1 (en) Electrochemical device having means for reducing shunt current
JP6528939B2 (en) Method and apparatus for producing electrolytic aluminum foil
US3506546A (en) Copper coating
JPH046799B2 (en)
CN210711782U (en) Oxidation tool of inside lining
CN210163539U (en) Printing pen
US3669865A (en) Apparatus for uniformly plating a continuous cylindrical substrate
CN104911637B (en) A kind of direct electrodeposition apparatus
JPH0254437B2 (en)
CN206768256U (en) A kind of nickel plating apparatus
US4285794A (en) Annular electrodes for shunt current elimination
CN210104118U (en) Copper ion supplementing device for electroplating
JP3660878B2 (en) Improved membrane electrode device useful for electrodeposition coating processing
KR860007399A (en) Vertical galvanized electrolytic cell for reforming strip material
Nadebaum et al. A novel electrochemical cell employing a rotating bipolar electrode
CN109898130B (en) Copper ion supplementing device and method for electroplating
US4793902A (en) Method for electrolyzing zinc and apparatus therefor
JPS57101692A (en) Horizontal electroplating method by insoluble electrode
KR101346251B1 (en) Mold cooling line electroplating device
JPH0653959B2 (en) Cell for contact between liquid and wire
CN220433014U (en) Electrolysis device capable of adjusting polar distance
CN214612792U (en) Silver rotational flow electrodeposition device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees