JPH046759A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH046759A
JPH046759A JP2107176A JP10717690A JPH046759A JP H046759 A JPH046759 A JP H046759A JP 2107176 A JP2107176 A JP 2107176A JP 10717690 A JP10717690 A JP 10717690A JP H046759 A JPH046759 A JP H046759A
Authority
JP
Japan
Prior art keywords
sodium
lead
negative electrode
alloy
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107176A
Other languages
Japanese (ja)
Inventor
Yoshihiko Murakoshi
村越 佳彦
Mutsumi Kameyama
亀山 むつみ
Riichi Shishikura
利一 獅々倉
Masataka Takeuchi
正隆 武内
Hiroshi Konuma
博 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2107176A priority Critical patent/JPH046759A/en
Publication of JPH046759A publication Critical patent/JPH046759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve various characteristics by mixedly using sodium-lead alloys with multiple compositions for a negative electrode. CONSTITUTION:In a nonaqueous electrolyte secondary battery using a sodium- lead alloy, or a composite body of a sodium-lead alloy, a carbon material and a binder, or a composite body of a sodium-lead alloy, a conducting polymer material and a binder for a negative electrode, sodium-lead alloys with two different compositions: one having the sodium atomic ratio 2.5 or above against lead 1 and the other having the sodium atomic ratio less than 2.5 against lead 1, are mixedly used to form the negative electrode with the sodium atomic ratio 0-4.0 against lead 1. When this negative electrode is used, a secondary battery with improved characteristics such as high energy density, a long cycle life and a low self-discharge rate is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、電池電圧が高く、自己放電が小さ(、サイク
ル寿命が長く、かつ充電放電の際のクーロン効率の良好
な高エネルギー密度を有する二次電池に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention provides a battery with high voltage, low self-discharge (long cycle life, and high energy density with good coulombic efficiency during charging and discharging). Regarding secondary batteries.

〔従来の技術] アルカリ金属の一つであるリチウム金属を負極に用いた
二次電池の考え方は古くからあり、例えば、文献M、 
Hughes、 et al、、 Journal o
f PowerSources、、 12. p、83
〜144i1984)にその総説が截っている。その中
で、リチウム金属はあまりにも活性なため、溶媒と反応
し、絶縁被膜を形成し、さらにデンドライト成長を起こ
し、二次電池用負極への適用の難しさが示されている。
[Prior Art] The idea of a secondary battery using lithium metal, which is one of the alkali metals, as a negative electrode has been around for a long time.
Hughes, et al., Journal o
f PowerSources, 12. p.83
~144i1984) provides a review. Among them, lithium metal is so active that it reacts with solvents, forms an insulating film, and causes dendrite growth, making it difficult to apply to negative electrodes for secondary batteries.

その対策としてリチウム金属を合金化したり、導電性高
分子を複合化したりする試みがなされているが、これら
はA、 N、 DeyのJ、 Eelectroche
m。
As a countermeasure, attempts have been made to alloy lithium metal or compose conductive polymers, but these have been proposed by A. N. Dey, J.
m.

Sac、、 118. No、 10. P1547〜
154911971)や、特開昭59−132576号
公報、同60−262351号公報、同61−2454
74号公報、同62−140358号公報等に記載され
ている。
Sac,, 118. No, 10. P1547~
154911971), JP-A No. 59-132576, JP-A No. 60-262351, JP-A No. 61-2454.
It is described in Publication No. 74, Publication No. 62-140358, etc.

また、ナトリウム系負極を用い、上記と同様に合金化や
導電性高分子との複合化を行っているが、これらについ
ては、Allied社またはAlliAllled−3
i Inc、が出願したUSP 4,668,596 
、同4.753,858等に記載されている。
In addition, sodium-based negative electrodes are alloyed or composited with conductive polymers in the same way as above, but these are manufactured by Allied or AlliAlled-3.
USP 4,668,596 filed by i Inc.
, 4.753, 858, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、アルカリ金属を負極に用いた室温作動用二次
電池は、上記のように、各方面で研究されているにもか
かわらずアルカリ金属と電解液との反応性を完全に抑制
するに到らず、いまだ汎用の二次電池に匹敵するほどの
市場を得たものはない。
By the way, as mentioned above, despite research in various fields on secondary batteries that use alkali metals as negative electrodes and operate at room temperature, it has not yet been possible to completely suppress the reactivity between the alkali metals and the electrolyte. However, there is still no product that has gained a market comparable to general-purpose secondary batteries.

しかし、一部に極小容量型(l■AhないしlomAh
)のリチウム系二次電池は上市されている。またカナダ
の一0LI ENERGY LIMITEDが正極にM
O52を用い、負極にLi箔を用いた比較的高容量(6
00mAhlの二次電池を商品化したが、充放電サイク
ルの可逆性、高速充放電特性、過放電特性のいずれも同
形状のニッケル・カドミウム系二次電池を凌駕するに至
らず、エネルギー密度が改善されたに留っており、汎用
性に乏しい。
However, there are some extremely small capacity types (l■Ah or lomAh).
) lithium-based secondary batteries are on the market. In addition, Canada's 10LI ENERGY LIMITED is connected to the positive electrode.
A relatively high capacity (6
Although a 00mAhl secondary battery was commercialized, the reversibility of charge/discharge cycles, high-speed charge/discharge characteristics, and overdischarge characteristics did not exceed that of a nickel-cadmium secondary battery of the same shape, and the energy density was improved. However, it lacks versatility.

このリチウム系負極が実用化されにくいのは、上記述べ
たようにリチウムと電解液との反応及びそれに由来する
デンドライト成長による短絡現象が最大の原因である。
The main reason why this lithium-based negative electrode is difficult to put into practical use is the short-circuit phenomenon caused by the reaction between lithium and the electrolyte and the resulting dendrite growth, as described above.

リチウムをナトリウム合金に代えることで電極電位が0
.2Vないし0.4V程度貴側にシフトするので、電解
液との反応性は若干緩和されるが充分ではない。
By replacing lithium with sodium alloy, the electrode potential can be reduced to 0.
.. Since the voltage is shifted to the more noble side by about 2V to 0.4V, the reactivity with the electrolyte is somewhat alleviated, but it is not sufficient.

本発明が解決しようとする課題は、上記問題点を改善し
、各種性能の優れた二次電池を提供することである。
The problem to be solved by the present invention is to improve the above-mentioned problems and provide a secondary battery with excellent various performances.

〔課題を解決するための手段J 本発明者は、上記課題に鑑み、鋭意検討したところ、負
極にナトリウム・鉛合金またはナトリウム・鉛合金と炭
素材料と結着剤との複合体を用い、そのナトリウム・鉛
合金が2種類以上の合金組成の混合物を用いると性能が
優れた非水電解液二次電池が得られることを見い出し本
発明を完成するに至った。
[Means for Solving the Problems J] In view of the above-mentioned problems, the inventors of the present invention have made extensive studies and found that the negative electrode is made of a sodium-lead alloy or a composite of a sodium-lead alloy, a carbon material, and a binder. The inventors have discovered that a non-aqueous electrolyte secondary battery with excellent performance can be obtained by using a mixture of two or more types of sodium-lead alloys, and have completed the present invention.

負極に一般に用いられているリチウムまたはリチウム合
金を用いず、ナトリウム・鉛合金またはナトリウム・鉛
合金と炭素材料と結着剤との複合体またはナトリウム・
鉛合金と導電性高分子と結着剤との複合体を用いた理由
は、以下の通りである。即ち、ナトリウムの酸化還元電
位はリチウムよりも高く、それだけ、電池溶媒との反応
性がマイルドであり、電極の可逆性が良い。さらにナト
リウム合金を用いることにより、ナトリウムと溶媒等と
の反応性を大きく抑制することができる。
Instead of using lithium or lithium alloys, which are commonly used for negative electrodes, we use sodium-lead alloys, composites of sodium-lead alloys, carbon materials, and binders, or sodium-lead alloys or sodium-lead alloys, carbon materials, and binders.
The reason for using a composite of a lead alloy, a conductive polymer, and a binder is as follows. That is, the redox potential of sodium is higher than that of lithium, and its reactivity with battery solvents is accordingly milder, and the reversibility of the electrode is better. Furthermore, by using a sodium alloy, the reactivity between sodium and a solvent etc. can be greatly suppressed.

そのため、負極の安定性や可逆性は格段に優れ、本発明
者等は、既に該負極を用いた二次電池として特願昭63
−169384号等で出願済みである。
Therefore, the stability and reversibility of the negative electrode are extremely excellent, and the inventors have already filed a patent application for a secondary battery using the negative electrode in 1983.
- Application has been filed under No. 169384 etc.

ただし、該負極を用いた場合でも、電解液やその中の不
純物または正極あるいは容器に付着していた不純物等と
全(反応しないよう抑えることは難しい。負極の電解液
との界面部分が徐々に上記不純物等と反応し、反応部の
導電性が低下する。
However, even when this negative electrode is used, it is difficult to prevent it from reacting with the electrolyte, impurities in it, or impurities attached to the positive electrode or container.The interface between the negative electrode and the electrolyte gradually It reacts with the above impurities, etc., and the conductivity of the reaction area decreases.

特に、この副反応は電気化学的に起こる場合が多く、通
常の充放電反応で電流が集中する部分から起こりやすい
。この副反応が集電体表面または集電体と接触している
負極面で起こると、負極自身に電極としての活性が残っ
ていても、集電性が悪化し、電池性能が低下し、寿命に
なる。
In particular, this side reaction often occurs electrochemically, and tends to occur in areas where current is concentrated during normal charge/discharge reactions. If this side reaction occurs on the surface of the current collector or on the negative electrode surface that is in contact with the current collector, even if the negative electrode itself remains active as an electrode, current collection performance will deteriorate, battery performance will deteriorate, and the battery life will be shortened. become.

しかし、合金組成の異なる2種類以上のナトリウム・鉛
合金の混合物を用いると、ナトリウム量の多いところと
少ないところがあり、局部電池ができ、エージングされ
て優れた電池性能を示すようになると思われる。
However, if a mixture of two or more types of sodium-lead alloys with different alloy compositions is used, there will be areas where the amount of sodium is high and areas where the amount of sodium is low, creating a localized battery that will age and exhibit superior battery performance.

この効果は、単に電池の充放電サイクル寿命を延ばすだ
けでなく、自己放電特性の向上、急速充放電性能の向上
等にも見られ、得るところは大きい。
This effect not only extends the charge/discharge cycle life of the battery, but also improves self-discharge characteristics, rapid charge/discharge performance, etc., and the benefits are significant.

ここで言う、合金の混合とは物理的混合を意味し、溶融
合成して得た合金の鉛1原子に対するナトリウムの原子
比が0〜4.0に入るもので、その中のそれぞれの原子
比が異なる2種類以上の合金を物理的に混ぜることであ
る。
The mixing of alloys here means physical mixing, and the atomic ratio of sodium to 1 atom of lead in the alloy obtained by melting and synthesis is between 0 and 4.0, and each atomic ratio within that It is the physical mixing of two or more types of alloys with different values.

例えば鉛l原子に対するナトリウムの原子比が2.0の
合金を粉砕したものと、鉛1原子に対するナトリウムの
原子比が30の合金を粉砕したものとを乳鉢等で混ぜた
ものを合金の混合物と称している。
For example, an alloy mixture in which a crushed alloy with an atomic ratio of sodium to 1 lead atom of 2.0 and a crushed alloy with a atomic ratio of sodium to 1 lead atom of 30 are mixed in a mortar or the like. It is called.

ナトリウムと鉛の合金は、広い範囲で固溶体を示さず、
金属間化合物を示す。その金属間化合物の室温での組成
は1代表的には上記原子比が3.75のものと、 2.
5のもの、 10のものそれにO−,33のものと言わ
れ、その他0.3付近にβ相を示す領域があり、ナトリ
ウムの原子比が数%以下の領域では固溶体を示すものと
考えられている。
Alloys of sodium and lead show no solid solution over a wide range;
Indicates an intermetallic compound. The composition of the intermetallic compound at room temperature is 1. Typically, the above atomic ratio is 3.75; 2.
5, 10, and O-, 33, and there is also a region around 0.3 that exhibits a β phase, and in regions where the atomic ratio of sodium is less than a few percent, it is thought to exhibit a solid solution. ing.

上記混合例では、原子比が2,0の合金は原子比が2.
5と 1.0の金属間化合物の両方から構成され、原子
比が3.0の合金は、3.75の原子比の金属間化合物
と2.5の金属間化合物の両方から構成される。よって
原子比が2.0の合金と3.0の合金を混合すると、X
線回折法で調べると、原子比が1.0と2.5と3.7
5のそれぞれの金属間化合物の結晶ピークが確認できる
In the above mixing example, an alloy with an atomic ratio of 2.0 has an atomic ratio of 2.0.
An alloy composed of both 5 and 1.0 intermetallic compounds with an atomic ratio of 3.0 is composed of both a 3.75 atomic ratio intermetallic compound and a 2.5 atomic ratio intermetallic compound. Therefore, when mixing an alloy with an atomic ratio of 2.0 and an alloy with an atomic ratio of 3.0,
When examined by line diffraction, the atomic ratios are 1.0, 2.5, and 3.7.
The crystal peaks of each intermetallic compound of No. 5 can be confirmed.

混合する合金組成は、それぞれ鉛lに対するナトリウム
の原子比が0〜4.0で、好ましくは1.0〜3.5さ
らに好ましくは1.0〜3.0で、2種類以上の異なっ
た合金組成のものを混合して、充電時、放電時の平均ナ
トリウム原子比が1.0〜3.75の間にくるようにす
る必要がある。
The alloy composition to be mixed has an atomic ratio of sodium to lead 1 of 0 to 4.0, preferably 1.0 to 3.5, more preferably 1.0 to 3.0, and two or more different alloys. It is necessary to mix the compositions so that the average sodium atomic ratio during charging and discharging is between 1.0 and 3.75.

好ましい混合合金のそれぞれの組成は、少なくとも1種
が鉛原子1に対しナトリウム原子比が2.5以上のもの
で、また少な(とも1種が鉛原子1に対しナトリウム原
子比が2,5未満のものが良い。
The composition of each of the preferred mixed alloys is such that at least one type has an atomic ratio of sodium to 1 lead atom of 2.5 or more, and at least one type has a sodium atomic ratio of less than 2.5 to 1 lead atom. The one is good.

その理由は、電解液を汁液した後の局部電池効果が充分
に発揮されつるからである。
The reason for this is that the local battery effect is fully exerted after the electrolyte is diluted.

混合する合金割合は特に規定しないが、混合効果を最大
限に得るためには、1つの合金が40重量%〜60重量
%の間に存在するのが望まし≦、残りの混合品の合計が
60重量%〜40重量%であることが望ましい。
The proportion of alloys to be mixed is not particularly specified, but in order to maximize the mixing effect, it is desirable that one alloy exists between 40% and 60% by weight, and the total of the remaining mixed products is The content is preferably 60% by weight to 40% by weight.

この場合、2種以上のナトリウム・鉛合金を混合した負
極をX線回折法で調べると、ナトリウムと鉛の原子比が
鉛1に対しナトリウムが3.75の金属間化合物と、ナ
トリウムが1の金属間化合物または0.3の金属間化合
物または純鉛の存在が同時に確認される。
In this case, when a negative electrode made of a mixture of two or more types of sodium-lead alloys is examined using X-ray diffraction, it is found that the atomic ratio of sodium to lead is an intermetallic compound in which the atomic ratio of sodium to lead is 1 to 3.75; The presence of intermetallic compounds or 0.3 intermetallic compounds or pure lead is simultaneously confirmed.

もし、従来の方法のように、混合溶融して合成したナト
リウム・鉛合金では、鉛lに対しナトリウムが3.75
と2,5の金属間化合物または2.5と1.0の金属間
化合物だけからなり、決して3,75と1等の広範囲に
亘っての金属間化合物の存在は認められない。
If a sodium-lead alloy synthesized by mixing and melting as in the conventional method, the sodium content is 3.75% per 1 lead.
and 2,5 or 2.5 and 1.0, and the presence of extensive intermetallic compounds such as 3,75 and 1 is never recognized.

また、単にナトリウム・鉛合金のみを電極として使用し
ても良いが、炭素材料あるいは導電性高分子や結着剤を
添加し複合体電極にしても良い。用いる炭素材料として
は、カーボンブラックまたは、黒鉛が適する。上記カー
ボンブラックには、サーマルブラック、ファーネスブラ
ック、アセチレンブラック等があるがいずれでもよ(特
に制限はない。また黒鉛としては、天然黒鉛でも人造黒
鉛でもよく、また気相成長法により合成した繊維状黒鉛
でもよい。しかし、炭素材料の量があまり多過ぎると電
極容量密度を下げる。適した量としては負極重量当たり
、10%以下が良い。
Moreover, although it is possible to simply use only a sodium-lead alloy as an electrode, a carbon material, a conductive polymer, or a binder may be added to form a composite electrode. Carbon black or graphite is suitable as the carbon material to be used. The above-mentioned carbon black includes thermal black, furnace black, acetylene black, etc., but any of them may be used (there is no particular restriction).Also, the graphite may be natural graphite or artificial graphite, or it may be a fibrous black synthesized by a vapor growth method. Graphite may also be used.However, if the amount of carbon material is too large, the electrode capacity density will be reduced.A suitable amount is 10% or less based on the weight of the negative electrode.

また導電性高分子を用いるとすればポリパラフェニレン
、ポリアセチレン、ポリキノリンまたはそれらの導電体
が良いが、その中ではポリパラフェニレンが最も好まし
い。適した量としては負極重量当たり15%以下が良い
Further, if a conductive polymer is used, polyparaphenylene, polyacetylene, polyquinoline, or a conductor thereof is preferable, and among them, polyparaphenylene is the most preferable. A suitable amount is 15% or less based on the weight of the negative electrode.

さらに複合電極が使用中に崩壊しないようにするため、
結着剤を添加する必要があるが、電極や電解液との反応
性がないことが必要で、通常ポリエチレン、ポリプロピ
レンの繊維または粉体を電極中によく分散させて加熱溶
着させて用いる。また、より効果的な負極材の結着剤と
しては、例えばオレフィン系共重合体ゴム、例えばエチ
レン−プロピレンゴム(EPR)、エチレン−ブテンゴ
ム(EBR) 、エチレン−プロピレン−ジエンゴム(
EPDM)等が挙げられるが特にEPDMが好ましい。
Furthermore, to prevent the composite electrode from collapsing during use,
Although it is necessary to add a binder, it is necessary that it has no reactivity with the electrode or electrolyte, and is usually used by thoroughly dispersing polyethylene or polypropylene fibers or powder in the electrode and welding it by heating. In addition, more effective binders for negative electrode materials include, for example, olefin copolymer rubbers such as ethylene-propylene rubber (EPR), ethylene-butene rubber (EBR), and ethylene-propylene-diene rubber (
EPDM), etc., and EPDM is particularly preferred.

この結着剤も多く使用すると、かえって電極性能を損な
う。適した量としては負極重量当り、5%以下である。
If too much of this binder is used, the electrode performance will be impaired. A suitable amount is 5% or less based on the weight of the negative electrode.

以上の負極活物質の中で本発明の効果を最も効率的に示
すものはナトリウム合金に炭素材料と結着剤を加えた系
である。
Among the negative electrode active materials described above, the one that most efficiently exhibits the effects of the present invention is a system in which a carbon material and a binder are added to a sodium alloy.

このような、負極を用いた場合、好適な電解液としては
、ナトリウム塩を1.2−ジメトキシエタンとエーテル
系化合物との混合溶媒に溶解したものがよい。
When such a negative electrode is used, a suitable electrolytic solution is one in which a sodium salt is dissolved in a mixed solvent of 1,2-dimethoxyethane and an ether compound.

エーテル系化合物との混合系で用いる場合その種類に特
に制限はないが、当然のことながら電極活物質と強く反
応するものは使用することはできない。
When used in a mixed system with an ether-based compound, there are no particular restrictions on the type, but as a matter of course, those that strongly react with the electrode active material cannot be used.

混合される非水溶媒としては、例えば、エトキシ−メト
キシエタン、ダイグライム、トリグライム、テトラグラ
イム、ペンタグライム、テトラヒドロフラン、2−メチ
ルテトラヒドロフラン、1.4−3メチルジオキソラン
、ジオキサン等のエーテル化合物で、特にダイグライム
、トリグライム、テトラグライムが好ましい。
Examples of the non-aqueous solvent to be mixed include ether compounds such as ethoxy-methoxyethane, diglyme, triglyme, tetraglyme, pentaglyme, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-3-methyldioxolane, and dioxane, especially diglyme. , triglyme, and tetraglyme are preferred.

ナトリウム塩の具体例としてはNaPFaやNaBF、
、NaCF35Oz 、NaAsF5、Na5iFs等
を挙げることができるが、有機溶媒への溶解度が比較的
高く、電気化学的及び化学的に安定な電解質としてNa
PF5を推薦することができる。
Specific examples of sodium salts include NaPFa, NaBF,
, NaCF35Oz, NaAsF5, Na5iFs, etc., but Na has relatively high solubility in organic solvents and is electrochemically and chemically stable.
PF5 can be recommended.

次いで、本発明の電池に適した正極について説明する。Next, a positive electrode suitable for the battery of the present invention will be explained.

上記適した正極とは、本発明の電池に用いる負極に対し
て少なくとも 1.5v以上の電圧を有し、かつ可逆的
にナトリウムイオンを吸蔵、放出できる物であることが
必要であり、ナトリウムと、無#I#化物または無機カ
ルコゲナイドとの組合せを主成分とする正極が好適に使
用できる。ここで無機酸化物としては、例えばCoO□
、MnO□、w03、MoO□、Mob、、■205等
、無機カルコゲナイドとしては、例えばTi5a、MO
sSs、NtPSe3等、無機ハライドとしては、例え
ばRuCl3、RuBr3、Fe0C1等がある。
The above-mentioned suitable positive electrode must have a voltage of at least 1.5 V or more with respect to the negative electrode used in the battery of the present invention, and must be capable of reversibly occluding and releasing sodium ions. A positive electrode whose main component is a combination with a non-#I# compound or an inorganic chalcogenide can be suitably used. Here, as the inorganic oxide, for example, CoO□
, MnO□, w03, MoO□, Mob, , ■205, etc. Examples of inorganic chalcogenides include Ti5a, MO
Examples of inorganic halides such as sSs and NtPSe3 include RuCl3, RuBr3, and Fe0C1.

これらの中で重量当り及び体積当りの電気容量、密度が
大きく、可逆性がよいものとしてCoot、M o O
z、MoOxが挙げられるが、特に、COO2が好まし
い。このCoO□はNa”を眉間に含んだ形で存在して
いるいわゆる層間化合物の形をとり、層間は、Na”の
量により広がったり、縮んだりする。
Among these, Coot, MoO have high electric capacity per weight and volume, high density, and good reversibility.
Z, MoOx, and COO2 are particularly preferred. This CoO□ takes the form of a so-called interlayer compound that exists in a form containing Na'' between the eyebrows, and the interlayer expands or contracts depending on the amount of Na''.

但し、Na”は酸素間どうしのイオン反発を抑制する働
きもあり、Na”量が増えると必ずしもホスト格子のC
軸が伸びるとは限らず、a軸及びb軸が若干伸びる程度
である。そのため、COO2をホストに持つナトリウム
・コバルト酸化物の充放電に伴う形状変化は比較的小さ
く、他の無機物に比べ崩壊することが少ない。さらに、
ナトリウム・コバルト酸化物は電子伝導性が大きいため
、導電助材を殆ど必要としない。そのため、少ない導電
助材量または全く導電助材を使用しな(でも電極として
充分に性能が発揮される。
However, Na'' also has the function of suppressing ion repulsion between oxygen atoms, so increasing the amount of Na'' does not necessarily reduce the amount of C in the host lattice.
The axes do not necessarily elongate, but the a-axes and b-axes may elongate slightly. Therefore, the change in shape of sodium cobalt oxide having COO2 as a host due to charging and discharging is relatively small, and it is less likely to disintegrate than other inorganic substances. moreover,
Since sodium cobalt oxide has high electronic conductivity, it hardly requires conductive additives. Therefore, sufficient performance as an electrode can be achieved even if a small amount of conductive additive or no conductive additive is used.

次に実施例をもって、本発明の二次電池について説明す
る。但し1本発明は実施例に限定されるものではない。
Next, the secondary battery of the present invention will be described with reference to Examples. However, the present invention is not limited to the examples.

特に実施例はコイン型電池を例に説明しているが、シリ
ンダー型、平板型等を問わずいかなる形状の電池にも適
用できる。
In particular, the embodiments are explained using a coin-type battery as an example, but the present invention can be applied to any type of battery, including cylinder type, flat plate type, etc.

〔実施例1 実施例1 負極はナトリウムと鉛の原子比が2.70対1.00と
2.20対1.00の合金を重量比1:1に混合したも
のを微細に粉砕したあと、あらかじめ混合しておいたア
セチレンブラックとEPDM (結着剤)の重量比が3
=1の混合物を加え、ナトリウム合金混合物が92%、
アセチレンブラックとEPDMの混合物が8%になるよ
うに混ぜて負極活物質とし、直径15m園、厚さ300
um程度になるよう円板状に加圧成形して作製した。こ
の電極中のナトリウムと鉛の比をICP元素分析法で調
べたところ、ナトリウム:鉛は244であった。
[Example 1 Example 1 The negative electrode was made by finely pulverizing a mixture of alloys with an atomic ratio of sodium and lead of 2.70:1.00 and 2.20:1.00 at a weight ratio of 1:1. The weight ratio of pre-mixed acetylene black and EPDM (binder) is 3.
= 1 mixture is added, the sodium alloy mixture is 92%,
Acetylene black and EPDM were mixed to a concentration of 8% to form a negative electrode active material, and the diameter was 15 m and the thickness was 300 m.
It was produced by pressure molding into a disk shape so that it had a thickness of about 100 um. When the ratio of sodium to lead in this electrode was examined by ICP elemental analysis, the ratio of sodium to lead was 244.

この電極をX線回折法で測定し、金属間化合物のX線回
折パターン及びナトリウムと鉛を単一比で浴融して合金
化したNa03Pb合金電極、Na2□pb合金電極及
びNa2. tsPb合金電極のX線回折パターンと比
較して示した。ナトリウムと鉛の金属間化合物は、Na
3.ysPb、 Na2.sPb、Nap、oPb及び
Nao、 aPbの存在が知られている。但し、Na0
3Pbの金属間化合物の存在は必ずしも確証はなく、そ
の付近の狭い範囲でβ相の固溶体が存在するとも言われ
ている。
This electrode was measured by X-ray diffraction method, and the X-ray diffraction pattern of the intermetallic compound, Na03Pb alloy electrode, Na2□pb alloy electrode, Na2□pb alloy electrode, and Na2. It is shown in comparison with the X-ray diffraction pattern of the tsPb alloy electrode. The intermetallic compound of sodium and lead is Na
3. ysPb, Na2. The existence of sPb, Nap, oPb, Nao, and aPb is known. However, Na0
The existence of a 3Pb intermetallic compound is not necessarily confirmed, and it is said that a β-phase solid solution exists in a narrow range around it.

Na37sPbとNaPb及び純鉛のX線回折の標準パ
ターンは、JCPDS powder Diffrac
tion Fileにありすでに既知である。今回新た
にNa、 sPbのxi1回折結果を含め、Nai、 
tsPbのX線回折を行ない図1及び図2に示した。図
2のX線回折パターンはJCPDSファイルと全く良く
一致している。
The standard pattern for X-ray diffraction of Na37sPb, NaPb and pure lead is JCPDS powder Diffrac.
tion File and is already known. This time, we newly included the xi1 diffraction results of Na and sPb, Nai,
X-ray diffraction of tsPb was performed and shown in FIGS. 1 and 2. The X-ray diffraction pattern in Figure 2 is in very good agreement with the JCPDS file.

それに対し、Nap、 、6Pb合金及びNa2□pb
合金のX線回折パターンを図3及び図4に示したが、い
ずれもNa2. sPb金属間化合物とNa、、、Pb
金属間化合物だけからなる合金であることがわかる。
On the other hand, Nap, , 6Pb alloy and Na2□pb
The X-ray diffraction patterns of the alloys are shown in FIGS. 3 and 4, both of which are Na2. sPb intermetallic compound and Na,...,Pb
It can be seen that this is an alloy consisting only of intermetallic compounds.

一方、Na2. yPb合金のX11回折パターンを図
5に示したが、これはNas、 ysPl)金属間化合
物とNa2. sPb金属間化合物だけからなる合金で
あることがわかる。一方、本実施例で示したNa2. 
yPb合金とNa、、 zPb合金の混合品電極のX線
回折パターンを図6に示したが、これは明らかにNaz
、tsPbとNa2. sPb及びNap、oPbの3
種の金属間化合物の混合品であることがわかる。
On the other hand, Na2. The X11 diffraction pattern of the yPb alloy is shown in Figure 5, which is composed of intermetallic compounds such as Nas, ysPl) and Na2. It can be seen that this is an alloy consisting only of sPb intermetallic compounds. On the other hand, the Na2.
Figure 6 shows the X-ray diffraction pattern of a mixed electrode of yPb alloy and Na, zPb alloy, which is clearly Naz
, tsPb and Na2. 3 of sPb and Nap, oPb
It can be seen that it is a mixture of various intermetallic compounds.

また、正極はNa、0□とCO3O4を酸素雰囲気下で
加熱反応させ、Nao、 ?C0Q2を合成し、それを
粉砕した後、予め混合しておいたアセチレンブラックと
テトラフルオロエチレン(結着剤)の重量比が3:lの
混合物を加え、Nao、 tcOOzが96%、混合物
が4%になるように混ぜて、正極活物質とし、直径15
mm、厚さ400μ−程度になるよう円板状に加圧成形
して作製した。
In addition, the positive electrode is made by heating and reacting Na, 0□ and CO3O4 in an oxygen atmosphere to form Nao, ? After synthesizing C0Q2 and pulverizing it, a mixture of acetylene black and tetrafluoroethylene (binder) with a weight ratio of 3:1 was added, and Nao, tcOOz was 96%, and the mixture was 4:1. % to form a positive electrode active material, and a diameter of 15%.
It was produced by pressure molding into a disc shape so that it had a thickness of about 400 μm.

電解液は、 1.2−ジメトキシエタンにNaPF、を
1、(1モル/I2になるように溶かしたものを用いた
。正極と負極の間にポリプロピレン製マイクロポーラス
フィルムとポリプロピレン製不織布をセパレータとして
用い、第7図に示すような周知のコイン型セルを組み立
てた。
The electrolytic solution used was one in which NaPF was dissolved in 1,2-dimethoxyethane at a concentration of 1 mole/I2.A polypropylene microporous film and a polypropylene nonwoven fabric were used as separators between the positive and negative electrodes. Using this method, a well-known coin-shaped cell as shown in FIG. 7 was assembled.

この電池の組立直後の電圧は、2.50Vであった。こ
の電池を放電方向に電流3.0mAで電池電圧が1.8
Vになるまで放電し、次いで同じ電流値で電池電圧が3
.2Vになるまで充電し、以後放電・充電を繰返して、
この電池の放電容量及び可逆性を調べたところ、最大放
電容量は17.5mAhでその時の充放電効率は100
%であった。50サイクル目も充放電効率100%、放
電容量17.3a+Ahで順調に作動している。
The voltage of this battery immediately after assembly was 2.50V. When this battery is discharged with a current of 3.0 mA, the battery voltage is 1.8
Discharge until the battery voltage reaches V, then at the same current value the battery voltage increases to 3.
.. Charge until it reaches 2V, then repeat discharging and charging.
When we investigated the discharge capacity and reversibility of this battery, the maximum discharge capacity was 17.5 mAh, and the charge/discharge efficiency was 100 mAh.
%Met. Even in the 50th cycle, it is operating smoothly with a charging/discharging efficiency of 100% and a discharge capacity of 17.3a+Ah.

実施例2 上記と全く同じ電池を組み立て、充電状態にして、60
℃、10日間放置して自己放電率を調べたところ、 1
.8%であった。また正極、負極を短絡し3日間放置後
、充放電を試みたところ、何の異常も見られず、正常に
作動できた。
Example 2 The same battery as above was assembled, charged, and charged for 60
℃, and examined the self-discharge rate after being left for 10 days.1
.. It was 8%. Further, when the positive and negative electrodes were short-circuited and left for 3 days, charging and discharging was attempted, and no abnormalities were observed, and the battery operated normally.

実施例3 正極、及び電解液は実施例1と同じものを用い、負極に
はナトリウムと鉛の原子比が3.75対1.00と1.
96対1.00を重量比I:Iに混合したものを91%
、アセチレンブラックとEPDMの混合物が9%になる
ように混ぜたものの複合体を用いた。
Example 3 The same positive electrode and electrolyte as in Example 1 were used, and the negative electrode had an atomic ratio of sodium to lead of 3.75:1.00.
96:1.00 mixed in weight ratio I:I 91%
A composite of acetylene black and EPDM mixed at a concentration of 9% was used.

この電極のX!1回折を行なったところ、図8のように
なった。やはりsa、、 ysPbとNa2. sPb
及びNap、oPbの各金属間化合物の混合物であるこ
とがわかる。
This electrode's X! When one diffraction was performed, the result was as shown in FIG. Again, sa,,ysPb and Na2. sPb
It can be seen that it is a mixture of intermetallic compounds, Nap, and oPb.

この電池をまず放電方向から一定電流値5mAで電池電
圧が1.5Vになるまで放電し、次いで同じ電流値で電
池電圧が3.3■になるまで充電し、以降放電、充電を
繰り返したところ最大放電容量が16.8n+Ah 、
放電容量が最大値の85%に低下するまでのサイクルは
253回であり、その後も順調に差動している。
This battery was first discharged from the discharging direction at a constant current value of 5 mA until the battery voltage reached 1.5 V, then charged at the same current value until the battery voltage reached 3.3 ■, after which discharging and charging were repeated. Maximum discharge capacity is 16.8n+Ah,
It took 253 cycles for the discharge capacity to drop to 85% of the maximum value, and the differential remained steady after that.

実施例4 負極にナトリウムと鉛の原子比が2.70対1.oOの
合金と鉛を重量比9:lに混合したもの呪%、アセチレ
ンブラックとEPDMの混合物が8%になるように混ぜ
たものを用いた他は実施例1と同じ正極、及び電解液を
用い、実施例1と同様で実験を行なったところ、最大放
電容量が17.6*Ah 、サイクル寿命は668回で
あった。またこの電池を実施例2と同様な方法で自己放
電率を調べたところ1.6%であった。
Example 4 The atomic ratio of sodium and lead in the negative electrode was 2.70:1. The same positive electrode and electrolyte as in Example 1 were used, except that a mixture of OO alloy and lead at a weight ratio of 9:1 and a mixture of acetylene black and EPDM at a weight ratio of 8% were used. When an experiment was conducted in the same manner as in Example 1, the maximum discharge capacity was 17.6*Ah, and the cycle life was 668 times. Furthermore, the self-discharge rate of this battery was examined in the same manner as in Example 2, and was found to be 1.6%.

比較例1 実施例1で用いた負極の合金にナトリウムと鉛の原子比
が2.70対1.00の合金を用いた以外は、実施例1
と全く同様な方法で電池性能評価を行なった。この負極
をX線回折法で調べた結果を図5に既に示したが、Na
575PbとNa2. sPbの各金属間化合物しか確
認できず、Na+、 Opb等はなかった。
Comparative Example 1 Example 1 except that an alloy with an atomic ratio of sodium and lead of 2.70 to 1.00 was used as the negative electrode alloy used in Example 1.
Battery performance was evaluated using exactly the same method. The results of examining this negative electrode using the X-ray diffraction method are already shown in Figure 5.
575Pb and Na2. Only intermetallic compounds of sPb were confirmed, and Na+, Opb, etc. were not found.

その結果、最大放電容量は17.1*Ahで実施例1よ
りやや低く、50サイクル目の容量は16.7*Ahと
なっていた。これは混合組成のものに比べやや劣った。
As a result, the maximum discharge capacity was 17.1*Ah, which was slightly lower than in Example 1, and the capacity at the 50th cycle was 16.7*Ah. This was slightly inferior to the mixed composition.

比較例2 比較例1と全く同じ電池を組み立て−、実施例2と同様
に自己放電率を調べたところ、 2,7%であった。
Comparative Example 2 A battery exactly the same as Comparative Example 1 was assembled, and the self-discharge rate was examined in the same manner as in Example 2, and it was found to be 2.7%.

比較例3 比較例1と全く同じ電池で、実施例3と同様な方法で電
池性能評価を行なった。その結果最大放電容量は15.
6*Ahで容量が85%に低下するまでのサイクル寿命
は230回であった。
Comparative Example 3 Using the same battery as Comparative Example 1, battery performance was evaluated in the same manner as in Example 3. As a result, the maximum discharge capacity was 15.
The cycle life until the capacity decreased to 85% at 6*Ah was 230 cycles.

実施例5 負極にナトリウムと鉛の原子比が3.lOO120口と
1.80対1.OOの合金を重量比l:1に混合したも
のを用いた他は実施例1および2と同様に電池実験を行
なったところ、最大放電容量が15.9*Ahで、50
サイクル目の容量は15.8■Ahであった。
Example 5 The atomic ratio of sodium and lead in the negative electrode was 3. lOO 120 mouths and 1.80 to 1. A battery experiment was carried out in the same manner as in Examples 1 and 2, except that a mixture of OO alloy at a weight ratio of 1:1 was used, and the maximum discharge capacity was 15.9*Ah.
The capacity at the 1st cycle was 15.8 Ah.

自己放電率は2.1%であった。The self-discharge rate was 2.1%.

実施例6 負極にナトリウム鉛の原子比が2.70対1.00と3
.70対1.00を重量比l:2に混合したものを用い
た他は実施例1および2と同様に電池実験を行なったと
ころ、最大放電容量が16.411Ah 、50サイク
ル目の放電容量は16.2*Ahで、自己放電率は2.
7%であった。
Example 6 The atomic ratio of sodium lead in the negative electrode is 2.70 to 1.00 and 3
.. A battery experiment was conducted in the same manner as in Examples 1 and 2 except that a mixture of 70:1.00 and 1.00 was used at a weight ratio of 1:2.The maximum discharge capacity was 16.411Ah, and the discharge capacity at the 50th cycle was 16.2*Ah, self-discharge rate is 2.
It was 7%.

実施例7 負極にナトリウム鉛の原子比が2.70対1.00と2
.30対1.00を重量比1:lに混合したものを99
.5%、EPDMを0.5%混ぜたものを用いた他は実
施例1および2と同様に電池実験を行なったところ、最
大放電容量が16.9■Ah 、50サイクル目の放電
容量は16.5*Ahで、自己放電率は2.1%であっ
た。
Example 7 The atomic ratio of sodium lead in the negative electrode is 2.70 to 1.00.
.. 30:1.00 mixed at a weight ratio of 1:1 is 99
.. A battery experiment was conducted in the same manner as in Examples 1 and 2 except that a mixture of 5% EPDM and 0.5% EPDM was used, and the maximum discharge capacity was 16.9 ■Ah, and the discharge capacity at the 50th cycle was 16 At .5*Ah, the self-discharge rate was 2.1%.

実施例8 負極にナトリウム鉛の原子比が2,80対1.00と2
.20対1.00を重量比l:1に混合したものを94
%とコバシック(KOVACIC)法(J、 Am、 
ChemSoc、 、 85.454〜458 (19
631)により合成したポリパラフェニレンとEPDM
の重量比が3=1の混合物6%に混ぜたものを用い、実
施例1および2と同様に電池実験を行なったところ最大
放電容量が16.5*Ah 、 50サイクル目の放電
容量はI6.3*Ahで、自己放電率は2.6%であっ
た。
Example 8 The atomic ratio of sodium lead in the negative electrode is 2.80:1.00 and 2
.. 20:1.00 mixed at a weight ratio of 1:1 is 94
% and KOVACIC method (J, Am,
ChemSoc, , 85.454-458 (19
631) and EPDM synthesized by
When a battery experiment was conducted in the same manner as in Examples 1 and 2 using a mixture of 6% with a weight ratio of 3=1, the maximum discharge capacity was 16.5*Ah, and the discharge capacity at the 50th cycle was I6. At .3*Ah, the self-discharge rate was 2.6%.

〔発明の効果] 以上述べたように、本発明の二次電池は、エネルギー密
度が高く、サイクル寿命が長く、自己放電率も低い等、
多くの優れた性能を有するので。
[Effects of the Invention] As described above, the secondary battery of the present invention has high energy density, long cycle life, low self-discharge rate, etc.
Because it has many excellent performances.

これを電源とする分野に寄与することが極めて大きい。It will greatly contribute to fields that use this as a power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNaa、 sPb合金電極のX線回折パターン
第2図はNax、ysPb      tt第3図はN
a1.98Pb      //第4図はNa2.zP
b      //第5図はNa2.yPb     
 //第6図はNa2□pb合金とNaz□pb合金の
混合電極のx#it回折パターン 第7図はコイン型二次電池の縦断面図 第8図はNa、9sPb合金とNa3. vsPb合金
の混合電極のX線回折パターン を示し、第1図ないし第6図及び第8図中のムはNa3
. tsPb全Pb化合物に特徴づけられる回折線ピー
クを示し、・はNaz、 sPbの回折線ピークを示し
、■はNa+。pbの回折線ピークを示す。 また、第7図中の番号は、 1−・・・・・正極、2・・・−集電体、3−・・・・
−ポリプロピレン製不織布、4・・・・・・ポリプロピ
レン製マイクロポーラスフィルム、5・・・−・−絶縁
パッキング、6・・・・・・負極、7・・・・・−正極
缶、8−・・・−負極缶である。
Figure 1 shows the X-ray diffraction pattern of Naa, sPb alloy electrode Figure 2 shows Nax, ysPb tt Figure 3 shows N
a1.98Pb //Figure 4 shows Na2. zP
b //Figure 5 shows Na2. yPb
//Figure 6 is the x#it diffraction pattern of a mixed electrode of Na2□pb alloy and Naz□pb alloy. Figure 7 is a vertical cross-sectional view of a coin-type secondary battery. The X-ray diffraction pattern of the mixed electrode of vsPb alloy is shown, and in Figs. 1 to 6 and Fig. 8, m is Na
.. tsPb shows the diffraction line peaks characteristic of all Pb compounds, * indicates the diffraction line peaks of Naz and sPb, and ■ indicates Na+. The diffraction line peak of pb is shown. In addition, the numbers in Fig. 7 are as follows: 1--Positive electrode, 2--Current collector, 3--...
-Polypropylene nonwoven fabric, 4...Polypropylene microporous film, 5...--Insulating packing, 6...-Negative electrode, 7...-Positive electrode can, 8-- ...- It is a negative electrode can.

Claims (6)

【特許請求の範囲】[Claims] (1)負極にナトリウム・鉛合金またはナトリウム・鉛
合金と炭素材料と結着剤との複合体またはナトリウム・
鉛合金と導電性高分子と結着剤との複合体を用いる非水
電解液二次電池において、負極に2種類以上の合金組成
のナトリウム・鉛合金を混合したものを用いることを特
徴とする二次電池。
(1) For the negative electrode, a sodium/lead alloy or a composite of a sodium/lead alloy, a carbon material, and a binder, or a sodium/lead alloy
A non-aqueous electrolyte secondary battery using a composite of a lead alloy, a conductive polymer, and a binder, characterized in that a mixture of two or more types of sodium-lead alloys with alloy compositions is used for the negative electrode. Secondary battery.
(2)混合する合金の少なくとも1つは鉛1に対するナ
トリウムの原子比が2.5以上で、また少なくとも1つ
は鉛1に対するナトリウムの原子比が2.5未満である
合金の混合品である負極を用いた請求項(1)記載の二
次電池。
(2) At least one of the alloys to be mixed has an atomic ratio of sodium to 1 lead of 2.5 or more, and at least one is a mixture of alloys in which the atomic ratio of sodium to 1 lead is less than 2.5. The secondary battery according to claim (1), which uses a negative electrode.
(3)負極に用いるナトリウム・鉛合金は、鉛1に対す
るナトリウムの原子比が0〜4.0の範囲である請求項
(1)記載の二次電池。
(3) The secondary battery according to claim (1), wherein the sodium-lead alloy used for the negative electrode has an atomic ratio of sodium to 1 lead in the range of 0 to 4.0.
(4)充電時、放電時の負極のナトリウム・鉛合金の鉛
1に対する平均ナトリウム原子比が1.0〜3.75の
範囲内である請求項(1)ないし(3)記載の二次電池
(4) The secondary battery according to any one of claims (1) to (3), wherein the average atomic ratio of sodium to 1 lead of the sodium-lead alloy of the negative electrode during charging and discharging is within the range of 1.0 to 3.75. .
(5)成型後の負極のX線回折スペクトルでナトリウム
と鉛の原子比が3.75:1の金属間化合物と1:1の
金属間化合物または0.3:1の金属間化合物または純
鉛が同時に観測されるナトリウム・鉛合金からなる請求
項(1)ないし(4)記載の二次電池。
(5) X-ray diffraction spectrum of the negative electrode after molding shows that the atomic ratio of sodium to lead is an intermetallic compound of 3.75:1 and an intermetallic compound of 1:1 or an intermetallic compound of 0.3:1 or pure lead. The secondary battery according to any one of claims (1) to (4), comprising a sodium-lead alloy in which is observed at the same time.
(6)正極がナトリウム・コバルト酸化物である請求項
(1)ないし(5)記載の二次電池。
(6) The secondary battery according to any one of claims (1) to (5), wherein the positive electrode is a sodium cobalt oxide.
JP2107176A 1990-04-23 1990-04-23 Secondary battery Pending JPH046759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107176A JPH046759A (en) 1990-04-23 1990-04-23 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107176A JPH046759A (en) 1990-04-23 1990-04-23 Secondary battery

Publications (1)

Publication Number Publication Date
JPH046759A true JPH046759A (en) 1992-01-10

Family

ID=14452401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107176A Pending JPH046759A (en) 1990-04-23 1990-04-23 Secondary battery

Country Status (1)

Country Link
JP (1) JPH046759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
JP2022514452A (en) * 2018-10-24 2022-02-14 ブロードビット バッテリーズ オーイー Improved anode materials and anodes for rechargeable batteries, how they are manufactured, and electrochemical cells made from them.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
JP2022514452A (en) * 2018-10-24 2022-02-14 ブロードビット バッテリーズ オーイー Improved anode materials and anodes for rechargeable batteries, how they are manufactured, and electrochemical cells made from them.

Similar Documents

Publication Publication Date Title
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
US6207327B1 (en) Totally-solid lithium secondary battery
JP2002540569A (en) Lithium-containing phosphate active material
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH0732017B2 (en) Non-aqueous electrolyte secondary battery
JPH0626138B2 (en) Secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
EP4246629A1 (en) Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery
US20090155687A1 (en) Composite anode active material, method of preparing the same, anode containing the composite anode active material, and lithium battery containing the composite anode active material
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
US8642216B2 (en) Composite anode active material, with intermetallic compound, method of preparing the same, and anode and lithium battery containing the material
JPH03291863A (en) Secondary cell
CN101494285B (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JPH046759A (en) Secondary battery
JP2839627B2 (en) Rechargeable battery
JPH02207464A (en) Secondary battery
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JPH03196467A (en) Secondary battery
KR100378012B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery using same
JPH08106920A (en) Lithium secondary battery
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JP2000106188A (en) Nonaqueous electrolyte secondary battery
KR20130065371A (en) Safety enhancing agents for secondary battery and secondary battery improved stability by using thesame
JP2898056B2 (en) Rechargeable battery
JPH02207465A (en) Secondary battery