JPH0467564B2 - - Google Patents

Info

Publication number
JPH0467564B2
JPH0467564B2 JP59241365A JP24136584A JPH0467564B2 JP H0467564 B2 JPH0467564 B2 JP H0467564B2 JP 59241365 A JP59241365 A JP 59241365A JP 24136584 A JP24136584 A JP 24136584A JP H0467564 B2 JPH0467564 B2 JP H0467564B2
Authority
JP
Japan
Prior art keywords
valve
air
mixture
scavenging
carburetor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59241365A
Other languages
Japanese (ja)
Other versions
JPS61118526A (en
Inventor
Satoru Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP59241365A priority Critical patent/JPS61118526A/en
Publication of JPS61118526A publication Critical patent/JPS61118526A/en
Publication of JPH0467564B2 publication Critical patent/JPH0467564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【発明の詳細な説明】 本発明は、ガソリンや灯油、或いはLPG等を
燃料とする気化器付きのガスエンジンに適用され
る混合気供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixture supply method applied to a gas engine equipped with a carburetor that uses gasoline, kerosene, LPG, or the like as fuel.

ガスエンジンにおける混合気供給方法は、気化
器を用いる連続供給方式と、噴射ノズルを用いる
タイミング供給方式とに大別される。
The air-fuel mixture supply method in a gas engine is roughly divided into a continuous supply method using a carburetor and a timing supply method using an injection nozzle.

前者の連続供給方式は、 (イ) 燃料噴射ポンプや噴射弁などの精密部品を必
要とせず、取り扱いやすい。
The former continuous supply method (a) does not require precision parts such as fuel injection pumps and injection valves and is easy to handle.

(ロ) 噴射ポンプを用いないため、これの駆動装置
が不要で、全体的に構造が簡単である。
(b) Since no injection pump is used, there is no need for a driving device for this, and the overall structure is simple.

(ハ) コストが安い。(c) Low cost.

(ニ) 混合気のミキシングが良い。(d) Good mixture of air-fuel mixture.

(ホ) 始動時の適正混合比を得易く、始動特性がよ
い。
(E) It is easy to obtain the proper mixture ratio at the time of starting, and the starting characteristics are good.

といつた長所を有し、主として、ボアが200mmク
ラス以下の小型ガスエンジンに採用されている。
It has these advantages and is mainly used in small gas engines with a bore of 200 mm or less.

また、後者のタイミング供給方式は、 (イ) 広範囲な混合比調整(設定)が可能で、混合
気の均等分配ができる。
In addition, the latter timing supply method (a) allows a wide range of mixture ratio adjustment (setting), and evenly distributes the mixture.

(ロ) 吸気系統に絞りがないので、吸入効率がよ
い。
(b) Since there is no restriction in the intake system, the intake efficiency is good.

(ハ) 機関の加・減速のような過渡特性が向上し、
応答性が良好となる。
(c) Transient characteristics such as acceleration and deceleration of the engine are improved,
Responsiveness becomes better.

(ニ) 燃料の調節が可能である。(d) Fuel can be adjusted.

(ホ) 排ガス特性が改善される。(e) Exhaust gas characteristics are improved.

(ヘ) 給排気バルブ開重合期間(バルブオーバーラ
ツプ)中に混合気の吹き抜けがない。
(f) There is no air-fuel mixture blow-through during the polymerization period (valve overlap) when the supply and exhaust valves are opened.

(ト) バルブオーバーラツプ期間を従来のデイーゼ
ル並みに取れるのでピストン等の熱負荷は前者
の連続供給方式よりも低い。
(g) Since the valve overlap period can be maintained at the same level as conventional diesel engines, the heat load on the piston, etc. is lower than in the former continuous supply system.

といつた利点を持ち、主としてボアが200mmより
大きい中・大型ガスエンジンに採用されている。
It has these advantages and is mainly used in medium and large gas engines with bores larger than 200 mm.

ところで、上記の連続供給方式とタイミング供
給方式とは互いの長所を短所としており、結局、
総合的には一長一短があるといえる。
By the way, the above-mentioned continuous supply method and timing supply method have each other's advantages and disadvantages, and in the end,
Overall, it can be said that there are advantages and disadvantages.

本発明の目的は、連続供給方式とタイミング供
給方式が併用され、それらの長所が発揮されると
ともに、短所が補われる混合気供給方法の提供に
ある。
An object of the present invention is to provide a mixture supply method in which a continuous supply method and a timing supply method are used in combination, in which the advantages of these methods are exhibited and the disadvantages are compensated for.

上記の目的を達成するために、本発明は、過給
機から供給される空気を、空気冷却器を出た直後
に掃気量調整バルブを備えかつ掃気バルブのポー
トに連結された空気マニホールドと、気化器に連
結された送気管の二系統に分けて掃気バルブのポ
ートと気化器に送り、送気管の空気供給圧力に対
応して作動し燃料ガスの供給圧力を調節して空気
圧力と燃料圧力の差圧を一定にするガスレギユレ
ータを介して燃料ガスを気化器に送るとともに、
上記掃気バルブのポートと気化器に送られる空気
量を、上記掃気量調整バルブと過給機のバイパス
管に設けられた風量調整バルブとによつて調整す
る一方、ピストンの上死点付近における排気工程
の終了直前に、掃気バルブを開きシリンダ内に空
気のみを入れて燃焼ガスを掃気し、排気バルブの
閉塞とほとんど同時に混合気バルブを開いて気化
器で得られた混合気をシリンダ内に供給し、上記
掃気バルブと混合気バルブのいずれか一方のバル
ブをピストンの下死点付近で閉じ、他方のバルブ
を上記一方のバルブと同時若しくはそれより前に
閉じる構成とした。
In order to achieve the above object, the present invention provides an air manifold that connects the air supplied from the supercharger to the port of the scavenging valve, which is equipped with a scavenging amount adjustment valve immediately after leaving the air cooler; The air pipe connected to the carburetor is divided into two systems, and the air is sent to the scavenging valve port and the carburetor, and it operates according to the air supply pressure of the air pipe to adjust the fuel gas supply pressure to adjust the air pressure and fuel pressure. The fuel gas is sent to the carburetor through a gas regulator that keeps the differential pressure constant.
The amount of air sent to the port of the scavenging valve and the carburetor is adjusted by the scavenging air amount adjusting valve and the air amount adjusting valve provided in the bypass pipe of the supercharger, while the air is exhausted near the top dead center of the piston. Just before the end of the process, the scavenging valve is opened to allow only air into the cylinder to scavenge the combustion gas, and almost at the same time as the exhaust valve is closed, the mixture valve is opened to supply the mixture obtained in the carburetor into the cylinder. However, one of the scavenging valve and the mixture valve is closed near the bottom dead center of the piston, and the other valve is closed at the same time as or before the one valve.

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図と第2図は、本発明の混合気供給方法を
実施する混合気供給装置を示すもので、図におい
て1はシリンダである。このシリンダ1には、混
合気バルブ2と排気バルブ3、及び掃気バルブ4
が設けられ、シリンダ1に組合わせ挿入されたピ
ストン(図示せず)の動きに後述するタイミング
で同期して開閉するように構成されている。な
お、シリンダ1は複数並設されているが、図面に
はそのうちの1個だけ描かれている。
FIGS. 1 and 2 show a mixture supply device for implementing the mixture supply method of the present invention, and in the figures, 1 is a cylinder. This cylinder 1 includes a mixture valve 2, an exhaust valve 3, and a scavenging valve 4.
is provided and is configured to open and close in synchronization with the movement of a piston (not shown) inserted in combination into the cylinder 1 at a timing described later. Although a plurality of cylinders 1 are arranged in parallel, only one of them is depicted in the drawing.

上記混合気バルブ2の部分には混合気マニホー
ルド5が連結され、また排気バルブ3の部分には
排気マニホールド6が連結されるとともに、掃気
バルブ4の部分には空気マニホールド7が連結さ
れている。また、排気マニホールド6の排気端に
は、圧縮機8を備えた過給機9が設けられ、この
過給機9の圧縮機8側は、空気冷却器10に連結
されており、空気冷却器10の下流側は、空気マ
ニホールド7及び送気管11の送気端が連結され
ている。
A mixture manifold 5 is connected to the mixture valve 2, an exhaust manifold 6 is connected to the exhaust valve 3, and an air manifold 7 is connected to the scavenging valve 4. Further, a supercharger 9 equipped with a compressor 8 is provided at the exhaust end of the exhaust manifold 6, and the compressor 8 side of the supercharger 9 is connected to an air cooler 10. The air manifold 7 and the air supply end of the air supply pipe 11 are connected to the downstream side of the air supply pipe 10 .

一方、燃料ガス供給管12にはガスレギユレタ
13が設けられており、この燃料ガス供給管12
と送気管11とは気化器14を介して前記混合気
マニホールド5に連絡されている。ガスレギユレ
タ13は、空気の供給圧力に対応して作動し、燃
料ガスの供給圧力を調節して空気圧力Paと燃料
ガス圧力Pgの差圧を一定にするものであり、こ
のガスレギユレタ13の働きによつて、混合気量
の増減にかかわらず、空燃比が常に一定の混合気
が気化器14内で得られる構成となつている。気
化器14と混合気マニホールド5の連結部分と、
圧縮機8のバイパス管15、及び空気冷却器10
と空気マニホールド7の連結部分には、混合気量
調整バルブ16と、風量調整バルブ17、及び掃
気量調整バルブ18がそれぞれ個々に設けられ、
混合気量調整バルブ16は、ガバナ19によつて
通例のように制御され、機関回転数(機関出力)
が調整されるようになつている。
On the other hand, the fuel gas supply pipe 12 is provided with a gas regulator 13.
and the air pipe 11 are connected to the mixture manifold 5 via the carburetor 14. The gas regulator 13 operates in response to the air supply pressure and adjusts the fuel gas supply pressure to keep the differential pressure between the air pressure Pa and the fuel gas pressure Pg constant. Therefore, the configuration is such that an air-fuel mixture with a constant air-fuel ratio is always obtained in the carburetor 14 regardless of an increase or decrease in the amount of air-fuel mixture. A connecting portion between the carburetor 14 and the mixture manifold 5,
Bypass pipe 15 of compressor 8 and air cooler 10
A mixture volume adjustment valve 16, an air volume adjustment valve 17, and a scavenging volume adjustment valve 18 are each individually provided at the connecting portion between the air manifold 7 and the air manifold 7.
The mixture amount adjustment valve 16 is controlled by a governor 19 as usual, and is controlled by the engine speed (engine output).
is being adjusted.

ここで、混合気バルブ2と、排気バルブ3、及
び掃気バルブ4の開閉のタイミングの一例を第3
図により説明すると、この図でTDCはピストン
の上死点、BDCは同下死点を示すものである。
Here, an example of the opening/closing timing of the mixture valve 2, exhaust valve 3, and scavenging valve 4 is shown in the third example.
To explain with a diagram, in this diagram, TDC indicates the top dead center of the piston, and BDC indicates the bottom dead center of the piston.

まず、排気バルブ3は、燃焼行程の終期、ピス
トンが下死点に達する前の時期t1で開き、排気行
程が終つてピストンが上死点を過ぎ吸気行程に入
つた時期t3で閉じる。また、掃気バルブ4は、排
気行程の終期、ピストンが上死点に達する前の時
期t2に開き、吸気行程が終つてピストンが下死点
を過ぎ圧縮行程に入つた時期t4に閉じる。又、混
合気バルブ2は、排気バルブ3の閉塞と同時に時
期t3で開き、時期t4で掃気バルブ4と一緒に閉じ
る。
First, the exhaust valve 3 opens at time t 1 at the end of the combustion stroke, before the piston reaches the bottom dead center, and closes at time t 3 when the exhaust stroke ends and the piston passes the top dead center and enters the intake stroke. Further, the scavenging valve 4 opens at time t2 at the end of the exhaust stroke, before the piston reaches the top dead center, and closes at time t4 , when the intake stroke ends and the piston passes the bottom dead center and enters the compression stroke. Further, the mixture valve 2 opens at time t3 simultaneously with the closing of the exhaust valve 3, and closes together with the scavenging valve 4 at time t4 .

次に、上記のように構成された混合気供給装置
によつて実施される本発明の混合気供給方法を説
明する。
Next, a method for supplying a mixture according to the present invention, which is carried out by the mixture supply device configured as described above, will be explained.

空気は、排ガスによつて作動される過給機9の
圧縮機8により圧縮された後に冷却器10で冷却
されて気化器14に入り、ガスレギユレタ13を
通つて気化器14に送られてきた燃料ガスと一緒
になり、所定の空燃比の混合ガスとなつて混合気
マニホールド5を通り、混合気バルブ2からシリ
ンダ1内に吸入される。混合気バルブ2が開く時
期は、前記のように、ピストンが上死点を過ぎて
吸気行程に入り、排気バルブ3が閉じられる時期
t3の位置である。混合気バルブ2が開いて混合気
がシリンダ1内に入る少し前、すなわち、排気行
程のピストンが上死点に達する前に、掃気バルブ
4が開かれ、冷却器10で冷却された空気の一部
が、空気マニホールド7を通つてシリンダ1内に
送り込まれ、シリンダ中に残留している燃焼ガス
を完全にシリンダ外に掃気すると同時にピストン
等の燃焼室に面した部品を冷却する。
The air is compressed by the compressor 8 of the supercharger 9 operated by exhaust gas, then cooled by the cooler 10 and enters the carburetor 14, where the fuel is sent to the carburetor 14 through the gas regulator 13. Together with the gas, the mixture becomes a mixed gas having a predetermined air-fuel ratio, passes through the mixture manifold 5, and is sucked into the cylinder 1 through the mixture valve 2. As mentioned above, the timing when the mixture valve 2 opens is when the piston passes the top dead center and enters the intake stroke, and the exhaust valve 3 closes.
This is the t3 position. Shortly before the mixture valve 2 opens and the mixture enters the cylinder 1, that is, before the piston on the exhaust stroke reaches top dead center, the scavenging valve 4 is opened and a portion of the air cooled by the cooler 10 is released. is fed into the cylinder 1 through the air manifold 7 to completely scavenge the combustion gases remaining in the cylinder out of the cylinder and at the same time cool parts facing the combustion chamber, such as the piston.

吸気行程が終つて圧縮行程に入り、ピストンが
下死点を過ぎた後に、混合気バルブ2と掃気バル
ブ4が同時に閉じられるが、シリンダ1内に送り
込まれる混合気と空気の割合、すなわち、最終的
な空燃比は、ガスレギユレタ13を調整した結
果、気化器14内で得られる所定の空燃比の混合
気量と、風量調整バルブ17、及び掃気量調整バ
ルブ18の開度調節によつて得られる空気量との
比によつて決定される。
After the intake stroke ends and the compression stroke begins, and the piston passes the bottom dead center, the mixture valve 2 and the scavenging valve 4 are closed simultaneously, but the ratio of the mixture and air sent into the cylinder 1, that is, the final The air-fuel ratio can be obtained by adjusting the gas regulator 13 and adjusting the air-fuel ratio in the carburetor 14 and the openings of the air volume adjustment valve 17 and the scavenging volume adjustment valve 18. It is determined by the ratio to the air amount.

圧縮行程を経て燃焼行程に入るが、燃焼行程が
終りに近づいてピストンが下死点に達する前の時
期t1の位置で排気バルブ3が開き、排気が開始さ
れる。既に説明したように、排気行程が終了する
前に掃気バルブ4が開かれ、また吸気行程に入つ
た後に排気バルブ3が閉じられて一サイクルが終
了する。
After the compression stroke, the engine enters the combustion stroke, and the exhaust valve 3 opens at the time t1 , when the combustion stroke is nearing the end and before the piston reaches the bottom dead center, and exhaust begins. As already explained, the scavenging valve 4 is opened before the exhaust stroke ends, and the exhaust valve 3 is closed after the intake stroke begins, thus completing one cycle.

上記では、排気バルブ3が閉じると同時に混合
気バルブ2が開く構成となつているが、排気バル
ブ3が閉じ終つた直後に、わずかな時間をおいて
混合気バルブ2が開かれるようにしてもよい。ま
た、混合気バルブ2と掃気バルブ4が同時に閉塞
するように構成されているが、いずれか一方のバ
ルブ2(4)がピストンの下死点付近で閉じ、他
方のバルブ4(2)がそれよりも前に閉じるよう
にして本発明を実施することもできる。掃気量調
整バルブ18を完全に閉じた場合には、図のガス
エンジンは、気化器付連続供給方式のガスエンジ
ンとして作動する。
In the above configuration, the mixture valve 2 is opened at the same time as the exhaust valve 3 closes, but the mixture valve 2 may be opened a short time after the exhaust valve 3 finishes closing. good. Furthermore, although the air-fuel mixture valve 2 and the scavenging valve 4 are configured to close at the same time, one of the valves 2 (4) closes near the bottom dead center of the piston, and the other valve 4 (2) closes near the bottom dead center of the piston. It is also possible to implement the present invention by closing it earlier than that. When the scavenging amount adjustment valve 18 is completely closed, the gas engine shown in the figure operates as a continuous supply type gas engine with a carburetor.

逆に、気化器14で得られる混合気の空燃比を
極端に小さく(ガス濃度が高い状態)した場合に
は、タイミング供給方式のガスエンジンの特性に
近付く。
On the other hand, when the air-fuel ratio of the air-fuel mixture obtained by the carburetor 14 is made extremely small (in a state where the gas concentration is high), the characteristics approach those of a timing supply type gas engine.

また、図のものにおいては、風量調整バルブ1
7はガバナ19と適切なるリンクレバー比にて接
続され、ガバナの動きに対応して圧縮機8通過後
の適当な空気量を循環させている。したがつて、
機関吸込空気量よりも、圧縮機8を通過する空気
量が多くなり、過給機9のサージマージンは大き
くなる方向になる。特に機関負荷遮断時は、気化
器14の混合気量調整バルブ16は、全閉に近い
状態になり送気管11内の閉鎖空気圧力は急激に
上昇してサージングが発生するが、この場合、上
記風量調整バルブ17の開度を大きくし、循環風
量を増させることにより、サージングの発生を抑
制することができる。
In addition, in the figure, air volume adjustment valve 1
7 is connected to the governor 19 at an appropriate link lever ratio, and circulates an appropriate amount of air after passing through the compressor 8 in response to the movement of the governor. Therefore,
The amount of air passing through the compressor 8 becomes larger than the amount of air sucked into the engine, and the surge margin of the supercharger 9 becomes larger. Particularly when the engine load is cut off, the mixture volume adjustment valve 16 of the carburetor 14 is close to fully closed, and the closed air pressure in the air pipe 11 rises rapidly, causing surging, but in this case, the above-mentioned By increasing the opening degree of the air volume adjustment valve 17 and increasing the circulating air volume, it is possible to suppress the occurrence of surging.

以上説明したように、本発明は、過給機から供
給される空気を、空気冷却器を出た直後に掃気量
調整バルブを備えかつ掃気バルブのポートに連結
された空気マニホールドと、気化器に連結された
送気管の二系統に分けて掃気バルブのポートと気
化器に送り、送気管の空気供給圧力に対応して作
動し燃料ガスの供給圧力を調節して空気圧力と燃
料圧力の差圧を一定にするガスレギユレータを介
して燃料ガスを気化器に送るとともに、上記掃気
バルブのポートと気化器に送られる空気量を、上
記掃気量調整バルブと過給機のバイパス管に設け
られた風量調整バルブとによつて調整する一方、
ピストンの上死点付近における排気工程の終了直
前に、掃気バルブを開きシリンダ内に空気のみを
入れて燃焼ガスを掃気し、排気バルブの閉塞とほ
とんど同時に混合気バルブを開いて気化器で得ら
れた混合気をシリンダ内に供給し、上記掃気バル
ブと混合気バルブのいずれか一方のバルブをピス
トンの下死点付近で閉じ、他方のバルブを上記一
方のバルブと同時若しくはそれより前に閉じる構
成としたので、混合気量の増減にかかわらず空燃
比が常に一定の混合気を得ることができ、また混
合気の吹抜けを防止することができるとともに、
ピストン等の熱負荷を低減し、排ガス特性を改善
することができる。また、混合比の調節幅が大き
く調節しやすい上、極希薄混合気を容易に作り出
すことができるとともに、負荷遮断運転時のサー
ジング発生を抑制できる。
As explained above, the present invention allows air supplied from a supercharger to be connected to an air manifold immediately after exiting an air cooler, which is equipped with a scavenging amount adjustment valve and connected to a port of the scavenging valve, and to a carburetor. The air is sent to the scavenging valve port and the carburetor through two connected air pipes, which operate according to the air supply pressure of the air pipe to adjust the fuel gas supply pressure and create the differential pressure between the air pressure and fuel pressure. Fuel gas is sent to the carburetor via a gas regulator that keeps the amount constant, and the amount of air sent to the port of the scavenging valve and the carburetor is controlled by the air volume adjusting valve installed in the scavenging volume adjustment valve and the bypass pipe of the supercharger. On the other hand, it is adjusted by the valve and
Immediately before the end of the exhaust stroke near the top dead center of the piston, the scavenging valve is opened to allow only air into the cylinder to scavenge the combustion gas, and almost at the same time as the exhaust valve is closed, the air-fuel mixture valve is opened to generate the gas obtained in the carburetor. A configuration in which one of the scavenging valve and the mixture valve is closed near the bottom dead center of the piston, and the other valve is closed at the same time as or before the one valve. Therefore, it is possible to obtain a mixture with a constant air-fuel ratio regardless of the increase or decrease in the amount of the mixture, and it is possible to prevent blow-by of the mixture, and
It is possible to reduce the heat load on pistons, etc. and improve exhaust gas characteristics. Furthermore, the mixing ratio can be easily adjusted over a wide range, and an extremely lean mixture can be easily created, and the occurrence of surging during load shedding operation can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の混合気供給方法を説明するガ
スエンジンの概略図、第2図は第1図の気化器と
混合気マニホールド、及び空気マニホールド等の
関係を示す概略図、第3図は混合気バルブと排気
バルブ、及び掃気バルブの開閉のタイミングの一
例を示す行程図である。 1…シリンダ、2…混合気バルブ、3…排気バ
ルブ、4…掃気バルブ、TDC…上死点、BDC…
下死点。
FIG. 1 is a schematic diagram of a gas engine to explain the mixture supply method of the present invention, FIG. 2 is a schematic diagram showing the relationship between the carburetor, mixture manifold, air manifold, etc. in FIG. 1, and FIG. FIG. 2 is a process chart showing an example of timings for opening and closing a mixture valve, an exhaust valve, and a scavenging valve. 1...Cylinder, 2...Mixture valve, 3...Exhaust valve, 4...Scavenging valve, TDC...Top dead center, BDC...
Bottom dead center.

Claims (1)

【特許請求の範囲】[Claims] 1 過給機9から供給される空気を、空気冷却器
10を出た直後に掃気量調整バルブ18を備えか
つ掃気バルブ4のポートに連結された空気マニホ
ールド7と、気化器14に連結された送気管11
の二系統に分けて掃気バルブ4のポートと気化器
14に送り、送気管11の空気供給圧力に対応し
て作動し燃料ガスの供給圧力を調節して空気圧力
と燃料圧力の差圧を一定にするガスレギユレータ
13を介して燃料ガスを気化器14に送るととも
に、上記掃気バルブ4のポートと気化器14に送
られる空気量を、上記掃気量調整バルブ18と過
給機9のバイパス管15に設けられた風量調整バ
ルブ17とによつて調整する一方、ピストンの上
死点(TDC)付近における排気工程の終了直前
に、掃気バルブ4を開きシリンダ1内に空気のみ
を入れて燃焼ガスを掃気し、排気バルブ3の閉塞
とほとんど同時に混合気バルブ2を開いて気化器
14で得られた混合気をシリンダ1内に供給し、
上記掃気バルブ4と混合気バルブ2のいずれか一
方のバルブをピストンの下死点(BDC)付近で
閉じ、他方のバルブを上記一方のバルブと同時若
しくはそれより前に閉じることを特徴とするガス
エンジンの混合気供給方法。
1 Immediately after the air supplied from the supercharger 9 exits the air cooler 10, the air manifold 7 is equipped with a scavenging amount adjustment valve 18 and connected to the port of the scavenging valve 4, and the air manifold 7 is connected to the carburetor 14. Air pipe 11
The air is sent to the port of the scavenging valve 4 and the carburetor 14, and operates in response to the air supply pressure of the air pipe 11 to adjust the fuel gas supply pressure and keep the differential pressure between the air pressure and the fuel pressure constant. The fuel gas is sent to the carburetor 14 through the gas regulator 13, and the amount of air sent to the port of the scavenging valve 4 and the carburetor 14 is sent to the scavenging amount adjusting valve 18 and the bypass pipe 15 of the supercharger 9. While the air volume is adjusted by the air volume adjustment valve 17 provided, the scavenging valve 4 is opened just before the end of the exhaust process near the top dead center (TDC) of the piston, and only air is admitted into the cylinder 1 to scavenge the combustion gas. Then, almost simultaneously with the closing of the exhaust valve 3, the mixture valve 2 is opened to supply the mixture obtained in the carburetor 14 into the cylinder 1,
A gas characterized in that either one of the scavenging valve 4 and the mixture valve 2 is closed near the bottom dead center (BDC) of the piston, and the other valve is closed at the same time as or before the one valve. Engine mixture supply method.
JP59241365A 1984-11-15 1984-11-15 Method of supplying mixture into gas engine Granted JPS61118526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241365A JPS61118526A (en) 1984-11-15 1984-11-15 Method of supplying mixture into gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241365A JPS61118526A (en) 1984-11-15 1984-11-15 Method of supplying mixture into gas engine

Publications (2)

Publication Number Publication Date
JPS61118526A JPS61118526A (en) 1986-06-05
JPH0467564B2 true JPH0467564B2 (en) 1992-10-28

Family

ID=17073203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241365A Granted JPS61118526A (en) 1984-11-15 1984-11-15 Method of supplying mixture into gas engine

Country Status (1)

Country Link
JP (1) JPS61118526A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266114A (en) * 1987-04-22 1988-11-02 Yamaha Motor Co Ltd Intake device for multivalved engine
US7980220B2 (en) 2007-10-04 2011-07-19 Ford Global Technologies, Llc Staggered intake valve opening with bifurcated port to eliminate hydrogen intake backfire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165630A (en) * 1981-04-06 1982-10-12 Mazda Motor Corp Intake device of engine with supercharger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856342Y2 (en) * 1980-11-27 1983-12-26 株式会社新潟鐵工所 Gas diesel engine intake system
JPS59137344U (en) * 1983-03-02 1984-09-13 株式会社クボタ gas engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165630A (en) * 1981-04-06 1982-10-12 Mazda Motor Corp Intake device of engine with supercharger

Also Published As

Publication number Publication date
JPS61118526A (en) 1986-06-05

Similar Documents

Publication Publication Date Title
US3964451A (en) Internal combustion engine with a supercharger
US6279550B1 (en) Internal combustion engine
US7222614B2 (en) Internal combustion engine and working cycle
US7281527B1 (en) Internal combustion engine and working cycle
JP2869464B2 (en) Fuel injection control device for two-cycle engine
US8215292B2 (en) Internal combustion engine and working cycle
US7806102B2 (en) Variable coordination volume type eight-stroke engine
US4228772A (en) Low throttled volume engine
RU2108471C1 (en) Internal combustion engine and method of its operation
GB2134596A (en) Fresh charge intake quantity control in an internal combustion engine
EP0703355B1 (en) Internal combustion engine
JP2635130B2 (en) Internal combustion engine with compressed air collector
JPH0385346A (en) Idling rotation controller of two-cycle engine
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
US4210109A (en) Multi-cylinder internal combustion engine
JP3062576B2 (en) Two-stroke internal combustion engine
JPH0467564B2 (en)
US3187728A (en) Method of and apparatus for converting a diesel engine to operate on natural gas
US4192262A (en) Control system for varying the amount of scavenging air to be admitted to internal combustion engine
KR920002903A (en) Internal combustion engine and its operation method
EP0057591B1 (en) Internal combustion engine
JPS62113820A (en) Two-cycle diesel engine
JPS6032025B2 (en) cylinder number control engine
JPH0332753Y2 (en)
JPS5833376B2 (en) Intake system for supercharged engines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees