JPS5833376B2 - Intake system for supercharged engines - Google Patents

Intake system for supercharged engines

Info

Publication number
JPS5833376B2
JPS5833376B2 JP56052252A JP5225281A JPS5833376B2 JP S5833376 B2 JPS5833376 B2 JP S5833376B2 JP 56052252 A JP56052252 A JP 56052252A JP 5225281 A JP5225281 A JP 5225281A JP S5833376 B2 JPS5833376 B2 JP S5833376B2
Authority
JP
Japan
Prior art keywords
intake
intake port
primary
port
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56052252A
Other languages
Japanese (ja)
Other versions
JPS57165630A (en
Inventor
晴男 沖本
正人 岩城
正美 中尾
朝雄 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kogyo Co Ltd filed Critical Toyo Kogyo Co Ltd
Priority to JP56052252A priority Critical patent/JPS5833376B2/en
Priority to US06/363,772 priority patent/US4488531A/en
Priority to DE19823212910 priority patent/DE3212910A1/en
Publication of JPS57165630A publication Critical patent/JPS57165630A/en
Publication of JPS5833376B2 publication Critical patent/JPS5833376B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は、過給機付エンジンの吸気装置の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an intake system for a supercharged engine.

従来より、吸気通路に吸気過給のための過給機を介設し
、吸入空気の充填効率を向上させて出力を高めるように
したものはよく知られており、このような過給機付エン
ジンでは、燃焼室における圧力および温度が上昇してノ
ッキングが生じやすいという問題がある。
Conventionally, it is well known that a turbocharger for intake supercharging is installed in the intake passage to improve intake air filling efficiency and increase output. Engines have a problem in that the pressure and temperature in the combustion chamber increase, which tends to cause knocking.

このノッキングに対し、従来過給圧の設定レベルを下げ
たり、吸気通路にクーラーを装着し吸気温度を低下させ
るもの(例えば実開昭5O−59405)等が提案され
ているが、前者のものにおいては、過給機の本来の目的
である充分な出力向上が得られず、また、後者のものに
おいては、構造が複雑化する等の欠点があった。
To deal with this knocking, methods have been proposed to lower the set level of boost pressure or install a cooler in the intake passage to lower the intake air temperature (for example, Japanese Utility Model Application No. 50-59405), but the former method In the latter case, a sufficient increase in output, which is the original purpose of a supercharger, could not be obtained, and in the latter case, there were drawbacks such as a complicated structure.

ところで、吸気温度について考察してみるに、この吸気
温度の上昇は、過給機の断熱圧縮によるばかりでなく、
燃焼室内に残留するダイリューションガス(残留排気ガ
ス)によってかなり大きく影響を受けていることが明ら
かとなった。
By the way, when we consider the intake air temperature, we find that this rise in intake air temperature is not only due to the adiabatic compression of the supercharger;
It has become clear that the dilution gas (residual exhaust gas) remaining in the combustion chamber has a considerable effect.

本発明は、ノッキングが燃焼室に残留するダイリューシ
ョンガスによって大きく支配されていることに着目し、
過給機が実質的に作動する高負荷状態において、吸排気
のオーバラップを利用して、過給圧により燃焼室内のダ
イリューションガスを掃気し、吸気温度の上昇を防ぎ、
出力を低下させることなくノッキングを防ぐことを基本
的な目的とするものである。
The present invention focuses on the fact that knocking is largely controlled by dilution gas remaining in the combustion chamber,
Under high load conditions, when the supercharger is essentially operating, the overlap between intake and exhaust air is used to scavenge the dilution gas in the combustion chamber using supercharging pressure, preventing a rise in intake air temperature.
The basic purpose is to prevent knocking without reducing output.

しかるに、上記のごとく、吸排気のオーバラップを大き
くして、過給域におけるダイリューションガスの掃気を
行うようにした場合、吸気ホードの圧力が排気ポート内
の圧力より低くなる非過給域すなわち軽負荷運転時にお
いて、逆にダイリューションガスが多量に残留すること
になり運転性がきわめて悪化するという問題がある。
However, as mentioned above, if the overlap between intake and exhaust is increased to scavenge the dilution gas in the supercharging region, the pressure in the intake hoard is lower than the pressure in the exhaust port in the non-supercharging region. That is, during light load operation, there is a problem in that a large amount of dilution gas remains, resulting in extremely poor drivability.

本発明は、かかる点に着目してなされたもので、1次吸
気ポートと2次吸気ポートとを備え、該1次吸気ポート
と2次吸気ポートとを、1次絞り弁を有する1次吸気通
路と2次絞り弁を有する2次吸気通路とにそれぞれ連通
し、該各吸気通路をそれぞれ過給機に連通ずる一方、上
記各吸気ポートのうち一方の吸気ポートの開口時期を排
気ポート閉口時期に先行するように設定し、また他方の
吸気ポートの開口時期を上記一方の吸気ポートの開口時
期より遅れるように設定して、排気ポートと一方の吸気
ポートのオーバラップを大きくすることにより過給域に
おける残留排気ガスの掃気を促進してノッキングの減少
を図る一方、他方の吸気ポートのオーバラップを小さく
することにより軽負荷域におけるダイリューションガス
の持込みの低域とを同時に満足するようにした過給機付
エンジンの吸気装置を提供するものである。
The present invention has been made with attention to this point, and includes a primary intake port and a secondary intake port, and connects the primary intake port and the secondary intake port to a primary intake port having a primary throttle valve. and a secondary intake passage having a secondary throttle valve, and each intake passage is communicated with a turbocharger, and the opening timing of one of the intake ports is determined as the exhaust port closing timing. By setting the opening timing of the other intake port to be earlier than the opening timing of the one intake port mentioned above, and increasing the overlap between the exhaust port and one intake port, supercharging can be achieved. At the same time, by reducing the overlap of the other intake port, it simultaneously satisfies the low range of dilution gas brought in in the light load range. The present invention provides an intake system for a supercharged engine.

以下、本発明の実施例を添付図面について詳細に説明す
る。
Embodiments of the invention will now be described in detail with reference to the accompanying drawings.

第1図に示すレシプロエンジンにおいて、ピストン10
で画成される燃焼室11に対して、カム12に連動する
1次吸気バルブ13で開閉される1次吸気ポート1と、
カム14に連動する2次吸気バルブ15で開閉される2
次吸気ポート2と、カム16に連動する排気バルブ17
で開閉される排気ポート18とを設ける。
In the reciprocating engine shown in FIG.
A primary intake port 1 that is opened and closed by a primary intake valve 13 that is interlocked with a cam 12 for a combustion chamber 11 defined by;
2, which is opened and closed by a secondary intake valve 15 that is linked to a cam 14.
Next intake port 2 and exhaust valve 17 linked to cam 16
An exhaust port 18 that is opened and closed by the exhaust port 18 is provided.

1次吸気ポート1は1次絞り弁3を有する1次吸気通路
4に連通し、2次吸気ポート2は2次絞り弁5を有する
2次吸気通路6に連通ずると共に、排気ポート18を排
気通路19に連通ずる。
The primary intake port 1 communicates with a primary intake passage 4 having a primary throttle valve 3, and the secondary intake port 2 communicates with a secondary intake passage 6 having a secondary throttle valve 5. It communicates with passage 19.

1次吸気通路4と2次吸気通路6とは、排気通路19の
排気ガス圧によって回転されるタービン20に連動する
ブロア21により吸気を過給するターボ過給機7に接続
する。
The primary intake passage 4 and the secondary intake passage 6 are connected to a turbo supercharger 7 that supercharges intake air by a blower 21 that is linked to a turbine 20 that is rotated by exhaust gas pressure in an exhaust passage 19 .

1次、2次吸気通路4,6の各絞り弁3,5の直下流に
は燃料噴射ノズル8,9を夫々設け、該各燃料噴射ノズ
ル8,9は、フローメータ22の出力が入力されるコン
トローラ23により燃料噴射量がコントロールされる。
Fuel injection nozzles 8 and 9 are provided immediately downstream of each throttle valve 3 and 5 in the primary and secondary intake passages 4 and 6, respectively, and the output of the flow meter 22 is input to each fuel injection nozzle 8 and 9. The fuel injection amount is controlled by a controller 23.

なお、1次吸気通路4の通路径は2次吸気通路の2/3
程度の小径に設定されている。
Note that the passage diameter of the primary intake passage 4 is 2/3 that of the secondary intake passage.
It is set to a small diameter.

上記構成において、第2図に示すように、2次吸気バル
ブ15による2次吸気ポート2の開口時期を、排気バル
ブ17による排気ポート18の閉口時期に先行する(2
次吸気ポート2と排気ポート18をオーバラップさせる
)ように設定し、1次吸気バルブ13による1次吸気ポ
ート1の開口時期を2次吸気バルブ15による2次吸気
ポート2の開口時期より遅れるように(オーバラップが
実質的にゼロになるように)設定した場合の作用を説明
する。
In the above configuration, as shown in FIG.
The secondary intake port 2 and the exhaust port 18 are set to overlap), and the opening timing of the primary intake port 1 by the primary intake valve 13 is set to be delayed from the opening timing of the secondary intake port 2 by the secondary intake valve 15. (so that the overlap is essentially zero).

過給域すなわち高負荷運転域では、吸気圧力が排気圧よ
り高くなるので、2次吸気ポート2と排気ポート18の
オーバラップにより、燃焼室11内の残留排気ガスすな
わちグイリュージョンガスが2次吸気ポート2からの吸
気で排気ポート18から迅速に掃気されるようになり、
この結果、燃焼室11内のダイリューションガスが減少
し7、ダイリューションガスによる吸気の温度上昇が解
消されノッキングが減少するようになる。
In the supercharging region, that is, in the high-load operating region, the intake pressure is higher than the exhaust pressure, so the overlap between the secondary intake port 2 and the exhaust port 18 causes the residual exhaust gas, ie illusion gas, in the combustion chamber 11 to be transferred to the secondary intake. Air intake from port 2 will quickly scavenge air from exhaust port 18,
As a result, the dilution gas in the combustion chamber 11 is reduced 7, the temperature rise of the intake air due to the dilution gas is eliminated, and knocking is reduced.

また、軽負荷運転域では、吸気圧力が排気圧力より低く
(負圧に)なり、排気ポート18とオーバラップする2
次吸気ポート2内にダイリューションガスが流入するが
、1次吸気ポート1は排気ポート18とオーバラップし
ないので、1次吸気ポート1へのダイリューションガス
の持込みはなく、むやみに燃焼性が損われることはない
In addition, in the light load operating range, the intake pressure becomes lower than the exhaust pressure (negative pressure), and the 2
Dilution gas flows into the secondary intake port 2, but since the primary intake port 1 does not overlap with the exhaust port 18, the dilution gas is not carried into the primary intake port 1, and the combustible gas is unnecessarily caused. will not be harmed.

つきに、1次吸気バルブ13による1次吸気ポート1の
開口時期を、排気バルブ17による排気ポート18の閉
口時期に先行する(1次吸気ポート1と排気ポート18
をオーバラップさせる)ように設定し、2次吸気バルブ
15による2次吸気ポート2の開口時期を1次吸気バル
ブ13による1次吸気ポート1の開口時期より遅れるよ
うに(オーバラップが実質的にゼロになるように)設定
した場合の作用を説明する。
At the same time, the timing for opening the primary intake port 1 by the primary intake valve 13 precedes the timing for closing the exhaust port 18 by the exhaust valve 17 (primary intake port 1 and exhaust port 18
The opening timing of the secondary intake port 2 by the secondary intake valve 15 is set to be later than the opening timing of the primary intake port 1 by the primary intake valve 13 (so that the overlap is substantially This section explains the effect when the value is set to zero).

過給域すなわち高負荷運転域では、1次吸気ポート1と
排気ポート18のオーバラップにより、燃焼室11内の
ダイリューションガスが1次吸気ポート2からの吸気で
排気ポート18から迅速に掃気されるようになり、この
結果、燃焼室11内のダイリューションガスが減少し、
上記の場合と同様にノッキングが減少するようになる。
In the supercharging region, that is, in the high-load operation region, due to the overlap between the primary intake port 1 and the exhaust port 18, the dilution gas in the combustion chamber 11 is quickly scavenged from the exhaust port 18 with the intake air from the primary intake port 2. As a result, the dilution gas in the combustion chamber 11 decreases,
As in the case above, knocking is reduced.

また、軽負荷運転域では、2次吸気ポート2にオーバラ
ップを設け1次吸気ポート1にオーバラップを設けない
ようにしたものとは逆に1次吸気ポート1のみにダイリ
ューションガスが持ち込まれ2次吸気ボート2には持ち
込まれることがないので、上記の場合と同様にむやみに
燃焼性が損われることはない。
In addition, in the light load operating range, dilution gas is brought into only the primary intake port 1, contrary to the case where the secondary intake port 2 is overlapped and the primary intake port 1 is not overlapped. Since the fuel is not brought into the secondary intake boat 2, the combustibility is not unnecessarily impaired as in the case described above.

以−ヒのように本発明は、独立して開閉制御される1次
吸気通路と2次吸気通路を備えたいわゆるデュアル吸気
システムの特異性を活かして、一方の吸気ポートのオー
バラップを他方より大きく設定ないしは一方の吸気ポー
トにオーバラップを設け、他方の吸気ポートのオーバラ
ップを実質的にゼロにすることによって、軽負荷時の運
転性をむやみに損うことなく過給域におけるダイリュー
ションガスの掃気を向上させ吸気の温度上昇によるノッ
キングの発生を低減するようにしたものであるが、オー
バラップを設ける吸気ポートは、1次側であってもよく
また2次側であってもよいが、エンジンの特性によって
適宜に選択すればよい。
As shown in FIG. Dilution in the supercharging range can be achieved without unnecessarily impairing drivability at light loads by setting a large setting or by providing an overlap on one intake port and making the overlap on the other intake port virtually zero. This is intended to improve gas scavenging and reduce the occurrence of knocking due to a rise in temperature of intake air, but the intake port providing the overlap may be on the primary side or the secondary side. However, it may be selected appropriately depending on the characteristics of the engine.

すなわち、2次吸気ポートにオーバラップを設け、1次
吸気ポートのオーバラップを2次側より小さくないしは
ゼ用こ設定した場合には軽負荷運転時において1次吸気
ポートにオーバラップを設けたものに比べ、オーバラッ
プ期間中、吸気通路の壁面を流れる燃料の壁面流が、1
次吸気ポートへのダイリューションガスの流入によって
乱されることがないので、サイクル毎の燃料の供給が安
定して行なわれるという長所がある反面通路径の大きい
2次吸気通路にダイリューションガスが持ち込まれ、そ
の持ち込み量が増大するという欠点があり、また、1次
吸気ポートにオーバラップを設け、2次吸気ポートのオ
ーバラップを1次側より小さくないしはゼロに設定した
場合には、上記とは逆にダイリューションガスの総量は
減少するが、1次吸気通路を流れる燃料の壁面流が不安
定になるという欠点がある。
In other words, if the secondary intake port is provided with an overlap, and the overlap of the primary intake port is set to be smaller than that of the secondary side, or if the overlap is set to be smaller than that of the secondary side, the primary intake port will be provided with an overlap during light load operation. Compared to , during the overlap period, the wall flow of fuel flowing on the wall of the intake passage is 1
Since it is not disturbed by the inflow of dilution gas into the secondary intake port, it has the advantage of stably supplying fuel for each cycle. However, if the primary intake port is provided with an overlap and the secondary intake port overlap is set to be smaller than the primary side or to zero, the above-mentioned On the contrary, although the total amount of dilution gas decreases, there is a drawback that the wall flow of fuel flowing through the primary intake passage becomes unstable.

(なお、この場合、1次吸気通路側の噴射ノズル8を仮
線の如く吸気ポート近くに設ければ壁面流が不安定にな
ることはない。
(In this case, if the injection nozzle 8 on the primary intake passage side is provided near the intake port as shown by the phantom line, the wall flow will not become unstable.

)したがって、軽負荷時においてグイリュージョンガス
の影響を受けやすいエンジンに対しては、吸気ポートの
オーバラップの設定は1次吸気ポートにオーバラップを
設ける方がよく、逆に燃料のサイクル変動の影響を受け
やすいエンジンに対し、では2次吸気ポートにオーバラ
ップを設ケる方がよく、要するに各吸気ポートに対する
オーバラップの設定は、空燃比、燃料供給位置、吸気通
路の面積比等の種々のエンジン仕様に応じて適宜。
) Therefore, for engines that are susceptible to the effects of illusion gas at light loads, it is better to set the overlap of the intake ports to the primary intake port; For engines that are susceptible to damage, it is better to provide overlap at the secondary intake ports.In short, the overlap setting for each intake port depends on various factors such as the air-fuel ratio, fuel supply position, and intake passage area ratio. Appropriate depending on engine specifications.

選択すればよい。Just choose.

また上記実施例では、1次吸気ポートと2次吸気ポート
との閉口時期を下死点(B、D、C)後のほぼ同時期に
設定しているため、両吸気ポートの開口時間を最大に保
つことができることから、1次吸気ポートの径をむやみ
に広げることなしに混合気の吸入量を確保することがで
き、低速の安定性をより向上することができる。
In addition, in the above embodiment, the closing timing of the primary intake port and the secondary intake port is set to approximately the same time after the bottom dead center (B, D, C), so the opening time of both intake ports is maximized. Therefore, the intake amount of the air-fuel mixture can be secured without unnecessarily increasing the diameter of the primary intake port, and low-speed stability can be further improved.

なお、上記実施例においては、燃料噴射装置を用いてい
るが、気化器を用いてもよい。
In addition, in the above embodiment, a fuel injection device is used, but a carburetor may also be used.

以上の説明から明らかなように本発明は1次、2次吸気
ポートのうち、一方の吸気ポートを排気ポートにオーバ
ラップさせると共に、他方の吸気ポートを一方の吸気ポ
ートの開口時期より遅らせるように設定したものである
から、軽負荷域における燃焼の安定性を損うことなく、
過給域におけるノッキングを可及的に低減し得るもので
ある。
As is clear from the above description, the present invention allows one of the primary and secondary intake ports to overlap the exhaust port, and opens the other intake port later than the opening timing of the other intake port. Because it is set as follows, without compromising combustion stability in light load range,
Knocking in the supercharging region can be reduced as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る過給機付エンジンの吸気装置のシ
ステム側面図、第2図は吸・排気バルブの開閉タイミン
グを示すグラフである。 1・・・1次吸気ポート、2・・・2次吸気ポート、3
・・・1次絞り弁、4・・・1次吸気通路、5・・・2
次絞り弁、6・・・2次吸気通路、7・・・過給機、1
8・・・排気ポート。
FIG. 1 is a side view of the system of an intake system for a supercharged engine according to the present invention, and FIG. 2 is a graph showing the opening/closing timing of intake and exhaust valves. 1...Primary intake port, 2...Secondary intake port, 3
...Primary throttle valve, 4...Primary intake passage, 5...2
Secondary throttle valve, 6... Secondary intake passage, 7... Supercharger, 1
8...Exhaust port.

Claims (1)

【特許請求の範囲】 11次吸気ポートと2次吸気ポートとを備え、該1次吸
気ポートと2次吸気ポートとを1次絞り弁を有する1次
吸気通路と2次絞り弁を有する2次吸気通路とに夫々連
通し、該1次吸気通路と2次吸気通路とを過給機に接続
し、さらに少なくとも上記1次吸気通路から燃料を供給
するようにした過給機付エンジンであって、 上記1次吸気ホードと2次吸気ポートのうち一方の吸気
ポートの開口時期を排気ボートの閉口時期に先行するよ
うに設定し、また他方の吸気ポートの開口時期を上記一
方の吸気ポートの開口時期より遅れるように設定したこ
とを特徴とする過給機付エンジンの吸気装置。 2 上記一方の吸気ポートは1次吸気ポートであり、上
記他方の吸気ポートは2次吸気ポートであることを特徴
とする特許請求の範囲第1項記載の過給機付エンジンの
吸気装置。 3 上記一方の吸気ポートは2次吸気ポートであり、上
記他方の吸気ポートは1次吸気ポートである特許請求の
範囲第1項記載の過給機付エンジンの吸気装置。
[Claims] The primary intake port and the secondary intake port are provided with an 11th intake port and a secondary intake port, and the primary intake port and the secondary intake port are connected to a primary intake passage having a primary throttle valve and a secondary intake passage having a secondary throttle valve. An engine equipped with a supercharger, which communicates with an intake passage, connects the primary intake passage and the secondary intake passage to a supercharger, and further supplies fuel from at least the primary intake passage. , The opening timing of one of the primary intake port and the secondary intake port is set to precede the closing timing of the exhaust boat, and the opening timing of the other intake port is set to precede the opening timing of the one intake port. An intake system for an engine with a supercharger, characterized in that the intake system is set to be delayed in time. 2. The intake system for a supercharged engine according to claim 1, wherein the one intake port is a primary intake port, and the other intake port is a secondary intake port. 3. The intake system for a supercharged engine according to claim 1, wherein the one intake port is a secondary intake port, and the other intake port is a primary intake port.
JP56052252A 1981-04-06 1981-04-06 Intake system for supercharged engines Expired JPS5833376B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56052252A JPS5833376B2 (en) 1981-04-06 1981-04-06 Intake system for supercharged engines
US06/363,772 US4488531A (en) 1981-04-06 1982-03-31 Plural intake system for supercharged engine
DE19823212910 DE3212910A1 (en) 1981-04-06 1982-04-06 FUEL INLET SYSTEM FOR A PRE-COMPRESSION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56052252A JPS5833376B2 (en) 1981-04-06 1981-04-06 Intake system for supercharged engines

Publications (2)

Publication Number Publication Date
JPS57165630A JPS57165630A (en) 1982-10-12
JPS5833376B2 true JPS5833376B2 (en) 1983-07-19

Family

ID=12909536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56052252A Expired JPS5833376B2 (en) 1981-04-06 1981-04-06 Intake system for supercharged engines

Country Status (1)

Country Link
JP (1) JPS5833376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118526A (en) * 1984-11-15 1986-06-05 Niigata Eng Co Ltd Method of supplying mixture into gas engine
DE10303705B4 (en) * 2003-01-30 2006-08-31 Siemens Ag A method of operating a direct fuel injection internal combustion engine

Also Published As

Publication number Publication date
JPS57165630A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
US4703734A (en) Multi-valve internal combustion engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS63173813A (en) Two-cycle internal combustion engine
CA1077353A (en) Supercharger system of engine
US4484549A (en) 4-Cycle internal combustion engine
US4852353A (en) Method and an arrangement for controlling the working cycle of a turbocharged internal combustion engine
JPS5833376B2 (en) Intake system for supercharged engines
JPS6345490B2 (en)
JPS6128828B2 (en)
JP2620259B2 (en) Engine intake system
JPS6126569Y2 (en)
JPH0348334B2 (en)
JP2617491B2 (en) Engine with turbocharger
JPH0410343Y2 (en)
JPS5941293Y2 (en) Internal combustion engine with supercharger
JPH0828280A (en) Intake device for engine having supercharger
JPS5922247Y2 (en) spark ignition internal combustion engine
JPS599074Y2 (en) Pressure-responsive devices in internal combustion engines
JPS60256523A (en) Diesel engine
JP3397902B2 (en) Engine with turbocharger
JPS5941294Y2 (en) Internal combustion engine with supercharger
JPS61118526A (en) Method of supplying mixture into gas engine
JPS5833371B2 (en) engine supercharging device
JPH0332753Y2 (en)
JPS63297725A (en) Engine with turbocharger