JPH0466907A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPH0466907A
JPH0466907A JP2175353A JP17535390A JPH0466907A JP H0466907 A JPH0466907 A JP H0466907A JP 2175353 A JP2175353 A JP 2175353A JP 17535390 A JP17535390 A JP 17535390A JP H0466907 A JPH0466907 A JP H0466907A
Authority
JP
Japan
Prior art keywords
optical fiber
sheath
layer
polymer
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2175353A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shimada
島田 勝彦
Hiroaki Onishi
宏明 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2175353A priority Critical patent/JPH0466907A/en
Publication of JPH0466907A publication Critical patent/JPH0466907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve bending and repetitive flexibility by constituting a protective material of all the plastic optical fiber having a fiber-sheath-protective layer structure of a polymer specified in breaking elongation. CONSTITUTION:The generation of flaws in the fiber material layer even in the case of the occurrence of the exertion of an external force to the plastic optical fiber and the adhesion of fats and oils, etc., is more effectively prevented by coating the outer layer of the sheath with a protective layer having the specific breaking strength rather than by improving the resistance of the polymer forming the sheath material layer, by which the optical fiber having the excellent repetitive bending characteristic of the optical fiber is obtd. The protective layer forming material to be provided on the outer side of the sheath of the optical fiber is required to have the sufficient resilience and elongation sufficient for preventing the generation of the flaws to the sheath material layer by the external force exerted to the optical fiber and is required to have >=30% breaking elongation.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は曲げ、及び繰り返し屈曲性に優れるオールプラ
スチック光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an all-plastic optical fiber that is excellent in bending and repeated bending properties.

[従来技術及び解決すべき課題] プラスチック光ファイバはその端面加工の容易さ、耐曲
げ特性及び耐振動特性の良さから最近、種々の用途でそ
の需要が伸びている。
[Prior Art and Problems to be Solved] Demand for plastic optical fibers has recently been increasing for various uses because of their ease of end face processing and good bending resistance and vibration resistance.

オールプラスチック光ファイバは屈折率が大きく、かつ
光の透過性が良好なポリメタクリル酸メチル(以下PM
MAという)やポリカーボネート(以下pcという)等
の重合体にて芯層を形成し、芯形成用ポリマーの屈折率
よりも屈折率が小さく透明な含フツ素ポリマー等の重合
体を鞘材層として芯材層の外周に設けた芯−鞘構造をそ
の基本構成単位としている。
All-plastic optical fiber is made of polymethyl methacrylate (hereinafter referred to as PM), which has a high refractive index and good light transmittance.
A core layer is formed of a polymer such as MA) or polycarbonate (hereinafter referred to as PC), and a transparent polymer such as a fluorine-containing polymer with a refractive index lower than that of the core forming polymer is used as a sheath material layer. Its basic structural unit is a core-sheath structure provided on the outer periphery of the core material layer.

オールプラスチック光ファイバはその特性から短距離通
信用ファイバとして或いはセンサー用ファイバとしての
適性を有しており、その加工性の良好さから特に自動車
内光通信に代表される移動体内での光通信媒体として使
用するのに適している。また、オールプラスチック光フ
ァイバはその繰り返し曲げ特性が良好なことからロボッ
トアームのセンサーなど繰返し屈曲操作を行なうことが
多く、かつ振動部位での需要が大きく伸びている。しか
し従来開発されてきたオールプラスチック光ファイバの
うち鞘材としてフン素化メタクリレート系重合体を用い
たものはその伸びの少なさから繰り返し屈曲部位で使用
すると、この操作により鞘材層に微少なりラックが発生
、へ゛長しついには光ファイバが切断を起すという難点
がある。またフッ化ビニリデン系重合体は伸びがあり、
それを鞘材とした光ファイバは繰り返し屈曲には優れる
ものの温熱環境下に暴露するとポリフッ化ビニリデン自
体の結晶化が促進されることにより鞘材に白濁が生じ光
ファイバの伝送損失が極めて大きくなるという難点があ
った。
Due to its characteristics, all-plastic optical fiber is suitable as a fiber for short-distance communication or as a fiber for sensors, and because of its good workability, it is especially suitable as an optical communication medium in moving bodies, such as optical communication in automobiles. suitable for use as. In addition, because all-plastic optical fibers have good repeated bending characteristics, they are often subjected to repeated bending operations, such as in sensors for robot arms, and their demand for use in vibrating parts is rapidly increasing. However, among conventionally developed all-plastic optical fibers, those that use fluorinated methacrylate polymers as the sheath material have low elongation, so if they are repeatedly used at bent parts, this operation will cause slight cracking in the sheath material layer. The problem is that the optical fiber becomes long and eventually breaks. Vinylidene fluoride polymers also have elongation,
Optical fibers using this as a sheath material are excellent at repeated bending, but when exposed to high temperature environments, the crystallization of polyvinylidene fluoride itself is promoted, causing cloudiness in the sheath material and extremely high transmission loss in the optical fiber. There was a problem.

[課題を解決するための手段] そこで本発明者らは上記課題を解決することを目的に検
討した結果、本発明を完成したものでありその要旨とす
るところは、芯−鞘一保護層を基本構造とするプラスチ
ック光ファイバであって保護材料として破断伸度が30
%以上である材料を用いたことを特徴とするプラスチッ
ク光ファイバにある。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of studies aimed at solving the above problems, and the gist thereof is to provide a core-sheath protective layer. The basic structure is a plastic optical fiber with a breaking elongation of 30 as a protective material.
% or more of the plastic optical fiber.

即ち、本発明者らは従来開発されてきた光ファイバの繰
返し屈曲に対する弱さについて検討ではなく、芯−鞘2
層構造の光フアイバ表面の外力による傷の発生や鞘層表
面の油脂付着による鞘層の溶剤割れの発生が本質的な問
題であることを突止めた。そこで本発明者等はプラスチ
ック光ファイバに外力が加えられたり、油脂等の付着が
起った場合においても芯材層での傷の発生を抑止するた
めには、鞘材層を形成するポリマーの耐性の向上を図る
よりも鞘の外層に特定の破断伸度を有する保護層を被覆
することが有効であり、かつ、光ファイノ\の繰り返し
屈曲に優れる光ファイバが得られることを明らかにした
のである。
That is, the present inventors did not study the weakness of conventionally developed optical fibers against repeated bending, but
It was discovered that the fundamental problems were the occurrence of scratches on the surface of the layered optical fiber due to external force and the occurrence of solvent cracks in the sheath layer due to oil adhesion on the surface of the sheath layer. Therefore, the present inventors discovered that in order to prevent damage to the core material layer even when an external force is applied to the plastic optical fiber or when oil or fat adheres to the plastic optical fiber, the polymer forming the sheath material layer should be We have found that it is more effective to coat the outer layer of the sheath with a protective layer that has a specific elongation at break than to improve its resistance, and that it is possible to obtain an optical fiber that is excellent in repeated bending. be.

光ファイバの鞘の外側に設ける保護層形成材料としては
光ファイバに加えられる外力により鞘材層への傷の発生
を防止するのに充分な柔軟性、伸びを備えていることが
要求され、30%以上の破断伸度を有するものであるこ
とが必要である。破断伸度が30%未満のプラスチック
材では上述した如き効果を光ファイバに与えることがで
きず、この保護層の厚味を厚くしても、その得られる効
果は極めて小さい。
The protective layer forming material provided on the outside of the optical fiber sheath is required to have sufficient flexibility and elongation to prevent damage to the sheath material layer due to external force applied to the optical fiber. % or more. A plastic material having a breaking elongation of less than 30% cannot provide the above-mentioned effect to the optical fiber, and even if the thickness of this protective layer is increased, the effect obtained is extremely small.

本発明を実施するに際して用いられるプラスチック光フ
ァイバの芯材としては非品性の透明重合体が好適であり
、例えばメタクリル酸メチルの単独重合体又は共重合体
(共重合体中の70重量%以上がメタクリル酸メチル単
位、30重量%以下がメタクリル酸メチルと共重合可能
なモノマー単位で構成されていることが好ましい。)メ
タクリル酸メチルと共重合可能な七ツマ−としては、例
えばアクリル酸メチル、アクリル酸エチル等のビニル七
ツマ−が挙げられる。この他、メタクリル酸シクロヘキ
シル、メタクリル酸t−ブチル、メタクリル酸イソボル
ニル、メタクリル酸アダマンチル、メタクリル酸ベンジ
ル、メタクリル酸フェニル、メタクリル酸ナフチル等の
メタクリル酸エステルとこれらと共重合可能なモノマー
との共重合体、ポリカーボネート、ポリスチレン、スチ
レン−メタクリル酸エステル系共重合体、あるいはこれ
らポリマーの水素原子の全部あるいは一部が重水素原子
で置換された重水素化重合体や、一般式 で示される環構造単位2重量%以上とメタクリル酸メチ
ルを主成分とする単量体単位98重量%以下とからなる
重合体を例示することができる。
As the core material of the plastic optical fiber used in carrying out the present invention, a non-grade transparent polymer is suitable, such as a homopolymer or copolymer of methyl methacrylate (70% by weight or more in the copolymer). is preferably composed of methyl methacrylate units, and 30% by weight or less is composed of monomer units copolymerizable with methyl methacrylate.) Examples of the monomer copolymerizable with methyl methacrylate include methyl acrylate, Examples include vinyl heptamers such as ethyl acrylate. In addition, copolymers of methacrylic acid esters such as cyclohexyl methacrylate, t-butyl methacrylate, isobornyl methacrylate, adamantyl methacrylate, benzyl methacrylate, phenyl methacrylate, and naphthyl methacrylate and monomers copolymerizable with these esters , polycarbonate, polystyrene, styrene-methacrylic acid ester copolymers, deuterated polymers in which all or some of the hydrogen atoms of these polymers are substituted with deuterium atoms, and ring structural units represented by the general formula 2 Examples include polymers consisting of 98% by weight or more of monomer units containing methyl methacrylate as a main component.

本発明を実施するに際して用いられるプラスチック光フ
ァイバの鞘材形成用ポリマーとして、芯成分形成用ポリ
マーの屈折率より0.01以上小さい屈折率を有する実
質的に透明な重合体が使用されうるが、通常は芯成分形
成用ポリマーとの屈折率の差が0.O1〜0.15の範
囲にあるものから選択するのがよい。鞘材層を構成する
重合体のとしては、従来公知のものを用いることができ
、例えば、メタクリル酸メチルの単独重合体又は共重合
体を芯材としく箒カた場合には、特公開43−8978
号、特公昭56−8321号、特公昭56−8322号
、特公昭56−8323号及び特開昭53−60243
号等に開示されている様なフッ素化アルキルメタクリレ
ート系重合体を用いるのが好ましい。また、ポリカーボ
ネートやポリスチレンを芯材として用いた場合には、例
えばポリメチルメタクリレートを鞘材形成用重合体とし
て用いることができる。その他の軸形成用重合体として
は、特公昭43−8978号あるいは特公昭53−42
260号に記載されている様なフン化ビニリデン系重合
体やフッ化ビニリデン−へキサフルオロプロピレン系共
重合体、フッ化ビニリデン−テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体、フン化アルキル−
α−フルオロアクリレート系重合体の他、特開昭63−
261204号公報、あるいはUSP4754009に
例示される様な環構造を有するパーフルオロ重合体も使
用できる。
As the polymer for forming the sheath material of the plastic optical fiber used in carrying out the present invention, a substantially transparent polymer having a refractive index that is 0.01 or more lower than the refractive index of the polymer for forming the core component may be used. Usually, the difference in refractive index with the polymer for forming the core component is 0. It is preferable to select from those in the range of O1 to 0.15. As the polymer constituting the sheath material layer, conventionally known polymers can be used. For example, when a broom is made of a homopolymer or copolymer of methyl methacrylate as the core material, the polymer described in Japanese Patent Publication No. 43 -8978
No., Special Publication No. 56-8321, Special Publication No. 56-8322, Special Publication No. 56-8323, and Japanese Patent Publication No. 1983-60243
It is preferable to use a fluorinated alkyl methacrylate polymer as disclosed in No. Furthermore, when polycarbonate or polystyrene is used as the core material, for example, polymethyl methacrylate can be used as the polymer for forming the sheath material. Other shaft-forming polymers include Japanese Patent Publication No. 43-8978 or Japanese Patent Publication No. 53-42.
Vinylidene fluoride polymers, vinylidene fluoride-hexafluoropropylene copolymers, and vinylidene fluoride-tetrafluoroethylene copolymers as described in No. 260.
Hexafluoropropylene copolymer, fluorinated alkyl-
In addition to α-fluoroacrylate polymers, JP-A-63-
Perfluoropolymers having a ring structure as exemplified in JP 261204 or USP 4754009 can also be used.

本発明のプラスチック光ファイバを作るに際して用いる
保護材形成用重合体としては30%以上の破断伸度を有
するものであることが必要である。例えば塩化ビニル樹
脂、ポリ塩化ビニリデン樹脂、ビニルブチラール樹脂、
ビニルアルコール樹脂、アクリル酸エステル系樹脂、ポ
リエチレン、ポリプロピレンに代表されるポリオレフィ
ン系樹脂、ポリスルホン、ポリカーボネート、ナイロン
、ポリアセタール、ポリエチレンテレフタレート、ポリ
クロルトリフルオロエチレン、ポリフッ化ビニリデン、
テトラフルオロエチレン等のフッ素系樹脂が挙げられる
が、またこれらは単独重合体でも共重合体であってもよ
い。破断伸度が30%以下なる重合体を光ファイバの鞘
材層の外側へ保護層として形成しても、この型の光ファ
イバでは繰返し屈曲により鞘材層に傷が発生したり、或
いは油脂類によって鞘材層がソルベントクラッキングを
受は傷を生ずるようになり、芯材層の破壊を生ずること
となる。これに対し、破断伸度30%以上の重合体にて
保護層を形成した本発明の光ファイバはこのような不都
合を生ずることがなく、信顧性が高く、ハンドリング性
の良好なものとなっている。
The polymer for forming the protective material used in making the plastic optical fiber of the present invention must have an elongation at break of 30% or more. For example, vinyl chloride resin, polyvinylidene chloride resin, vinyl butyral resin,
Vinyl alcohol resin, acrylic ester resin, polyethylene, polyolefin resin represented by polypropylene, polysulfone, polycarbonate, nylon, polyacetal, polyethylene terephthalate, polychlorotrifluoroethylene, polyvinylidene fluoride,
Examples include fluororesins such as tetrafluoroethylene, but these may be either homopolymers or copolymers. Even if a polymer with a breaking elongation of 30% or less is formed as a protective layer on the outside of the sheath material layer of an optical fiber, the sheath material layer of this type of optical fiber may be damaged due to repeated bending, or may be damaged by oils and fats. As a result, the sheath material layer is subjected to solvent cracking, causing scratches, resulting in destruction of the core material layer. On the other hand, the optical fiber of the present invention, in which the protective layer is formed of a polymer with a breaking elongation of 30% or more, does not have such disadvantages, has high reliability, and has good handling properties. ing.

以下実施例により具体的に本発明を説明する。The present invention will be specifically explained below using Examples.

実施例1 芯材形成用重合体として連続塊状重合により得られた重
合率45−t%のポリメタクリル酸メチルシラツブをバ
レル温度230℃のベント付脱揮押出機を用いて脱揮熔
融し、樹脂温度234°Cにて215°Cの3層複合紡
糸ヘッドに供給した。
Example 1 Polymethyl methacrylate silica with a polymerization rate of 45-t% obtained by continuous bulk polymerization as a core material forming polymer was devolatilized and melted using a vented devolatilizing extruder with a barrel temperature of 230°C, and the resin temperature was 234°C was fed to a 215°C three-layer composite spinning head.

鞘材形成用重合体としてセルキャスト重合後、脱揮処理
して得られた3フツ素化エチルメタクリレート/メチル
メタクリレート/メタクリル酸=80/19/ 1 (
wt%)の共重合体を、バレル温度210°Cの押出機
を用いて溶融し、樹脂温度222℃にて215 ’Cの
3層複合紡糸ヘッドに供給した。
Trifluorinated ethyl methacrylate/methyl methacrylate/methacrylic acid = 80/19/1 (trifluorinated ethyl methacrylate/methyl methacrylate/methacrylic acid = 80/19/1 (
wt%) of the copolymer was melted using an extruder with a barrel temperature of 210°C and fed to a 3-layer composite spinning head at 215′C with a resin temperature of 222°C.

保護材形成用重合体としてエチレン−エチルアクリレー
ト共重合体(日本ユニカー−製商品名EEA) (破断
伸度700%)をバレル温度210°Cの押出機を用い
て溶融し、樹脂温度208°Cにて215°Cの3層複
合紡糸ヘッドに供給した。
Ethylene-ethyl acrylate copolymer (product name EEA manufactured by Nippon Unicar Co., Ltd.) (700% elongation at break) as a polymer for forming the protective material was melted using an extruder with a barrel temperature of 210°C, and the resin temperature was 208°C. The mixture was fed to a three-layer composite spinning head at 215°C.

芯、鞘、保護各材料はそれぞれ215°Cに設定された
定量ギヤポンプに用いて定量され、3層複合紡糸ノズル
に供給され、同心円3層光フアイバとして吐出された。
The core, sheath, and protection materials were each metered using a metering gear pump set at 215°C, fed to a three-layer composite spinning nozzle, and discharged as a concentric three-layer optical fiber.

得られた光ファイバは外径1000m、鞘厚み5−1保
護厚み5−であり650nmの光を伝送した場合におけ
る光伝送損失は128dB/Kmと極めて良好なもので
あった。またこの光ファイバを10■φのバーの間には
さみ、荷重を500gかけた状態で180°屈曲を繰返
す屈曲試験で繰り返し屈曲回数は20,000回まで切
断なく極めて良好であった。
The obtained optical fiber had an outer diameter of 1000 m, a sheath thickness of 5-1 and a protection thickness of 5-1, and the optical transmission loss when transmitting 650 nm light was extremely good at 128 dB/Km. In addition, in a bending test in which this optical fiber was sandwiched between bars of 10 mm diameter and repeatedly bent at 180 degrees under a load of 500 g, the fiber could be bent repeatedly up to 20,000 times without breaking.

実施例2〜4、比較例1〜3 鞘材及び保護材を第1表に示した如く変更する以外は実
施例1と同様の方法にて光ファイバを作成し、その光伝
送損失、繰り返し屈曲回数を測定した。得られた結果を
第1表に示した。
Examples 2 to 4, Comparative Examples 1 to 3 Optical fibers were made in the same manner as in Example 1 except that the sheath material and protective material were changed as shown in Table 1, and the optical transmission loss and repeated bending were evaluated. The number of times was measured. The results obtained are shown in Table 1.

表中 P?IMA :ポリメチルメタクリレート3FM
:)リフルオロエチルメタクリレート 17FM  :  3.3,4,4,5,5,6,6.
7.7,8,8,9,9.1010、10ペンタデカフ
ロムデシルメ タクリレート MMA :メチルメタクリレート MAA :メタクリル酸 実施例5 芯材として粘度平均分子量20,000のビスフェノー
ルA型ポリカーボネートを用い、バレル温度260°C
のベント付脱揮押出機を用いて脱揮溶融し、樹脂温度2
46°Cにて250°Cの3層複合紡糸ヘッドに供給し
た。
P in the table? IMA: Polymethyl methacrylate 3FM
:) Lifluoroethyl methacrylate 17FM: 3.3,4,4,5,5,6,6.
7.7,8,8,9,9.1010,10 Pentadecafromdecyl methacrylate MMA: Methyl methacrylate MAA: Methacrylic acid Example 5 Bisphenol A type polycarbonate with a viscosity average molecular weight of 20,000 was used as the core material, and the barrel temperature 260°C
The resin temperature is 2.
It was fed at 46°C to a 250°C three-layer composite spinning head.

鞘材としてパーフルオロ(2,2−ジメチル−1,3ジ
オキソール)とテトラフルオロエチレン50150mo
1%の共重合を用いバレル温度230°Cの押出機を用
いて溶融し、樹脂温度235”Cにて250°Cの3層
複合紡糸ヘッドに供給した。
Perfluoro(2,2-dimethyl-1,3 dioxole) and tetrafluoroethylene 50150mo as sheath material
It was melted using an extruder with a barrel temperature of 230°C using 1% copolymerization and fed to a 3-layer composite spinning head at 250°C with a resin temperature of 235''C.

保護材としてエチレン−エチルアクリレート共重合体(
EEA :破断伸度700%)をバレル温度210 ”
Cの押出機を用いて溶融し、樹脂温度208°Cにて2
50°Cの3層複合紡糸ヘッドに供給した。
Ethylene-ethyl acrylate copolymer (
EEA: Breaking elongation 700%) at barrel temperature 210”
Melt using an extruder C, and melt at a resin temperature of 208°C.
A three-layer composite spinning head was fed at 50°C.

芯、鞘、保護各材料はそれぞれ250°Cに設定された
定量ギヤポンプを用いて定量され、3層複合紡糸ノズル
に供給され、同心円3層光フアイバとして吐出された。
The core, sheath, and protection materials were each metered using a metering gear pump set at 250°C, fed to a three-layer composite spinning nozzle, and discharged as a concentric three-layer optical fiber.

得られた光ファイバは外径11000a、鞘厚み5−1
保護厚み10ttmであり、770nn+における伝送
損失は720dB/に−と極めて優れたものであった。
The obtained optical fiber had an outer diameter of 11000a and a sheath thickness of 5-1
The protection thickness was 10 ttm, and the transmission loss at 770 nn+ was extremely excellent at 720 dB/-.

繰り返し屈曲回数は100.’000回まで切断なく極
めて良好であった。
The number of repeated bending is 100. The results were extremely good with no breakage up to '000 cycles.

特許出願人  三菱レイヨン株式会社Patent applicant: Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 芯−鞘−保護層構造のオールプラスチック光ファイバで
あって保護材料として破断伸度が30%以上の重合体に
て構成したことを特徴とするプラスチック光ファイバ。
1. A plastic optical fiber which is an all-plastic optical fiber having a core-sheath-protective layer structure, characterized in that the protective material is made of a polymer having a breaking elongation of 30% or more.
JP2175353A 1990-07-04 1990-07-04 Plastic optical fiber Pending JPH0466907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175353A JPH0466907A (en) 1990-07-04 1990-07-04 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175353A JPH0466907A (en) 1990-07-04 1990-07-04 Plastic optical fiber

Publications (1)

Publication Number Publication Date
JPH0466907A true JPH0466907A (en) 1992-03-03

Family

ID=15994589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175353A Pending JPH0466907A (en) 1990-07-04 1990-07-04 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH0466907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009653A1 (en) 2020-07-09 2022-01-13 東レ株式会社 Plastic optical fiber, medical lighting device, medical sensor device, medical phototherapeutic device, and plastic optical fiber cord

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009653A1 (en) 2020-07-09 2022-01-13 東レ株式会社 Plastic optical fiber, medical lighting device, medical sensor device, medical phototherapeutic device, and plastic optical fiber cord

Similar Documents

Publication Publication Date Title
EP0112564B1 (en) Plastic optical fiber
EP0097325B1 (en) Optical fiber
EP0488390A1 (en) Plastic optical fibers
JPH0251484B2 (en)
JPH05249325A (en) Plastic optical fiber
US7142754B2 (en) Plastic optical fiber, plastic optical fiber cables, optical fiber cables with plugs with copolymer
JPS5893003A (en) Light transmissive fiber and its production
JPH0466907A (en) Plastic optical fiber
JP5915709B2 (en) Plastic optical fiber and manufacturing method thereof, and plastic optical fiber cable
JP4310899B2 (en) High numerical aperture plastic optical fiber
JPH10274716A (en) Plastic optical fiber high in numerical aperture
JP2011253108A (en) Plastic optical fiber, manufacturing method for the same, and plastic optical fiber cable
JP3091239B2 (en) Plastic optical fiber cord
JPH07239420A (en) Wide range plastic optical fiber
JPS6225706A (en) Resin optical fiber and its production
JP2841119B2 (en) Plastic optical fiber and method for producing the same
JP3559295B2 (en) Plastic optical fiber and its manufacturing method
JP3122218B2 (en) Plastic optical fiber
JP2003139972A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPH0451206A (en) Plastic optical fiber
JPH04265914A (en) Optical plastic fiber
JP2547669B2 (en) Optical fiber sheath material composition
JPH01223104A (en) Polymer for sheath material of optical fiber
JP2003139971A (en) Plastic optical fiber
JP3945910B2 (en) Optical fiber and optical fiber cable