JPH0466823A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0466823A
JPH0466823A JP2179272A JP17927290A JPH0466823A JP H0466823 A JPH0466823 A JP H0466823A JP 2179272 A JP2179272 A JP 2179272A JP 17927290 A JP17927290 A JP 17927290A JP H0466823 A JPH0466823 A JP H0466823A
Authority
JP
Japan
Prior art keywords
infrared sensor
infrared
measured
detection device
cold mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179272A
Other languages
Japanese (ja)
Inventor
Masaru Kurokawa
黒川 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP2179272A priority Critical patent/JPH0466823A/en
Publication of JPH0466823A publication Critical patent/JPH0466823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To reduce a narcissus effect and improve accuracy in temperature measurement by placing a cold mirror provided on a light path between an object to be measured and an infrared sensor gradiently on the light path. CONSTITUTION:A substrate 12a of a cold mirror 12 is sapphire and a reflection layer 12b is coated on the substrate 12a. The reflection layer 12b which has been coated in multi-layers is structured to cut long wavelength components for reducing a effect, and the reflection layer 12b is placed gradiently on a light path 20 between an infrared sensor and an object 2 to be measured so that reflection light from the infrared sensor is reflected on the reflection layer 12b being a plurality of coated layers in a direction different from the infrared sensor and predetermined long wavelength components are not returned to the infrared sensor. Thus a problem due to the narcissus effect is reduced thereby improving accuracy in temperature measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は顕微鏡形サーモグラフィ装置等に用いて好適な
赤外検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detection device suitable for use in a microscope type thermography device and the like.

〔発明の概要〕[Summary of the invention]

本発明は顕微鏡形サーモグラフィ装置等に用いて好適な
赤外検出装置に関し、被測定物からの赤外放射を、冷却
した赤外センサによって検出する様にした赤外検出装置
に於いて、被測定物と赤外センサ間の光路に配されたコ
ールドミラを光路に傾けて配すると共に赤外センサの反
射で生ずるナルシサス効果の長波長成分をカットさせる
様にして温度検出精度を向上させる様にしたものである
The present invention relates to an infrared detection device suitable for use in a microscope type thermography device, etc. The present invention relates to an infrared detection device suitable for use in a microscope type thermography device, etc. The cold mirror placed in the optical path between the object and the infrared sensor is tilted toward the optical path, and the long wavelength component of the Narcissus effect that occurs due to reflection from the infrared sensor is cut to improve temperature detection accuracy. It is something.

〔従来の技術] 赤外検出装置として、生体等から自然放射される赤外放
射を検知し、その表面温度分布を二次元的に表示するサ
ーモグラフィ装置が多く利用されている。更に被測定物
として例えば、サーマルプリンタヘッド等の発熱観測等
に用いる顕微鏡形の赤外放射温度計等も市場に多く見受
けられる様Sこ成って来ている。第4図及び第5図は従
来のこの様な顕微鏡形のサーモグラフィ装置の外観図及
び系統図を示すもので、基台(1a)上に温度検出部(
3)が固定されステージ(1)が第5図の系統図に示す
様にX及びY軸方向に基台(1a)上で被測定物(2)
と共に微小移動出来る様に構成させている。顕微鏡形の
放射温度計を構成する温度検出部(3)上には冷却部(
4)が設けられて、例えば、InSbやHgCdTe等
の赤外センサ(5)を液体窒素を用いて冷却している。
[Prior Art] As an infrared detection device, a thermography device that detects infrared radiation naturally emitted from a living body or the like and displays its surface temperature distribution two-dimensionally is often used. Furthermore, as objects to be measured, for example, microscope-shaped infrared radiation thermometers used for observing heat generation of thermal printer heads, etc., are becoming increasingly common on the market. Figures 4 and 5 show an external view and a system diagram of such a conventional microscope-type thermography device, in which a temperature detection unit (
3) is fixed and the stage (1) moves the object to be measured (2) on the base (1a) in the X and Y axis directions as shown in the system diagram in Figure 5.
It is configured so that it can move minutely along with it. A cooling unit (
4) is provided to cool an infrared sensor (5) made of, for example, InSb or HgCdTe using liquid nitrogen.

被測定物(2)から放射された赤外線或は遠赤外線は温
度検出部(3)内の光学系を経て赤外センサ(5)によ
り検出され、赤外線或は遠赤外線の強度に応じた信号を
増幅回路(6)を介して増幅し、増幅された温度信号に
対応した信号は温度信号処理制御回路(7)に供給され
て、信号処理され、サーモグラムとして画像化されてC
RT (8)上に表示される。
The infrared rays or far infrared rays emitted from the object to be measured (2) are detected by the infrared sensor (5) through the optical system in the temperature detection section (3), and a signal corresponding to the intensity of the infrared rays or far infrared rays is generated. The signal corresponding to the amplified temperature signal is amplified through the amplifier circuit (6), and is supplied to the temperature signal processing control circuit (7), where it is processed and imaged as a thermogram.
RT (8) Displayed above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の赤外検出装置の温度検出部(3)内に用いられる
InSb等の赤外センサ(5)の感度特性曲線は第6図
A、Bに示す如く、種々の感度特性を示す第6図A又は
InSbの感度特性で波長5.5μm以上の波長には感
度をもたない波長特性を持っているが、第6図Bに示す
HgCdTeの感度特性は波長13.0μm程度迄の検
出感度を有する。赤外検出装置の光学系のW、D(作動
距離)は短く、且つ被測定物(2)の放射率の低いもの
では赤外センサ(5)が液体窒素(以下LQN2と記す
)(9)で冷却されているために低い温度(LqNzの
温度)の赤外センサからの約38μmを中心とした赤外
放射が赤外センサ(5)と被測定物間の同じ光学系を通
って被測定物(2)で反射し、再び赤外センサ(5)に
戻り、眞の被測定物(2)からの温度信号に、これら反
射された温度信号が重畳されるナルシサス効果による誤
差を発生する問題があった。
The sensitivity characteristic curves of the infrared sensor (5) such as InSb used in the temperature detection section (3) of the above-mentioned infrared detection device are shown in FIG. The sensitivity characteristics of A or InSb have wavelength characteristics that are insensitive to wavelengths of 5.5 μm or more, but the sensitivity characteristics of HgCdTe shown in Figure 6B show detection sensitivity up to wavelengths of about 13.0 μm. have The W and D (working distance) of the optical system of the infrared detection device are short, and when the object to be measured (2) has a low emissivity, the infrared sensor (5) uses liquid nitrogen (hereinafter referred to as LQN2) (9) The infrared radiation centered at about 38 μm from the infrared sensor, which has a low temperature (temperature of LqNz) due to cooling, passes through the same optical system between the infrared sensor (5) and the object to be measured. The problem is that the reflected temperature signals are reflected by the object (2) and returned to the infrared sensor (5), causing errors due to the Narcissus effect, where these reflected temperature signals are superimposed on the temperature signal from the real object (2). was there.

本発明は斜上の問題を解消するために成されたもので、
その目的とするところはナルシサス効果を低減して温度
測定の精度を向上させた赤外検出装置を得る様にしたも
のである。
The present invention was made to solve the problem of slanting.
The purpose is to obtain an infrared detection device that reduces the Narcissus effect and improves the accuracy of temperature measurement.

(課題を解決するための手段〕 本発明の赤外検出装置はその例が第1図及び第2図に示
されている様に被測定物(2)からの赤外放射を冷却し
た赤外センサ(5)によって検出する様にした赤外検出
装置(10)に於いて、被測定物(2)と赤外センサ(
5)間の光路(20)に配されたコールドミラ(12)
を光路に傾けて配すると共に赤外センサ(5)からの赤
外放射が被測定物(2)の反射で生ずるナルシサス効果
の長波長成分をカットさせる様にしたものである。
(Means for Solving the Problems) The infrared detection device of the present invention, as shown in FIGS. In an infrared detection device (10) configured to detect by a sensor (5), an object to be measured (2) and an infrared sensor (
5) Cold mirror (12) placed in the optical path (20) between
The infrared radiation from the infrared sensor (5) is arranged at an angle to the optical path, and the long wavelength component of the Narcissus effect caused by the reflection of the object (2) to be measured is cut.

〔作用〕[Effect]

本発明の赤外検出装置は被測定物(2)と赤外センサ(
5)との光路(20)間に配するコールドミラ(12)
を傾けて配すると共に、このコールドミラ(12)上に
赤外センサ(5)の反射で生ずるナルシサス効果の長波
長領域をカットさせる反射層を(12b)設ける様にし
たので、ナルシサス効果を抑えて、温度測定精度の向上
した赤外検出装置が得られる。
The infrared detection device of the present invention includes an object to be measured (2) and an infrared sensor (
Cold mirror (12) placed between the optical path (20) and 5)
In addition, a reflective layer (12b) is provided on the cold mirror (12) to cut the long wavelength region of the Narcissus effect caused by reflection from the infrared sensor (5), thereby suppressing the Narcissus effect. Thus, an infrared detection device with improved temperature measurement accuracy can be obtained.

〔実施例] 以下、本発明の赤外検出装置として、顕微鏡形のサーモ
グラフィ装置の一実施例を説明する。尚、第4図及び第
5図で説明した部分との対応部分には同一符号を付して
重複説明を省略する。第1図は本例に用いるコールドミ
ラ(12)の光学系を説明するものであるが、第1図を
説明するに先たち、第2図によって、赤外検出装置の温
度検出部を詳記する。
[Example] Hereinafter, an example of a microscope-type thermography apparatus will be described as an infrared detection apparatus of the present invention. Incidentally, parts corresponding to those explained in FIGS. 4 and 5 are given the same reference numerals, and redundant explanation will be omitted. Fig. 1 explains the optical system of the cold mirror (12) used in this example, but before explaining Fig. 1, the temperature detection section of the infrared detection device will be described in detail with reference to Fig. 2. do.

第2図で、赤外検出装置(10)を構成する筐体(10
a)上には冷却部(4)が設けられ、筐体(10a)の
背面には照明ランプ(13)等が収納される照明用筐体
(10b)が設けられている。更に前方には接眼鏡(1
6)が配設されている。冷却部(4)は魔法瓶と同様に
硝子瓶の周囲に保温層を設けると共に硝子瓶の下部にI
nSb、 HgCdTe、 GeHg、 GeAu等の
赤外センサ(5)が配設され、カセグレン型対物レンズ
(11)とコールドミラ(12)から成る光路(20)
を介してステージ(1)上に配設された被測定物(2)
からの赤外放射を赤外センサ(5)上に集束させる。光
路(20)中には切溝を設けたチョッパ羽根が設けられ
、このチョンパ羽根に塗布した黒体、即ち、基準放射源
からの赤外放射と被測定物(2)からの赤外放射が交互
に赤外センサ(5)に供給される。(18)はこのチョ
ンパ装置の駆動用モータを示す。光路(20)中にはコ
ールドミラ(12)が傾けて配設される。照明用筐体(
10b)内には照明用光源である照明ランプ(13)が
設けられ、照明ランプ(13)からの照明光は熱線吸収
ガラス及び集光レンズ系(14)を介してファイハーオ
ブテックス(19)に入射される。ファイバーオブテ、
7クス(19)から出射した照明光はコンデンサレンズ
(15)を介してハーフミラ(17)に入射する。ハー
フミラ(17)は接眼鏡(16)とコールドミラ(12
)間に設けられているので接眼鏡(16)を介して照明
光で照明された被測定物(2)を観察することが出来る
様に成されている。第1図は本例に用いる光学系中のコ
ールドミラ(12)の模式図であり、基板(12a)は
サファイア(A7zCh)であり、この基板(12a)
上に反射層(12b)をコーテングする。この反射層(
12b)この多層にコーテングした反射層(12b)に
於いてはナルシサス効果を低減させるために長波長成分
をカットさせる様に構成され、且つ、赤外センサ(5)
と被測定物(2)間の光路(20)に傾けて配設されて
いるので赤外センサ(5)からのLQN2の冷却による
反射光は複数のコーテング層である反射層(12b)で
赤外センサ(5)とは異なる方向に反射し、所定の長波
長成分が赤外センサ(5)に戻ることはない。
In Fig. 2, a housing (10) constituting an infrared detection device (10) is shown.
A) A cooling unit (4) is provided on the top, and an illumination case (10b) in which an illumination lamp (13) and the like are housed is provided on the back side of the case (10a). Furthermore, there is an eyepiece (1
6) is provided. The cooling section (4) provides a heat insulating layer around the glass bottle, similar to a thermos flask, and an I.
An infrared sensor (5) such as nSb, HgCdTe, GeHg, GeAu is arranged, and an optical path (20) consists of a Cassegrain objective lens (11) and a cold mirror (12).
The object to be measured (2) placed on the stage (1) via the
focuses the infrared radiation from the infrared sensor (5) onto the infrared sensor (5). A chopper blade with a groove is provided in the optical path (20), and the black body coated on the chopper blade, that is, the infrared radiation from the reference radiation source and the infrared radiation from the object to be measured (2) The signals are alternately supplied to the infrared sensor (5). (18) shows the driving motor of this chopper device. A cold mirror (12) is arranged at an angle in the optical path (20). Lighting housing (
An illumination lamp (13), which is a light source for illumination, is provided in the inside of the interior of the illumination lamp (10b), and the illumination light from the illumination lamp (13) is passed through a heat ray absorbing glass and a condensing lens system (14) to a Fihar Obtex (19). is incident on the fiber obte,
The illumination light emitted from the 7th box (19) enters the half mirror (17) via the condenser lens (15). Half mirror (17) has eyepiece (16) and cold mirror (12)
) so that the object to be measured (2) illuminated with the illumination light can be observed through the eyepiece (16). FIG. 1 is a schematic diagram of the cold mirror (12) in the optical system used in this example, and the substrate (12a) is sapphire (A7zCh).
Coat a reflective layer (12b) on top. This reflective layer (
12b) This multi-layered reflective layer (12b) is configured to cut long wavelength components in order to reduce the Narcissus effect, and the infrared sensor (5)
and the object to be measured (2), so that the reflected light from the infrared sensor (5) due to cooling of LQN2 is reflected by the reflective layer (12b), which is a plurality of coating layers. The predetermined long wavelength component is reflected in a direction different from that of the infrared sensor (5) and does not return to the infrared sensor (5).

以下、斜上のナルシサス効果を低減させるだめの長波長
帯域のカット方法を第3図A、Bによって説明する。第
3図Aに於いて、縦軸は透過率を横軸は波長を示すコー
ルドミラ(12)の波長特性の1例を示すものであり、
曲線(22)は第1回に示す本例の波長特性を破線で示
すものであり、曲線(23)は反射層(12b)を設け
ない場合の波長特性を示すものである。即ち、本例では
第3図Bに示す様に波長傾斜幅Δλはコールドミラ(1
2)の透過率が72%に該当する波長と5%に該当する
波長との間隔約Δλ−0,5μmとなし、透過限界波長
(25)−5,3μmとし、遮断限界波長(24)−4
,8μm程度に選択すればよい。上述の如く、光路(2
0)中に反射層(12b)をコーテングしたコールドミ
ラ(12)を設けることで、第3図Aに示す様に赤外セ
ンサ(5)の波長特性に必要な波長帯域のみ透過し、5
〜8μmの波長帯域を完全に遮断できるので、ナルシサ
ス効果による赤外センサ(5)の反射を除去出来て温度
検出測定精度を向上させることの出来る赤外検出装置が
得られる。尚、基板(12a)がサファイアでない場合
は光路(20)中に長波長帯域を遮断するサファイア等
のフィルタを介在させる様にしてもよく本発明の要旨を
逸脱しない範囲で種々変更し得ることは明らかである。
Hereinafter, a method of cutting the long wavelength band to reduce the diagonal Narcissus effect will be explained with reference to FIGS. 3A and 3B. In FIG. 3A, the vertical axis shows the transmittance and the horizontal axis shows the wavelength, which shows an example of the wavelength characteristics of the cold mirror (12).
The curve (22) shows the wavelength characteristics of this example shown in the first part as a broken line, and the curve (23) shows the wavelength characteristics when the reflective layer (12b) is not provided. That is, in this example, as shown in FIG. 3B, the wavelength gradient width Δλ is the cold mirror (1
2) The interval between the wavelength corresponding to 72% transmittance and the wavelength corresponding to 5% is approximately Δλ−0.5 μm, the transmission limit wavelength (25) −5.3 μm, and the cutoff limit wavelength (24) − 4
, 8 μm may be selected. As mentioned above, the optical path (2
By providing a cold mirror (12) coated with a reflective layer (12b) inside the infrared sensor (5), only the wavelength band necessary for the wavelength characteristics of the infrared sensor (5) is transmitted, as shown in Figure 3A.
Since the wavelength band of ~8 μm can be completely blocked, an infrared detection device can be obtained that can eliminate reflection of the infrared sensor (5) due to the Narcissus effect and improve temperature detection measurement accuracy. Incidentally, if the substrate (12a) is not sapphire, a filter made of sapphire or the like that blocks long wavelength bands may be interposed in the optical path (20), and various changes may be made without departing from the gist of the present invention. it is obvious.

〔発明の効果] 本発明の赤外検出装置によればナルシサス効果による弊
害を低減させることで温度測定の精度を大幅に向上させ
ることが出来るものが得られる。
[Effects of the Invention] According to the infrared detection device of the present invention, the accuracy of temperature measurement can be significantly improved by reducing the adverse effects caused by the Narcissus effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外検出装置に用いるコールドミラの
構成図、第2図は本発明の赤外検出装置の一実施例を示
す構成図、第3図は本発明の詳細な説明図、第4図は従
来の赤外検出装置の外観図、第5図は従来の赤外検出装
置の系統図、第6図は赤外センサの波長特性回である。 (1)はステージ、(2)は被測定物、(4)は冷却部
、(12)はコールドミラ、(12b)は反射層である
。 第6r6A 赤外後出KrLつ構成図 第2図 4二9去雫 と 第5 区
Fig. 1 is a block diagram of a cold mirror used in the infrared detection device of the present invention, Fig. 2 is a block diagram showing an embodiment of the infrared detection device of the present invention, and Fig. 3 is a detailed explanatory diagram of the present invention. , FIG. 4 is an external view of a conventional infrared detection device, FIG. 5 is a system diagram of a conventional infrared detection device, and FIG. 6 is a diagram of wavelength characteristics of an infrared sensor. (1) is a stage, (2) is an object to be measured, (4) is a cooling section, (12) is a cold mirror, and (12b) is a reflective layer. 6r6A Infrared rear exit KrL configuration diagram Figure 2 429 drop and 5th ward

Claims (1)

【特許請求の範囲】 被測定物からの赤外放射を冷却した赤外センサによって
検出する様にした赤外線検出装置に於いて、 上記被測定物と赤外センサ間の光路に配されたコールド
ミラを光路に傾けて配すると共に、上記赤外センサの反
射で生ずるナルシサス効果の長波長成分をカットさせる
様にしたことを特徴とする赤外検出装置。
[Claims] In an infrared detection device configured to detect infrared radiation from an object to be measured using a cooled infrared sensor, there is provided a cold mirror disposed in an optical path between the object to be measured and the infrared sensor. An infrared detection device characterized in that the infrared detection device is arranged to be inclined in the optical path and to cut long wavelength components of the Narcissus effect caused by reflection from the infrared sensor.
JP2179272A 1990-07-06 1990-07-06 Infrared detector Pending JPH0466823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179272A JPH0466823A (en) 1990-07-06 1990-07-06 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179272A JPH0466823A (en) 1990-07-06 1990-07-06 Infrared detector

Publications (1)

Publication Number Publication Date
JPH0466823A true JPH0466823A (en) 1992-03-03

Family

ID=16062941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179272A Pending JPH0466823A (en) 1990-07-06 1990-07-06 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0466823A (en)

Similar Documents

Publication Publication Date Title
US6859285B1 (en) Optical observation device and method for observing articles at elevated temperatures
US8804111B2 (en) Multichip CCD camera inspection system
JP2010508534A (en) Method and apparatus for process monitoring during material processing
US20100040109A1 (en) Multi-zone non-contact spot thermometer
US5612538A (en) Faraday imaging at high temperatures
KR950012213B1 (en) Two color focal plane array sensor arrangement
KR100966931B1 (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
US4815841A (en) High resolution color band pyrometer ratioing
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPH0466823A (en) Infrared detector
JP2005134362A (en) Inspection method and inspection device for surface irregularity
Maldague et al. Dual imager and its applications to active vision robot welding, surface inspection, and two-color pyrometry
JP3011211B1 (en) Infrared imaging method and infrared imaging device
CN100474888C (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
JPH10142078A (en) Non-contact temperature measuring device
RU2046303C1 (en) Optical pyrometer
JPH03226618A (en) Auto collimator
JPH02187632A (en) Infrared optical device
Mazzetta et al. Automated testing of ultraviolet, visible, and infrared sensors using shared optics
JP6160134B2 (en) Thermal image observation device
JPH0791915A (en) Distance measuring device
Mazzetta et al. Ultraviolet through infrared imager performance testing
JPS61194323A (en) Radiation thermometer
JPS62269028A (en) Infrared image sensing apparatus
JPH06317416A (en) Relative attitude measuring instrument