JPH0466659A - Object having ti2n coating layer and its manufacture - Google Patents

Object having ti2n coating layer and its manufacture

Info

Publication number
JPH0466659A
JPH0466659A JP17684390A JP17684390A JPH0466659A JP H0466659 A JPH0466659 A JP H0466659A JP 17684390 A JP17684390 A JP 17684390A JP 17684390 A JP17684390 A JP 17684390A JP H0466659 A JPH0466659 A JP H0466659A
Authority
JP
Japan
Prior art keywords
coating layer
ti2n
titanium nitride
nitride coating
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17684390A
Other languages
Japanese (ja)
Other versions
JPH0776415B2 (en
Inventor
Itsuo Ishigami
石神 逸男
Eiji Tsunasawa
綱沢 栄二
Fumihiro Uratani
浦谷 文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP2176843A priority Critical patent/JPH0776415B2/en
Publication of JPH0466659A publication Critical patent/JPH0466659A/en
Publication of JPH0776415B2 publication Critical patent/JPH0776415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a coating layer essentially consisting of Ti2N on the surface of various objects without deteriorating and degenerating the materials thereof by physically executing vapor deposition in the atmosphere of a gaseous mixture in which the temp. and gaseous pressure are specified as well as the molar ratio. CONSTITUTION:At the time of forming a Ti2N layer on an object by a physical vapor depositing method, the conditions in which the temp. is regulated to a room one to 600 deg.C and the gaseous pressure is regulated to 1X10<-1> to 1X10<-4> Torr. are set. Furthermore, it is executed in the atmosphere of a gaseous mixture of Ar/N2=1/15 to 1/3 (molar ratio). In this way, a titanium nitride coating layer can be formed on plastics having low heat resistance, metals having high vapor pressure, and alloy steels and nonferrous metals having low softening points. Moreover, the adhesion to the substrate of the coating layer is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Ti2N被覆層を有する物体およびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an object having a Ti2N coating layer and a method for producing the same.

従来から各種の材料および物品の耐磨耗性、耐蝕性など
を改善するとともに、装飾性を高めるために、窒化チタ
ンによりこれら材料および物品を被覆することが行なわ
れている。この際、被覆層の形成には、化学的蒸着法(
CVD法)および物理的蒸着法(PVD法)が採用され
ている。
BACKGROUND OF THE INVENTION Conventionally, various materials and articles have been coated with titanium nitride in order to improve their abrasion resistance, corrosion resistance, etc., and to enhance their decorative properties. At this time, the chemical vapor deposition method (
CVD method) and physical vapor deposition method (PVD method) are employed.

窒化チタンには、TiNとTi2Nとがあるが、被覆層
としては、TiNがもっばら使用されている。Ti2 
NがTiN中又はTi中に混合相として形成されたとの
報告は存在するが(日本金属学会秋期大会シンポジウム
講演概要(1989)第173〜174頁;神戸製鋼技
報(1989)、第39巻、1号、第32〜35頁) 
、Ti2 Nそのものが被覆層として使用されている実
例乃至そのための研究例は、無い。従って、従来は、T
iN被覆層形成のためのより良い条件についての研究が
主に進められている。しかしながら、TiN被覆層の形
成は、高温で行なう必要があり、CVD法では800℃
以上、PVD法でも、特殊な場合を除いては、300℃
以上で行なわれている。
Titanium nitride includes TiN and Ti2N, and TiN is most often used as a coating layer. Ti2
There are reports that N is formed as a mixed phase in TiN or Ti (Japan Institute of Metals Autumn Symposium Lecture Summary (1989), pp. 173-174; Kobe Steel Technical Report (1989), Vol. 39, No. 1, pp. 32-35)
There are no actual examples or research examples of Ti2N itself being used as a coating layer. Therefore, conventionally, T
Research is mainly underway on better conditions for forming an iN coating layer. However, the formation of the TiN coating layer needs to be performed at a high temperature, and in the CVD method, the temperature is 800°C.
As mentioned above, even with the PVD method, the temperature is 300℃ except in special cases.
This is done above.

この様な高温でのTiN被覆層の形成は、被処理物の材
質によっては、硬度の低下、脱元素による材質の劣化乃
至変質などを引き起こす危険性がある。
Formation of the TiN coating layer at such a high temperature may cause a decrease in hardness or deterioration or alteration of the material due to element removal, depending on the material of the object to be treated.

PVD法によるTiN被覆層の形成を200℃以下の比
較的低温領域で行なう試みもなされているが、この場合
には、本来黄金色を呈すべきTiN被覆層が茶褐色など
に変色して装飾的価値を失ったり、被覆層に多数の亀裂
を生じて耐磨耗性、耐蝕性などの特性も大幅に低下する
。さらに、黒褐色の微粉末が大量に発生して、PVD処
理装置の保守にも大きな障害となっている。
Attempts have also been made to form a TiN coating layer using the PVD method at a relatively low temperature of 200°C or less, but in this case, the TiN coating layer, which should normally have a golden color, turns brown or other colors and loses its decorative value. The coating layer may lose its properties, or many cracks may occur in the coating layer, resulting in a significant decline in properties such as abrasion resistance and corrosion resistance. Furthermore, a large amount of blackish brown fine powder is generated, which poses a major problem in the maintenance of PVD processing equipment.

問題点を解決するための手段 本発明者は、この様な技術の現状に鑑みて研究を重ねた
結果、PVD法の一例である中空陰極放電(hot l
ow cathode discharge : HC
D )方式により、被覆すべき基材となる各種の材料乃
至物体(以下特に必要でない限り、単に基材という)に
対して特定の条件下でイオンブレーティングを行なう場
合には、T12N単独若しくは主としてTi2 Nから
なる窒化チタン被覆層を形成し得ることを見出した。そ
して、引き続く研究により、このTi2 N単独若しく
は主としてTi2 Nからなる窒化チタンからなる被覆
層が、TiN層からは予測し得ない程度に極めて優れた
特性を備えていることをも見出した。
Means for Solving the Problems As a result of repeated research in view of the current state of technology, the present inventor has developed a hollow cathode discharge (hot l discharge) method, which is an example of the PVD method.
ow cathode discharge: HC
D) When performing ion blasting under specific conditions on various materials or objects (hereinafter simply referred to as the base material unless otherwise required) that serve as the base material to be coated, use T12N alone or primarily. It has been found that it is possible to form a titanium nitride coating layer consisting of Ti2N. Further, through subsequent research, it was discovered that this coating layer made of titanium nitride consisting solely of Ti2N or mainly Ti2N has extremely excellent properties to a degree that could not be expected from a TiN layer.

すなわち、本発明は、この様な新たな知見に基いて完成
されたものであり、下記の物体およびその製造方法を提
供するものである: (1)Ti2Nを主体とする窒化チタン被覆層を有する
物体。
That is, the present invention was completed based on such new knowledge, and provides the following object and method for manufacturing the same: (1) Having a titanium nitride coating layer mainly composed of Ti2N. object.

■温度=室温乃至600℃およびガス圧力=I X 1
0−1〜1 x 10−4Torrの条件下且つAr/
r’h =1/15〜1/3 (モル比)の混合ガス雰
囲気中で被覆層を形成すべき物体を物理的蒸着法に供し
、Ti2 N層を形成させることを特徴とするTi2N
を主体とする窒化チタン被覆層を有する物体の製造方法
■Temperature = room temperature to 600°C and gas pressure = I x 1
Under conditions of 0-1 to 1 x 10-4 Torr and Ar/
Ti2N characterized by subjecting the object on which the coating layer is to be formed to a physical vapor deposition method in a mixed gas atmosphere of r'h = 1/15 to 1/3 (molar ratio) to form a Ti2N layer.
A method for manufacturing an object having a titanium nitride coating layer mainly composed of.

本明細書において、“Ti2 Nを主体とする窒化チタ
ン被覆層”とは、Ti2 N単独からなる窒化チタン被
覆層のみならず、主としてTi2 Nからなり少量のT
i2−エNy  (0<x≦1.0≦y≦1)を含む窒
化チタン被覆層をも包含するものである。
In this specification, "a titanium nitride coating layer mainly composed of Ti2N" refers to not only a titanium nitride coating layer consisting of Ti2N alone, but also a titanium nitride coating layer mainly composed of Ti2N and containing a small amount of T.
It also includes a titanium nitride coating layer containing i2-ENy (0<x≦1.0≦y≦1).

本発明方法においては、PVD法により、窒化チタン被
覆層を形成することを必須とするが、以下においては、
HCD方式をPVD法の代表例として、説明を行なう。
In the method of the present invention, it is essential to form a titanium nitride coating layer by the PVD method, but in the following,
An explanation will be given using the HCD method as a representative example of the PVD method.

HCD方式における制御パラメータとしては、主に下記
のようなものが挙げられる。
Control parameters in the HCD method mainly include the following.

(1)処理温度 (2)処理時間 (3)ビーム電流 (4)バイアス電圧 (5)雰囲気ガス圧力および流量 (6)雰囲気ガス混合比(Ar/N2)(7)蒸発源と
基板との距離 (8)基板の傾斜角(基板と蒸発源とを結ぶ線分と基板
の法線とのなす角) 本発明者の研究によれば、基材表面にTi2Nを主体と
する窒化チタン被覆層を形成するために特に重要なパラ
メータは、処理温度、雰囲気ガス圧力および雰囲気ガス
混合比(Ar/N2)であることが明らかとなった。そ
の具体的条件は、下記の通りである。
(1) Processing temperature (2) Processing time (3) Beam current (4) Bias voltage (5) Atmospheric gas pressure and flow rate (6) Atmospheric gas mixing ratio (Ar/N2) (7) Distance between evaporation source and substrate (8) Inclination angle of the substrate (angle between the line segment connecting the substrate and the evaporation source and the normal line of the substrate) According to the research of the present inventor, a titanium nitride coating layer mainly composed of Ti2N is coated on the surface of the substrate. It has become clear that the particularly important parameters for formation are processing temperature, atmospheric gas pressure, and atmospheric gas mixing ratio (Ar/N2). The specific conditions are as follows.

■、処理温度=室温乃至600°C: 本発明方法では、処理温度が室温という低温であっても
、基材表面にTi2Nを主体とする窒化チタン被覆層を
形成することができる点が、太きな特徴である。このこ
とは、TiNからなる窒化チタン被覆層の形成に関する
従来技術からは、全(予測し得なかったところである。
(2) Processing temperature = room temperature to 600°C: The method of the present invention has the advantage that a titanium nitride coating layer mainly composed of TiN can be formed on the surface of the substrate even when the processing temperature is as low as room temperature. This is a great feature. This could not have been predicted from the prior art regarding the formation of a titanium nitride coating layer made of TiN.

その結果、本発明によれば、従来窒化チタン被覆層の形
成か全く不可能であった耐熱性の低いプラスチックス、
蒸気圧の高い金属類、軟化点の低い合金鋼類および非鉄
金属類などに対する窒化チタン被覆層の形成が可能とな
った。
As a result, according to the present invention, it is possible to form a titanium nitride coating layer on plastics with low heat resistance, which was previously impossible to form.
It has become possible to form titanium nitride coating layers on metals with high vapor pressure, alloy steels with low softening points, non-ferrous metals, etc.

勿論、本発明方法は、600℃程度までの耐熱性を有す
る基材に対しても適用し得ることは、言うまでもない。
Of course, it goes without saying that the method of the present invention can also be applied to base materials having heat resistance up to about 600°C.

■、雰囲気ガス圧力= lXl0−1〜lXl0−4T
orr :雰囲気ガス圧力が高すぎる場合及び低すぎる
場合には、Ti2 Nを主体とする窒化チタン被覆層の
形成が良好に行なわれない ■、雰囲気ガス混合比(A r / N 2モル比)=
1/15〜1/3: Arの量が少なすぎる場合には、相当量のTiNが、ま
た、Arの量が過剰となる場合には、相当量のTiが混
入して、本発明方法の特徴であるTi2 N単独または
これを主体とする被覆層の形成が良好に行われない。
■, Atmospheric gas pressure = lXl0-1 ~ lXl0-4T
orr: When the atmospheric gas pressure is too high or too low, the formation of a titanium nitride coating layer mainly composed of Ti2N is not performed well.■, Atmospheric gas mixing ratio (Ar / N2 molar ratio) =
1/15 to 1/3: If the amount of Ar is too small, a considerable amount of TiN will be mixed in, and if the amount of Ar is excessive, a considerable amount of Ti will be mixed in, and the method of the present invention will be The characteristic feature of forming a coating layer consisting solely of Ti2N or mainly consisting of Ti2N is not well achieved.

本発明方法の対象となる基材には、殆ど制限はない。す
なわち、従来法によりTiNからなる窒化チタン被覆層
形成の対象となっていた耐熱性の材料のみならず、従来
TiNからなる窒化チタン被覆層形成の対象とはなり得
なかった材料、例えば、プラスチックスなどの有機材料
;200℃以上では急速に軟化する炭素鋼、炭素工具鋼
、低合金鋼、加工硬化したステンレス鋼などの鋼類;銅
、アルミニウム、黄銅などの非鉄金属類;亜鉛、マグネ
シウムなどの蒸気圧の高い金属およびそれらの合金類な
ども、本発明方法の対象となり得る。
There are almost no restrictions on the substrates that can be subjected to the method of the invention. In other words, in addition to heat-resistant materials that were targets for forming a titanium nitride coating layer made of TiN by conventional methods, materials that could not be conventionally formed for titanium nitride coating layers made of TiN, such as plastics. organic materials such as; steels such as carbon steel, carbon tool steel, low alloy steel, and work-hardened stainless steel that soften rapidly at temperatures above 200°C; nonferrous metals such as copper, aluminum, and brass; Metals with high vapor pressure and their alloys can also be subjected to the method of the present invention.

発明の効果 本発明によれば、下記の様な顕著な効果が達成される。Effect of the invention According to the present invention, the following remarkable effects are achieved.

従来存在しなかったTi2Nを主体とする窒化チタン被
覆層を形成することかできる。
A titanium nitride coating layer mainly composed of Ti2N, which has not existed in the past, can be formed.

処理温度に関して、被覆の対象となる基材に対する制限
が極めて少ない。
Regarding the treatment temperature, there are very few restrictions on the substrate to be coated.

窒化チタン被覆層の基材に対する密着性が極めて高い。The adhesion of the titanium nitride coating layer to the base material is extremely high.

窒化チタン被覆層の硬度が高い。The hardness of the titanium nitride coating layer is high.

窒化チタン被覆層は、美観に優れている。The titanium nitride coating layer has excellent aesthetic appearance.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例I HCD方式によるイオンブレーティング装置を使用して
、本発明方法によるTi2 Nを主体とする窒化チタン
被覆層の形成を行なった。以下に操作条件を示す。
Example I A titanium nitride coating layer mainly composed of Ti2N was formed by the method of the present invention using an ion blating apparatus using an HCD method. The operating conditions are shown below.

*温度−室温 *時間=15分 *ビーム電流=180A *バイアス電圧=30V *ガス流ff1=ArLO十N 256.7=66.7
3CCM*ガス圧力= 3.4 x 1O−3Torr
*ガス混合比(A r/N2) =30/170*治具
回転速度=11.7rpm なお、上記のガス圧力については、チタンの溶融・蒸発
を開始する前の定常状態における炉内圧力であり、溶融
・蒸発の開始後は、lXl0−1〜I X 10−4T
orrの範囲で緩やかに変動する。
*Temperature - room temperature * Time = 15 minutes * Beam current = 180A * Bias voltage = 30V * Gas flow ff1 = ArLO ten N 256.7 = 66.7
3CCM*Gas pressure = 3.4 x 1O-3Torr
*Gas mixing ratio (A r/N2) = 30/170 * Jig rotation speed = 11.7 rpm The above gas pressure is the furnace pressure in the steady state before starting melting and evaporation of titanium. , after the start of melting and evaporation, lXl0-1~IX10-4T
It fluctuates slowly within the range of orr.

また、第1表に基材として使用した各材料に関して、処
理面基材硬度、処理後基材硬度および皮膜硬度をそれぞ
れ示す。
Table 1 also shows the treated surface base material hardness, post-treatment base material hardness, and film hardness for each material used as the base material.

尚、下記の各表において、「不能」とあるのは、圧痕不
明瞭または視野が暗いために、測定不能であったことを
意味する。
In each of the tables below, "unable" means that measurement was impossible because the indentation was unclear or the visual field was dark.

実施例2 第2表に示す基材を使用する以外は実施例1と同様にし
て、基材上にTi2 Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 2 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the substrate shown in Table 2 was used.

結果を第2表に示す。The results are shown in Table 2.

実施例3 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 3 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=180A *バイアス電圧=90v *ガス流量=ArlO十N 256.7=66.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 30/170
*治具回転速度=11.7rpm 第3表に結果を示す。
*Temperature = Room temperature * Time = 15 minutes * Beam current = 180A * Bias voltage = 90V * Gas flow rate = ArlO 1N 256.7 = 66.78C
CM*Gas pressure = 3.4 X 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 30/170
*Jig rotation speed = 11.7 rpm The results are shown in Table 3.

実施例4 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 4 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間−15分 *ビーム電流=180A *バイアス電圧−5v *ガス流量=Arlo十N 256.7=66.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 30/170
*治具回転速度=11.7rpm 第4表に結果を示す。
*Temperature = room temperature *Time - 15 minutes *Beam current = 180A *Bias voltage -5V *Gas flow rate = Arlo 1N 256.7 = 66.78C
CM*Gas pressure = 3.4 X 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 30/170
*Jig rotation speed = 11.7 rpm Table 4 shows the results.

実施例5 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 5 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=180A *バイアス電圧=5V *ガス流量−Ar15+N 251.7  = 66.
78CCM*ガス圧力= 3.4 X 1O−3Tor
r*ガス混合比(A r / N2 ) =45/15
5*治具回転速度=11.7rpm 第5表に結果を示す。
*Temperature = room temperature *Time = 15 minutes *Beam current = 180A *Bias voltage = 5V *Gas flow rate - Ar15 + N 251.7 = 66.
78CCM*Gas pressure = 3.4 x 1O-3Tor
r*Gas mixing ratio (A r / N2) = 45/15
5*Jig rotation speed=11.7 rpm Table 5 shows the results.

実施例6 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 6 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間−15分 *ビーム電流=180A *バイアス電圧=30V *ガス流Jit=Ar7.5 +N 259.2=66
.7 SCCM*ガス圧力= 3.4 X 1O−3T
orr*ガス混合比(A r / N2 ) =22.
5/177.5*治具回転速度=11.7rpm 第6表に結果を示す。
*Temperature = Room temperature * Time - 15 minutes * Beam current = 180A * Bias voltage = 30V * Gas flow Jit = Ar7.5 +N 259.2 = 66
.. 7 SCCM*Gas pressure = 3.4 x 1O-3T
orr*gas mixture ratio (A r / N2) = 22.
5/177.5*Jig rotation speed=11.7 rpm The results are shown in Table 6.

実施例7 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 7 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=160A *バイアス電圧−30V *ガス流量−ArlO+N 256.7=66.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N2 ) =30/170*治
具回転速度=11.7rpm 第7表に結果を示す。
*Temperature = room temperature *Time = 15 minutes *Beam current = 160A *Bias voltage -30V *Gas flow rate - ArlO+N 256.7 = 66.78C
CM*Gas pressure=3.4×1O-3Torr*Gas mixing ratio (Ar/N2)=30/170*Jig rotation speed=11.7rpm The results are shown in Table 7.

実施例8 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 8 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=120A *バイアス電圧=30V *ガス流量=Arlo+N 25B、7=66.78C
CM*ガス圧力= 3.4 X 10’−3Torr*
ガス混合比(A r / N 2 ) = 30/17
0*治具回転速度=11.7rpm 第8表に結果を示す。
*Temperature = Room temperature * Time = 15 minutes * Beam current = 120A * Bias voltage = 30V * Gas flow rate = Arlo + N 25B, 7 = 66.78C
CM*Gas pressure=3.4 X 10'-3Torr*
Gas mixture ratio (A r / N 2 ) = 30/17
0*Jig rotation speed=11.7 rpm Table 8 shows the results.

実施例9 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 9 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=200A *バイアス電圧−30V *ガス流量=ArlO+N 256.7=66.78C
CM*ガス圧力=3.4 Xl0−3Torr*ガス混
合比(A r / N 2 ) = 30/170*治
具回転速度=11.7rpm 第9表に結果を示す。
*Temperature = Room temperature * Time = 15 minutes * Beam current = 200A * Bias voltage -30V * Gas flow rate = ArlO + N 256.7 = 66.78C
CM*Gas pressure=3.4 Xl0-3Torr*Gas mixing ratio (Ar/N2)=30/170*Jig rotation speed=11.7rpm The results are shown in Table 9.

実施例10 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 10 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=180A *バイアス電圧=30V *ガス流量=Ar7.5+ N242.5=508CC
M*ガス圧力= 2.37 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 30/170
*治具回転速度−11.7rpm 第10表に結果を示す。
*Temperature = Room temperature * Time = 15 minutes * Beam current = 180A * Bias voltage = 30V * Gas flow rate = Ar7.5 + N242.5 = 508CC
M*Gas pressure = 2.37 X 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 30/170
*Jig rotation speed - 11.7 rpm The results are shown in Table 10.

実施例11 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 11 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=15分 *ビーム電流=180A *バイアス電圧=30V *ガス流量−Ar5 +N 261.7=66.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 15/185
*治具回転速度=11.7rpm 第11表に結果を示す。
*Temperature = Room temperature * Time = 15 minutes * Beam current = 180A * Bias voltage = 30V * Gas flow rate - Ar5 +N 261.7 = 66.78C
CM*Gas pressure = 3.4 x 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 15/185
*Jig rotation speed = 11.7 rpm Table 11 shows the results.

実施例12 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 12 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間−15分 *ビーム電流=120A *バイアス電圧=30v *ガス流t−Ar10十N 256.7=68.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 30/170
*治具回転速度=11.7rpm 第12表に結果を示す。
*Temperature = room temperature *Time - 15 minutes *Beam current = 120A *Bias voltage = 30V *Gas flow t-Ar10N 256.7 = 68.78C
CM*Gas pressure = 3.4 X 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 30/170
*Jig rotation speed = 11.7 rpm Table 12 shows the results.

尚、第12表以下の記載において、PPS樹脂:R4と
あるのは、機械的特性に優れたポリフェニレンサルファ
イド樹脂を意味し、PPS樹脂:R8とあるのは、電気
的特性に優れたポリフェニレンサルファイド樹脂を意味
する。どちらのPPS樹脂もガラス繊維入り材料であり
、第12表において、G部及びM部とあるのは、それぞ
れガラス繊維部及び樹脂基地部を意味する。
In addition, in the descriptions in Table 12 and below, PPS resin: R4 means polyphenylene sulfide resin with excellent mechanical properties, and PPS resin: R8 means polyphenylene sulfide resin with excellent electrical properties. means. Both PPS resins are glass fiber-containing materials, and in Table 12, part G and part M mean the glass fiber part and the resin base part, respectively.

実施例13 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 13 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=10分 *ビーム電流=120A *バイアス電圧=30v *ガス流量−Ar5 +N 261.7=66.78C
CM*ガス圧力= 3.4 X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 15/185
*治具回転速度=11.7rpm 第13表に結果を示す。
*Temperature = Room temperature * Time = 10 minutes * Beam current = 120A * Bias voltage = 30V * Gas flow rate - Ar5 +N 261.7 = 66.78C
CM*Gas pressure = 3.4 x 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 15/185
*Jig rotation speed = 11.7 rpm Table 13 shows the results.

実施例14 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2 Nを主体とする窒化チタン被覆
層の形成を行なった。
Example 14 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=10分 *ビーム電流=120A *バイアス電圧−30V *ガス流量=Ar7.5+ N242.5=50 SC
CM*ガス圧力=2.73X 1O−3Torr*ガス
混合比(A r / N 2 ) = 30/170*
治具回転速度=11.7rpm 第14表に結果を示す。
*Temperature = Room temperature * Time = 10 minutes * Beam current = 120A * Bias voltage -30V * Gas flow rate = Ar7.5 + N242.5 = 50 SC
CM*Gas pressure = 2.73X 1O-3Torr*Gas mixing ratio (Ar/N2) = 30/170*
Jig rotation speed = 11.7 rpm Table 14 shows the results.

実施例15 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にT12Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 15 A titanium nitride coating layer mainly composed of T12N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=9分20秒 *ビーム電流=120A *バイアス電圧=30v *ガス流量−Ar5 +N 242.5=47.58C
CM*ガス圧カー 2.26X 1O−3Torr*ガ
ス混合比(A r / N 2 ) = 217179
*治具回転速度−11,7rpm 第15表に結果を示す。
*Temperature = room temperature *Time = 9 minutes 20 seconds *Beam current = 120A *Bias voltage = 30v *Gas flow rate - Ar5 +N 242.5 = 47.58C
CM*Gas pressure car 2.26X 1O-3Torr*Gas mixing ratio (A r / N 2 ) = 217179
*Jig rotation speed - 11.7 rpm The results are shown in Table 15.

実施例16 以下に示す操作条件を採用する以外は実施例1と同様に
して、基材上にTi2Nを主体とする窒化チタン被覆層
の形成を行なった。
Example 16 A titanium nitride coating layer mainly composed of Ti2N was formed on a substrate in the same manner as in Example 1 except that the operating conditions shown below were adopted.

*温度=室温 *時間=9分 *ビーム電流=120A *バイアス電圧=30V *ガス流量=Ar5 +N 228.3=33.38C
CM*ガス圧力= 1.72X 1O−3Torr*ガ
ス混合比(A r / N2 ) =30/170*治
具回転速度=11.7rpm 第16表に結果を示す。
*Temperature = room temperature *Time = 9 minutes *Beam current = 120A *Bias voltage = 30V *Gas flow rate = Ar5 +N 228.3 = 33.38C
CM*Gas pressure = 1.72X 1O-3Torr*Gas mixing ratio (A r / N2) = 30/170*Jig rotation speed = 11.7 rpm The results are shown in Table 16.

実験例1 実施例8と同様にして得られたTi2 N皮膜を有する
アルミニウム、銅および黄銅試片を第1図に示すように
して180°曲げ加工し、矢印の方向からA−A’力方
向表面状態を撮影した。
Experimental Example 1 An aluminum, copper, and brass specimen having a Ti2N film obtained in the same manner as in Example 8 was bent by 180° as shown in Fig. 1, and the A-A' force direction was bent from the direction of the arrow. The surface condition was photographed.

第17表に試片の寸法及び曲げ状況を示し、第2〜第4
図に各試片の表面状態の顕微鏡写真(400倍)を示す
Table 17 shows the dimensions and bending conditions of the specimens.
The figure shows a micrograph (400x magnification) of the surface condition of each specimen.

180°曲げ加工後にも、Ti2N皮膜に亀裂が認めら
れたものの、皮膜と試片との剥離は認められなかった。
Although cracks were observed in the Ti2N film even after the 180° bending process, no peeling between the film and the specimen was observed.

試片 アルミニウム 銅 黄銅 第17表 t (mm) c (mm) 1.0 1.4 1.0 1.4 1.4 5.0 実験例2 w(+nm) 10、0 10、0 10、0 実施例1と同様にして得られたTi2 N皮膜を有する
カッター刃I(材質5K−2) 、カッター刃■(材質
5KS−7)およびミシン針(材質5WR8−92A)
の断面組織の顕微鏡写真(1000倍)をそれぞれ第5
〜7図として示す。
Sample aluminum copper brass Table 17 t (mm) c (mm) 1.0 1.4 1.0 1.4 1.4 5.0 Experimental example 2 w (+nm) 10, 0 10, 0 10, 0 Cutter blade I (material 5K-2), cutter blade ■ (material 5KS-7) and sewing machine needle (material 5WR8-92A) having a Ti2N film obtained in the same manner as in Example 1.
Micrographs (1000x) of the cross-sectional structure of
- Shown as Figure 7.

いずれの場合にも、試片とTi2 N皮膜とが密着して
いることが明らかである。
In either case, it is clear that the specimen and the Ti2N film are in close contact.

実験例3 実施例2と同様にして得られたTi2N皮膜を有する銅
および黄銅ならびに実施例9と同様にして得られたTi
2N皮膜を有するアルミニウムの断面組織の顕微鏡写真
(1000倍)をそれぞれ第8〜10図として示す。
Experimental Example 3 Copper and brass with a Ti2N film obtained in the same manner as in Example 2 and Ti obtained in the same manner as in Example 9
Micrographs (1000x magnification) of the cross-sectional structure of aluminum having a 2N film are shown in FIGS. 8 to 10, respectively.

いずれの場合にも、試片とTi2 N皮膜とが密着して
いることが明らかである。
In either case, it is clear that the specimen and the Ti2N film are in close contact.

実験例4 実験例1で得られたカッター刃I(材質5K−2)の表
面に形成された皮膜のX線回折図を第11図として示す
Experimental Example 4 FIG. 11 shows an X-ray diffraction diagram of the film formed on the surface of the cutter blade I (material 5K-2) obtained in Experimental Example 1.

形成された皮膜が実質的にTi2Nにより構成されてい
ることが明らかである。
It is clear that the film formed consists essentially of Ti2N.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ti2N皮膜を有するアルミニウム、銅およ
び黄銅試片を180°曲げ加工した状態を示す図面であ
る。 第2〜4図は、第1図に示す方法により曲げ加工された
アルミニウム、銅および黄銅各試片の表面状態を示す図
面に代える顕微鏡写真(400倍)である。 第5〜7図は、Ti2 N皮膜を有するカッター刃■、
カッター刃■およびミシン針の断面組織を示す図面に代
わる顕微鏡写真(1000倍)である。 第8〜10図は、Ti2 N皮膜を有する銅および黄銅
ならびにTi2N皮膜を有するアルミニウムの断面組織
を示す図面に代わる顕微鏡写真(1000倍)である。 第11図は、実験例1で得られたカッター刃Iの表面に
形成された皮膜のX線回折図である。 (以 上) 第 図 第 に ト・′1 偽 図 デ 図 慣 8 図・ 第 図 〒10 図 手続辛甫正書(方式) 平成2年10月17日 特許庁長官 植 松   敏 殿 事件の表示 平成2年特許願第176843号 発明の名称 Ti2N被覆層を有する物体およびその製造方法 補正をする者 事件との関係 特許出願人 大  阪  府
FIG. 1 is a drawing showing a state in which an aluminum, copper, and brass specimen having a Ti2N film was bent by 180°. 2 to 4 are micrographs (magnified at 400 times) in place of drawings showing the surface conditions of aluminum, copper, and brass specimens bent by the method shown in FIG. 1. Figures 5 to 7 show cutter blades with Ti2N coating;
This is a micrograph (1000x magnification) in place of a drawing showing the cross-sectional structure of the cutter blade (1) and the sewing machine needle. Figures 8 to 10 are micrographs (1000x magnification) in place of drawings showing cross-sectional structures of copper and brass with Ti2N coatings and aluminum with Ti2N coatings. FIG. 11 is an X-ray diffraction diagram of the film formed on the surface of the cutter blade I obtained in Experimental Example 1. (Above) Fig. 1. False Fig. 8 Fig. 10 Fig. 10 Procedural Procedures in the Shinho Book (Method) October 17, 1990 Indication of the case of Mr. Satoshi Uematsu, Commissioner of the Japan Patent Office 1990 Patent Application No. 176843 Name of the invention Relationship with the case of a person who amends an object having a Ti2N coating layer and its manufacturing method Patent applicant Osaka Prefecture

Claims (2)

【特許請求の範囲】[Claims] (1)Ti_2Nを主体とする窒化チタン被覆層を有す
る物体。
(1) An object having a titanium nitride coating layer mainly composed of Ti_2N.
(2)温度=室温乃至600℃およびガス圧力=1×1
0^−^1〜1×10^−^4Torrの条件下且つA
r/N_2=1/15〜1/3(モル比)の混合ガス雰
囲気中で被覆層を形成すべき物体を物理的蒸着法に供し
、Ti_2N層を形成させることを特徴とするTi_2
Nを主体とする窒化チタン被覆層を有する物体の製造方
法。
(2) Temperature = room temperature to 600°C and gas pressure = 1 x 1
Under conditions of 0^-^1 to 1 x 10^-^4 Torr and A
Ti_2 characterized by subjecting an object on which a coating layer is to be formed to a physical vapor deposition method in a mixed gas atmosphere of r/N_2 = 1/15 to 1/3 (molar ratio) to form a Ti_2N layer.
A method for manufacturing an object having a titanium nitride coating layer mainly composed of N.
JP2176843A 1990-07-03 1990-07-03 Method for manufacturing object having Ti2N coating layer Expired - Lifetime JPH0776415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176843A JPH0776415B2 (en) 1990-07-03 1990-07-03 Method for manufacturing object having Ti2N coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176843A JPH0776415B2 (en) 1990-07-03 1990-07-03 Method for manufacturing object having Ti2N coating layer

Publications (2)

Publication Number Publication Date
JPH0466659A true JPH0466659A (en) 1992-03-03
JPH0776415B2 JPH0776415B2 (en) 1995-08-16

Family

ID=16020802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176843A Expired - Lifetime JPH0776415B2 (en) 1990-07-03 1990-07-03 Method for manufacturing object having Ti2N coating layer

Country Status (1)

Country Link
JP (1) JPH0776415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119489A (en) * 1998-08-31 2000-09-19 Hna Holdings, Inc. Knitting machine parts resistant to abrasion by yarn of cut-resistant fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290784A (en) * 1988-05-16 1989-11-22 Kobe Steel Ltd Wear-resistant composite member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290784A (en) * 1988-05-16 1989-11-22 Kobe Steel Ltd Wear-resistant composite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119489A (en) * 1998-08-31 2000-09-19 Hna Holdings, Inc. Knitting machine parts resistant to abrasion by yarn of cut-resistant fiber

Also Published As

Publication number Publication date
JPH0776415B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5078837A (en) Process for producing wear resistant coatings for engine components
US4973388A (en) Method of depositing a decorative wear-resistant coating layer on a substrate
FR2571386A1 (en) PROTECTIVE METAL COATINGS
JPH04311569A (en) Hard multilayered film assembled body and its manufacture
EP0370838B1 (en) Process for the surface protection of metallic articles against high-temperature corrosion, and article treated by this process
EP2344681B1 (en) Coatings for cutting implements
JP2816786B2 (en) Al-Ti-based or Al-Ta-based wear-resistant hard film and method for producing the same
JPS58144473A (en) High hardness chromium layer resistant to abrasion, deformation, surface fatigue and corrosion
US6881452B2 (en) Method for improving the TBC life of a single phase platinum aluminide bond coat by preoxidation heat treatment
JPH0466659A (en) Object having ti2n coating layer and its manufacture
Weissmantel et al. Structure property relationships of carbonaceous films grown under ion enhancement
JP2969291B2 (en) Abrasion resistant member and method of manufacturing the same
Beresnev et al. Effect of high-entropy components of nitride layers on nitrogen content and hardness of (TiN-Cu)/(AlNbTiMoVCr) N vacuum-arc multilayer coatings
Mattox Growth and Growth-Related Properties of Films Formed by Physical Vapor Deposition
JP4282821B2 (en) Sliding member
Ait-Djafer et al. Bias voltage effect on magnetron sputtered titanium aluminum nitride TiAlN thin films properties
Tue et al. Microstructure and Oxidation Behavior of Pt and Pt–Ir Diffusion Coatings on Ni-Based Single Crystal Superalloy
JPH06100398A (en) Production of diamond film having mirror finished surface
GB2236750A (en) Ceramic material and insulating coating made thereof
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
JPH03191065A (en) Method for covering hard carbon film
JPS61127858A (en) Golden color external parts
Özenbas et al. Adhesion of thin films
Aguero et al. A Low Temperature CVD Process for TiN Coatings
JPH0390557A (en) Article with colored or colorless film