JPH0466546A - Production of armatic hydroxy compound - Google Patents
Production of armatic hydroxy compoundInfo
- Publication number
- JPH0466546A JPH0466546A JP2175172A JP17517290A JPH0466546A JP H0466546 A JPH0466546 A JP H0466546A JP 2175172 A JP2175172 A JP 2175172A JP 17517290 A JP17517290 A JP 17517290A JP H0466546 A JPH0466546 A JP H0466546A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- phenols
- titanium oxide
- alkoxybenzenes
- silicon oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 150000002440 hydroxy compounds Chemical class 0.000 title description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000002989 phenols Chemical class 0.000 claims abstract description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 9
- 150000005224 alkoxybenzenes Chemical class 0.000 claims abstract description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 8
- 230000000640 hydroxylating effect Effects 0.000 claims abstract description 4
- 239000013081 microcrystal Substances 0.000 claims description 12
- -1 aromatic hydroxy compound Chemical class 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 23
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 150000001875 compounds Chemical class 0.000 abstract description 13
- 238000005805 hydroxylation reaction Methods 0.000 abstract description 7
- 125000003118 aryl group Chemical group 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 4
- 230000033444 hydroxylation Effects 0.000 abstract description 4
- 239000003112 inhibitor Substances 0.000 abstract description 4
- 229940079593 drug Drugs 0.000 abstract description 3
- 239000005060 rubber Substances 0.000 abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 239000000975 dye Substances 0.000 abstract description 2
- 239000000543 intermediate Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000002304 perfume Substances 0.000 abstract 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- MOEFFSWKSMRFRQ-UHFFFAOYSA-N 2-ethoxyphenol Chemical compound CCOC1=CC=CC=C1O MOEFFSWKSMRFRQ-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 239000012028 Fenton's reagent Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007336 electrophilic substitution reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- MGZTXXNFBIUONY-UHFFFAOYSA-N hydrogen peroxide;iron(2+);sulfuric acid Chemical compound [Fe+2].OO.OS(O)(=O)=O MGZTXXNFBIUONY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229940100630 metacresol Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical class OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は芳香族ヒドロキシ化合物の製造法、詳しくはフ
ェノール類及び/又はアルコキシベンゼン類を過酸化水
素でヒドロキシル化し、ヒドロキシ化合物を製造する方
法の改良に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing aromatic hydroxy compounds, specifically a method for producing hydroxy compounds by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide. Regarding improvements.
本発明の方法で得られるヒドロキシ化合物は、例えば、
パラーメトキソーフェノール、ハイドロキノン、および
カテコール等であって、種々の有機合成中間体又は原料
物質として有用であり、還元剤、ゴム薬、染料、医薬、
香料、重合防止剤、酸化抑制剤、ゴム薬等の分野に使用
される。The hydroxy compounds obtained by the method of the present invention are, for example,
Para-methoxophenol, hydroquinone, catechol, etc., which are useful as various organic synthesis intermediates or raw materials, reducing agents, rubber drugs, dyes, pharmaceuticals, etc.
Used in fields such as fragrances, polymerization inhibitors, oxidation inhibitors, and rubber drugs.
フェノール類を過酸化水素を用いてヒドロキシル化する
方法には、古くから2価の鉄イオン(フェントン試薬)
の存在下に反応させる方法、硫酸等の強酸の存在下に親
電子的に置換反応させる方法INature、 165
、401(+950) ] 、又は弗化水素酸を用い
る方法[J、Org、Chem、、35.4028(1
970)] 、コバルト塩を用いる方法[Chem 、
八bst、、80133015g肚、 151787k
1等が知られている。For the hydroxylation of phenols using hydrogen peroxide, divalent iron ions (Fenton's reagent) have long been used.
A method of electrophilic substitution reaction in the presence of a strong acid such as sulfuric acid INature, 165
, 401(+950)], or a method using hydrofluoric acid [J, Org, Chem, 35.4028(1
970)], a method using cobalt salts [Chem,
8 bst,, 80133015g 肚, 151787k
The first prize is known.
これらの方法は、触媒が均−系のため、反応生成物から
触媒を分離し、目的物を単離取得するのが繁雑であった
り、腐蝕性の強い酸の後処理に問題がある等の難点があ
った。In these methods, because the catalyst is homogeneous, it is complicated to separate the catalyst from the reaction product and isolate the desired product, and there are problems with post-treatment with highly corrosive acids. There was a problem.
その後、反応系から触媒を容易に分離出来る、不均一系
の触媒、酸化硅素と酸化チタンを含をする結晶性物質を
用いる方法がIiiされた(GB2083.816.2
,116,974]、この方法では、触媒が不均一系の
ため、反応後の生成物から単に触媒を機械的に分離すれ
ばよく、工業的に有利な方法である。しかしながら結晶
性の酸化硅素と酸化チタン系の化合物を触媒に用いる方
法は、使用する触媒の活性が不充分であり、また、触媒
活性が触媒調製方法により変動する等の難点がある。Subsequently, a method using a crystalline substance containing silicon oxide and titanium oxide, a heterogeneous catalyst that can easily separate the catalyst from the reaction system, was developed (GB2083.816.2
, 116, 974], in this method, since the catalyst is heterogeneous, it is only necessary to mechanically separate the catalyst from the product after the reaction, and it is an industrially advantageous method. However, methods using crystalline silicon oxide and titanium oxide compounds as catalysts have drawbacks such as insufficient activity of the catalysts used and the catalytic activity varying depending on the catalyst preparation method.
〔発明が解決しようとする課B]
従来提案されている結晶性の酸化硅素と酸化チタン系化
合物を触媒とするフェノール類の過酸化水素によるヒド
ロキシル化は、上述の如く、触媒の活性が不充分であっ
たり、触媒活性の製造ハツチ毎の変動が認められる等の
問題点がある。[Problem B to be solved by the invention] As mentioned above, the hydroxylation of phenols with hydrogen peroxide using crystalline silicon oxide and titanium oxide compounds as catalysts has insufficient catalyst activity. There are problems such as variations in catalyst activity depending on the production hatch.
本発明の課題とするところは、従来法の如き問題点のな
い効率の高い、芳香族ヒドロキノ化合物の製造法を提供
することにある。An object of the present invention is to provide a highly efficient method for producing aromatic hydroquino compounds that does not have the problems of conventional methods.
これらの問題点を解決するために、本発明考らはフェノ
ール類と過酸化水素による芳香族ジヒドロ片ノ化合物又
はアルコキンフェノール類の製造法、特に、ヒドロキシ
ル化反応に用いる触媒に関し、種々研究した結果、フェ
ノール類の過酸化水素によるヒドロキシル化反応に関し
ては、従来報告されたことのない、特定の微結晶サイズ
の酸化硅素と酸化チタンを含有する結晶性物質を触媒に
用いると、効率よく目的とする生成物が得られることを
見出して本発明を完成するに至った。In order to solve these problems, the inventors of the present invention conducted various studies on the production method of aromatic dihydrophenols or alkokephenols using phenols and hydrogen peroxide, and in particular on the catalysts used in the hydroxylation reaction. As a result, regarding the hydroxylation reaction of phenols with hydrogen peroxide, using a crystalline substance containing silicon oxide and titanium oxide with a specific microcrystalline size as a catalyst, which has never been reported, can efficiently achieve the desired purpose. The present invention was completed based on the discovery that a product can be obtained.
すなわち、本発明は、
酸化硅素と酸化チタンを含有する結晶性物質の存在下に
フェノール類及び/又はアルコキンベンゼン類を過酸化
水素によってヒドロキシル化し芳香族のしドロキシ化合
物を製造するに際し、酸化硅素と酸化チタンを含有する
結晶性’!!71質の微結晶サイズが10.000人未
満の範囲にあるものを使用することを特徴とする芳香族
ヒドロキシ化合物の製造法である。That is, the present invention provides a method for producing an aromatic hydrogen hydroxy compound by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide in the presence of a crystalline substance containing silicon oxide and titanium oxide. and crystalline containing titanium oxide! ! This is a method for producing an aromatic hydroxy compound, characterized in that a compound having a crystallite size of less than 10,000 particles is used.
本発明によれば芳香族ジヒドロキシ化合物又はアルコキ
ンフェノール類が製造される。According to the present invention, aromatic dihydroxy compounds or alcoquine phenols are produced.
本発明の方法に於いて用いられる触媒の微結晶サイズの
定義は、以下に述べる方法による値である。すなわち、
通常の走査型電子顕微鏡の二次電子像の大きさを観察し
、その微結晶サイズを直接測定する方法による6
通常、結晶の微結晶サイズは、粉末X線回折の半値[↑
Jから算出するが、本発明の方法の結晶性化合物は微結
晶サイズが5000人程度以下と比較的微結晶サイズが
太きいものである。従って、通常の粉末X線回折では、
試料の前処理の目的で、サンプルを乳鉢等ですりつぶす
磨砕処理が必要である。The definition of the crystallite size of the catalyst used in the method of the present invention is the value according to the method described below. That is,
By observing the size of the secondary electron image of a normal scanning electron microscope and directly measuring the crystallite size 6 Normally, the crystallite size of a crystal is determined by the half value of powder X-ray diffraction [↑
Calculated from J, the crystalline compound according to the method of the present invention has a relatively large microcrystal size of about 5,000 or less. Therefore, in normal powder X-ray diffraction,
For the purpose of sample pretreatment, it is necessary to grind the sample in a mortar or the like.
微結晶サイズが1000人程度以下であれば、磨砕によ
っても微結晶サイズが殆ど変化しないが、本発明の方法
では、場合によっては乳鉢等による磨砕処理で、微結晶
サイズが変化する危険があるため、粉末X線回折の半値
巾法を採用せず、走査型電子顕微鏡による微結晶サイズ
測定法を採用している。微結晶サイズの大小を示す走査
型電子顕微鏡写真のり体側は、実施例および比較例に示
しである。If the microcrystal size is about 1,000 or less, the microcrystal size will hardly change even after grinding, but in the method of the present invention, there is a risk that the microcrystal size may change due to the grinding process using a mortar or the like depending on the case. Therefore, instead of using the half-width method of powder X-ray diffraction, a microcrystal size measurement method using a scanning electron microscope is used. Scanning electron micrographs showing the size of microcrystals on the glue body side are shown in Examples and Comparative Examples.
微結晶サイズが10.000人未満の酸化硅素と酸化チ
タンを含有する結晶性物質は、例えば以下の方法により
調製する。A crystalline material containing silicon oxide and titanium oxide having a microcrystal size of less than 10,000 is prepared, for example, by the following method.
■チタン源となるチタンの塩、四塩化チタン、チタン酸
、硫化チタンまたはチタンのイソプロポキサイド等のチ
タンのアルコキサイド等のアルコル溶液又は水溶液、■
シリカ源となる水ガラス、コロイド状シリカゾルまたは
硅酸エチル等のアルコール溶液又は水溶液、■四級アン
モニウム塩水溶液とをpHを適当に調整しながら混合し
、ゲル状の沈澱を得る。この沈澱を100〜250°C
の加熱下に水熱合成すると、結晶性の化合物が得られる
。■Alcoholic or aqueous solutions of titanium salts, titanium tetrachloride, titanic acid, titanium sulfide, or titanium alkoxides such as titanium isopropoxide as titanium sources,■
An alcoholic or aqueous solution of water glass, colloidal silica sol or ethyl silicate as a silica source, and (1) an aqueous quaternary ammonium salt solution are mixed while adjusting the pH appropriately to obtain a gel-like precipitate. This precipitate was heated at 100 to 250°C.
Hydrothermal synthesis under heating yields a crystalline compound.
本発明の方法で用いる結晶性物質のノリ力とチタンの割
合は通常Si/Ti=20〜200(原子比)が多用さ
れる。As for the bond strength and titanium ratio of the crystalline material used in the method of the present invention, Si/Ti=20 to 200 (atomic ratio) is usually used.
また、結晶性の硅素とチタンの酸化物から成る触媒体は
、その微結晶サイズが本発明の方法の範囲に入るもので
あれば、製造方法、出発原料によらず使用可能である。In addition, a catalyst consisting of a crystalline silicon and titanium oxide can be used regardless of the manufacturing method or starting materials, as long as its microcrystal size falls within the range of the method of the present invention.
本発明の方法では、アルコキンベンゼン類又はフェノー
ル類を溶媒と共に又は溶媒無しに、−ト込の微結晶サイ
ズを持つ結晶性化合物の存在下に反応させる6
溶媒を用いる場合には、メタノール又はターシャリ−ブ
チルアルコール等のアルコール類が多用され、溶媒に対
し、基質であるアルコキシベンゼン類、フェノール類を
5〜50−t%添加して反応させる。アルコキシベンゼ
ン類としては、アニソール、エトキシフェノール、等が
用いられ、フェノル類としては、フェノール、オルト−
クレゾール、メタ−クレゾール等のアルキルフェノール
が用いられる。In the method of the present invention, alkoxybenzenes or phenols are reacted with or without a solvent in the presence of a crystalline compound having a microcrystalline size of -6. When a solvent is used, methanol or tertiary -Alcohols such as butyl alcohol are often used, and 5 to 50-t% of alkoxybenzenes and phenols as substrates are added to the solvent for reaction. As alkoxybenzenes, anisole, ethoxyphenol, etc. are used, and as phenols, phenol, ortho-
Alkylphenols such as cresol and meta-cresol are used.
触媒であるチタニアとシリカから成る結晶性化合物の使
用量は、ハツチ式反応の場合を例として示すと、基質に
対して0.1〜30−t%の範囲が適当である。The appropriate amount of the catalyst, a crystalline compound consisting of titania and silica, is in the range of 0.1 to 30-t% based on the substrate, taking the case of the Hatchi reaction as an example.
使用する過酸化水素は、過酸化水素の水溶液が使用でき
、無水の過酸化水素を使用する必要が無いめ、爆発等の
危険が無い点も本発明の特徴の一つである。通常、30
〜60−t%の過酸化水素水溶液が使用される。One of the features of the present invention is that an aqueous solution of hydrogen peroxide can be used as the hydrogen peroxide, and there is no need to use anhydrous hydrogen peroxide, so there is no risk of explosion or the like. Usually 30
~60-t% aqueous hydrogen peroxide solution is used.
過酸化水素の使用量は、基質であるフェノール類に対し
、0.3倍〜等モル使用する。すなわち、反応終了液中
の残留過酸化水素濃度を充分低く保つ様に反応条件を設
定する。The amount of hydrogen peroxide to be used is 0.3 to equimolar to the phenol that is the substrate. That is, the reaction conditions are set so as to keep the residual hydrogen peroxide concentration in the reaction-completed liquid sufficiently low.
反応温度は40〜100°C1特に50〜90°Cの範
囲が多用される。反応に要する時間は、ハツチ式反応の
場合を例として示すと、1〜10時間の範囲である。The reaction temperature is often in the range of 40 to 100°C, particularly 50 to 90°C. The time required for the reaction is in the range of 1 to 10 hours, taking the Hutch reaction as an example.
以下実施例および比較例により、本発明を説明する。 The present invention will be explained below with reference to Examples and Comparative Examples.
(実施例1)
200mRのフラスコに、窒素雰囲気下342gのテト
ラエトキシ硅素(164mmol)および1.9#If
!のテトライソプロポキシチタン(6,4mmol)を
加え混合した。これに、攪拌下、38.9gの25%水
酸化テトラプロピルアンモニウム水溶液を徐々に滴下注
入した。90°Cにて3時間攪拌することにより、エタ
ノールを30d留去した。残留物をチクンライニングを
付けたオートクレーブに移し、更に800dの脱イオン
水を添加した。175°Cで自己発生圧力下に、ゆるや
かに攪拌しながら7時間加熱した。(Example 1) In a 200 mR flask, 342 g of tetraethoxy silicon (164 mmol) and 1.9 #If under nitrogen atmosphere
! of tetraisopropoxytitanium (6.4 mmol) was added and mixed. To this, 38.9 g of 25% aqueous tetrapropylammonium hydroxide solution was gradually added dropwise while stirring. By stirring at 90°C for 3 hours, 30 d of ethanol was distilled off. The residue was transferred to a chikun-lined autoclave and an additional 800 d of deionized water was added. Heated at 175° C. under autogenous pressure for 7 hours with gentle stirring.
オートクレーブを冷却後、内容物を取出し、遠心分離し
、上澄み液を抜取り、水洗、遠心分離を数回繰返し、沈
澱物を洗浄後、110°Cで4時間乾燥した。次いで空
気流通下に500°Cまで徐々に昇温し、500°Cで
5時間焼成した。生成物の粉末χ線回折パターンは結晶
性チタノシリケートの回折パターンとよく一致した。走
査型電子顕微鏡写真から、微結晶サイズは3000人で
あった(第1図)。After cooling the autoclave, the contents were taken out, centrifuged, the supernatant was taken out, water washing and centrifugation were repeated several times, and the precipitate was washed and dried at 110°C for 4 hours. Next, the temperature was gradually raised to 500°C under air circulation and baked at 500°C for 5 hours. The powder chi-ray diffraction pattern of the product was in good agreement with that of crystalline titanosilicate. A scanning electron micrograph showed that the microcrystal size was 3000 (Fig. 1).
冷却管を付けた、30rrlのフラスコに上記の方法で
得た粉末状の結晶性チタノシリケート0.4g、15g
のターシャリ−ブチルアルコール、フェノール1.5g
を添加、85°Cに加熱攪拌した。これに30%過酸化
水素水溶液1.5gを30分間を要して滴下注入した。0.4g and 15g of the powdered crystalline titanosilicate obtained by the above method in a 30rrl flask equipped with a cooling tube.
of tert-butyl alcohol, phenol 1.5g
was added and stirred while heating to 85°C. To this, 1.5 g of a 30% aqueous hydrogen peroxide solution was added dropwise over a period of 30 minutes.
その後更に2時間、90°Cで攪拌を続行しヒドロキシ
化反応を行なわせた。Thereafter, stirring was continued at 90°C for another 2 hours to carry out the hydroxylation reaction.
反応紡了後、フラスコを遠心分離器にかけ、上澄み液を
回収しガスクロマトグラフィーにより分析した。過酸化
水素基準でハイドロキンの収率が28%、カテコールの
収率が26%であり、ジヒドロキシ化合物の合計収率は
過酸化水素基準で54%であった。After the reaction was completed, the flask was centrifuged, and the supernatant was collected and analyzed by gas chromatography. The yield of hydroquine was 28%, the yield of catechol was 26%, and the total yield of dihydroxy compounds was 54%, based on hydrogen peroxide.
(比較例−1)
Tiz(SQ、)i−8HzO1,07g、 NaC1
3,60g、テトラプロピルアンモニウムプロマー(F
l、72g、H2SO41,82gを脱イオン水17.
4g中に添加混合した(A液)。JIS−3号 水ガラ
ス22.1g、脱イオン水14.5gを混合した(B液
)。NaC112,2g、テトラプロピルアンモニウム
ブロマイド0.7 g、Na1l(0,72g 、NZ
SO40,60gを脱イオン水62.0gに混合した(
C液)。(Comparative Example-1) Tiz(SQ,)i-8HzO1.07g, NaCl
3.60g, tetrapropylammonium promer (F
72 g of H2SO4 and 1.82 g of deionized water 17.
4g and mixed (liquid A). 22.1 g of JIS-3 water glass and 14.5 g of deionized water were mixed (liquid B). 112.2 g of NaC, 0.7 g of tetrapropylammonium bromide, 112.2 g of NaCl (0.72 g, NZ
60 g of SO4 was mixed with 62.0 g of deionized water (
C liquid).
上記A液とB液とを各々微量定量ポンプでC液中に同時
に注入した。この間、C液は充分に攪拌し、C液のpH
を10〜105の範囲に保持する様にA、B両液の注入
速度を調整した。注入に要する時間は20〜30分であ
った。注入により、ゲル状の沈澱が化成したが、更に3
0分間攪拌を続行し熟成を行った。次いで沈澱ゲルを含
む母液をホモジナイザーで処理し、均一化してから、水
熱合成用オートクレーブに充填した。使用したオートク
レ−ブは耐アルカリ性ガラスを用いてライニング付きで
内容物が金属と接触しない構造のものであった。The above-mentioned liquids A and B were simultaneously injected into liquid C using micrometer metering pumps. During this time, the C solution is sufficiently stirred and the pH of the C solution is
The injection speeds of both solutions A and B were adjusted so as to maintain the value in the range of 10 to 105. The time required for injection was 20-30 minutes. A gel-like precipitate was formed by injection, but 3 more
Stirring was continued for 0 minutes to carry out ripening. The mother liquor containing the precipitated gel was then treated with a homogenizer to homogenize it, and then filled into a hydrothermal synthesis autoclave. The autoclave used was constructed of alkali-resistant glass and lined to prevent the contents from coming into contact with metal.
2−3回転/秒で攪拌しながらオートクレープを加熱し
、2時間を要して150°Cまで昇温、次いで3時間を
要して210°Cまで昇温した。 210’Cで更に
3時間撹拌を続行してから、装置を放冷した。The autoclave was heated while stirring at 2-3 revolutions/second, and the temperature was raised to 150°C over 2 hours, and then to 210°C over 3 hours. Stirring was continued for an additional 3 hours at 210'C, then the apparatus was allowed to cool.
得られたオートクレーブ内容物を脱イオン水で洗浄し、
乾燥後、空気流通下に550°Cまで昇温し、4時間焼
成した。次いで(Nl(−1hcO+水溶液でイオン交
換処理後、450°Cで3時間焼成し触媒として用いた
。The resulting autoclave contents were washed with deionized water;
After drying, the temperature was raised to 550°C under air circulation and baked for 4 hours. Then, after ion exchange treatment with (Nl(-1hcO+) aqueous solution, it was calcined at 450°C for 3 hours and used as a catalyst.
得られた触媒のX線回折バクーンは結晶状チタノシリケ
ートのものとよく一致した。走査型電子顕微鏡による観
察から、微結晶サイズの平均値は30.000人であっ
た(第2回)。The X-ray diffraction pattern of the obtained catalyst was in good agreement with that of crystalline titanosilicate. Observation using a scanning electron microscope revealed that the average size of microcrystals was 30,000 (second time).
本触媒を用いて、実施例1と同様の反応を実施した。得
らねたハイドロ1ノンの収率は過酸化水素基準で0.7
%、カテコールの収率は0.6%で、ノヒドロキノー\
ンーどンの収率は1.3%であった。The same reaction as in Example 1 was carried out using this catalyst. The yield of unobtained hydro-1-non was 0.7 based on hydrogen peroxide.
%, the yield of catechol was 0.6%, and the yield of catechol was 0.6%.
The yield of noodles was 1.3%.
(実施例−2〜4、比較例−2〜3)
微結晶サイズの異なる、結晶性のシリカとチタニアから
成る化合物を触媒とし、実施例−1と同様の方法と反応
条件で、アニソールのヒドロキシル化を実施した。得ら
れた結晶を次表に示す。(Examples 2 to 4, Comparative Examples 2 to 3) Using a compound consisting of crystalline silica and titania with different microcrystal sizes as a catalyst, the hydroxyl of anisole was treated using the same method and reaction conditions as in Example 1. implemented. The obtained crystals are shown in the following table.
C発明の効果〕
本発明の方法に依り、過酸化水素による、フェノール類
およびアルコキンヘアゼン類のヒドロキシル化を効率よ
く、高い反応速度で進行させることができ、工業的に有
利にジヒドロキシフェノール類およびアルコキンフェノ
ール類を取得することができる。C Effects of the Invention] According to the method of the present invention, hydroxylation of phenols and alkoxyphenols with hydrogen peroxide can proceed efficiently and at a high reaction rate, and it is industrially advantageous to hydroxylate dihydroxyphenols and alkoxyphenols. and alcoquine phenols can be obtained.
第1関は実施例1で使用した触媒の結晶構造を示す走査
型電子顕微鏡写真である。
第2し1は比較例1で使用した触媒の結晶構造を示す走
査型電子顕微鏡写真である。
特許出願人 三井東圧化学株式会社
第1図
第2図The first panel is a scanning electron micrograph showing the crystal structure of the catalyst used in Example 1. 2nd 1 is a scanning electron micrograph showing the crystal structure of the catalyst used in Comparative Example 1. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Figure 2
Claims (1)
在下にフェノール類及び/又はアルコキシベンゼン類を
過酸化水素によってヒドロキシル化し芳香族のヒドロキ
シ化合物を製造するに際し、酸化硅素と酸化チタンを含
有する結晶性物質の微結晶サイズが10,000Å未満
の範囲にあるものを使用することを特徴とする芳香族ヒ
ドロキシ化合物の製造法。(1) When producing an aromatic hydroxy compound by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide in the presence of a crystalline substance containing silicon oxide and titanium oxide, silicon oxide and titanium oxide are added. A method for producing an aromatic hydroxy compound, characterized in that a crystalline substance having a microcrystal size of less than 10,000 Å is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175172A JP2866715B2 (en) | 1990-07-04 | 1990-07-04 | Method for producing aromatic hydroxy compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175172A JP2866715B2 (en) | 1990-07-04 | 1990-07-04 | Method for producing aromatic hydroxy compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0466546A true JPH0466546A (en) | 1992-03-02 |
JP2866715B2 JP2866715B2 (en) | 1999-03-08 |
Family
ID=15991528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2175172A Expired - Lifetime JP2866715B2 (en) | 1990-07-04 | 1990-07-04 | Method for producing aromatic hydroxy compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2866715B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6479711B1 (en) | 1999-04-28 | 2002-11-12 | Mitsui Chemicals, Inc. | Process for producing aromatic hydroxy compound |
JP2015511945A (en) * | 2012-02-17 | 2015-04-23 | ローディア オペレーションズ | Process for the hydroxylation of aromatic compounds, hydroxylation catalyst and process for preparing the catalyst |
CN104936939A (en) * | 2013-09-20 | 2015-09-23 | 三井化学株式会社 | Method for producing aromatic dihydroxy compound |
JP2018177715A (en) * | 2017-04-17 | 2018-11-15 | 三井化学株式会社 | Process for producing alkoxyphenols |
JP2020523284A (en) * | 2017-06-13 | 2020-08-06 | ローディア オペレーションズ | Compositions comprising hydroquinone and catechol, methods for making these compositions |
-
1990
- 1990-07-04 JP JP2175172A patent/JP2866715B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6479711B1 (en) | 1999-04-28 | 2002-11-12 | Mitsui Chemicals, Inc. | Process for producing aromatic hydroxy compound |
JP2015511945A (en) * | 2012-02-17 | 2015-04-23 | ローディア オペレーションズ | Process for the hydroxylation of aromatic compounds, hydroxylation catalyst and process for preparing the catalyst |
JP2019001711A (en) * | 2012-02-17 | 2019-01-10 | ローディア オペレーションズ | Method for hydroxylation of aromatic compounds, hydroxylation catalyst and method for preparing catalyst |
CN104936939A (en) * | 2013-09-20 | 2015-09-23 | 三井化学株式会社 | Method for producing aromatic dihydroxy compound |
JP2018177715A (en) * | 2017-04-17 | 2018-11-15 | 三井化学株式会社 | Process for producing alkoxyphenols |
JP2020523284A (en) * | 2017-06-13 | 2020-08-06 | ローディア オペレーションズ | Compositions comprising hydroquinone and catechol, methods for making these compositions |
Also Published As
Publication number | Publication date |
---|---|
JP2866715B2 (en) | 1999-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020102258A4 (en) | MIXED CRYSTAL TiO2/BiOBr COMPOSITE AND PREPARATION METHOD AND APPLICATION THEREOF | |
WO2020248695A1 (en) | Alkali metal ion-modified titanium silicon molecular sieve ts-1 for gas phase epoxidation reaction of propylene and hydrogen peroxide, and preparation method therefor | |
WO2020248696A1 (en) | Fluidized reaction method for synthesizing propylene oxide by gas phase epoxidation of propylene and hydrogen peroxide | |
Ida et al. | Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10–x N y, and their photocatalytic activity | |
CN105728019B (en) | A kind of preparation method and application of the ZSM-5 molecular sieve with Jie's micropore | |
US6576589B1 (en) | Method for making anatase type titanium dioxide photocatalyst | |
CA2514586C (en) | Modified layered metallosilicate material and production process thereof | |
WO2020248694A1 (en) | Alkali metal ion-modified titanium silicon molecular sieve for gas phase epoxidation reaction between propylene and hydrogen peroxide, and preparation method therefor | |
JP2009521392A5 (en) | ||
JP2013040092A (en) | Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve | |
CN112939013B (en) | High-silicon small-grain Y-type molecular sieve and preparation method and application of template-free molecular sieve | |
CN106006665B (en) | A kind of preparation method of titanium-silicon molecular sieve TS-1 | |
Chen et al. | Microwave hydrothermal synthesis of nanocrystalline rutile | |
JP2003126695A (en) | Potassium niobate photocatalyst and manufacturing method therefor | |
JP7145506B2 (en) | Method for producing vanadium dioxide particles | |
JPH0466546A (en) | Production of armatic hydroxy compound | |
Huang et al. | The clean synthesis of small-particle TS-1 with high-content framework Ti by using NH4HCO3 and suspended seeds as an assistant | |
Yin et al. | Postsynthesis of Ti-UZM-35 titanosilicate as efficient catalyst for phenol hydroxylation reaction | |
CN109607561A (en) | Laminar hetero-atom molecular-sieve and its synthetic method | |
Tang et al. | Regulation of framework titanium siting in MWW-type titanosilicates by boron and aluminum incorporation and its effect on the catalytic performance | |
CN106964352B (en) | Novel photocatalysis material TiO2@Fe2O3、SrTiO3@Fe2O3Preparation and application | |
JPH11335121A (en) | Production of anatase titanium oxide | |
CN104556116A (en) | Method for assisted synthesis of TS-1 molecular sieve by using aerosol | |
Xia et al. | Crystallization kinetics of pure TS-1 zeolite using quaternary ammonium halides as templates | |
CN102266748A (en) | Method for preparing titanic acid/titanium dioxide mixed nano-powder material |