JPH0466546A - Production of armatic hydroxy compound - Google Patents

Production of armatic hydroxy compound

Info

Publication number
JPH0466546A
JPH0466546A JP2175172A JP17517290A JPH0466546A JP H0466546 A JPH0466546 A JP H0466546A JP 2175172 A JP2175172 A JP 2175172A JP 17517290 A JP17517290 A JP 17517290A JP H0466546 A JPH0466546 A JP H0466546A
Authority
JP
Japan
Prior art keywords
catalyst
phenols
titanium oxide
alkoxybenzenes
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2175172A
Other languages
Japanese (ja)
Other versions
JP2866715B2 (en
Inventor
Motomasu Kawai
河井 基益
Tadamitsu Kiyoura
清浦 忠光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2175172A priority Critical patent/JP2866715B2/en
Publication of JPH0466546A publication Critical patent/JPH0466546A/en
Application granted granted Critical
Publication of JP2866715B2 publication Critical patent/JP2866715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently produce the subject compound by hydroxylating phenols and/or alkoxybenzenes with H2O2 using a crystalline substance containing silicon oxide and titanium oxide having a specific crystallite size as a catalyst. CONSTITUTION:Phenols and/or alkoxybenzenes are hydroxylated by using a crystalline substance, containing silicon oxide and titanium oxide and having a crystallite size within the range of <10,000 Angstrom as a catalyst to afford aromatic hydroxyl compounds, i.e. aromatic dihydroxy compounds or alkoxyphenols. The hydroxylation can be efficiently carried out and advanced at a high reaction rate by the aforementioned method to industrially and advantageously produce the subject compound. The resultant compound is useful as various organic synthetic intermediates or raw material substances and further in the field of reducing agents, rubber chemicals, dyes, medicines, perfumes, polymerization inhibitors, oxidation inhibitors, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は芳香族ヒドロキシ化合物の製造法、詳しくはフ
ェノール類及び/又はアルコキシベンゼン類を過酸化水
素でヒドロキシル化し、ヒドロキシ化合物を製造する方
法の改良に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing aromatic hydroxy compounds, specifically a method for producing hydroxy compounds by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide. Regarding improvements.

本発明の方法で得られるヒドロキシ化合物は、例えば、
パラーメトキソーフェノール、ハイドロキノン、および
カテコール等であって、種々の有機合成中間体又は原料
物質として有用であり、還元剤、ゴム薬、染料、医薬、
香料、重合防止剤、酸化抑制剤、ゴム薬等の分野に使用
される。
The hydroxy compounds obtained by the method of the present invention are, for example,
Para-methoxophenol, hydroquinone, catechol, etc., which are useful as various organic synthesis intermediates or raw materials, reducing agents, rubber drugs, dyes, pharmaceuticals, etc.
Used in fields such as fragrances, polymerization inhibitors, oxidation inhibitors, and rubber drugs.

〔従来の技術〕[Conventional technology]

フェノール類を過酸化水素を用いてヒドロキシル化する
方法には、古くから2価の鉄イオン(フェントン試薬)
の存在下に反応させる方法、硫酸等の強酸の存在下に親
電子的に置換反応させる方法INature、 165
 、401(+950) ] 、又は弗化水素酸を用い
る方法[J、Org、Chem、、35.4028(1
970)] 、コバルト塩を用いる方法[Chem 、
八bst、、80133015g肚、 151787k
1等が知られている。
For the hydroxylation of phenols using hydrogen peroxide, divalent iron ions (Fenton's reagent) have long been used.
A method of electrophilic substitution reaction in the presence of a strong acid such as sulfuric acid INature, 165
, 401(+950)], or a method using hydrofluoric acid [J, Org, Chem, 35.4028(1
970)], a method using cobalt salts [Chem,
8 bst,, 80133015g 肚, 151787k
The first prize is known.

これらの方法は、触媒が均−系のため、反応生成物から
触媒を分離し、目的物を単離取得するのが繁雑であった
り、腐蝕性の強い酸の後処理に問題がある等の難点があ
った。
In these methods, because the catalyst is homogeneous, it is complicated to separate the catalyst from the reaction product and isolate the desired product, and there are problems with post-treatment with highly corrosive acids. There was a problem.

その後、反応系から触媒を容易に分離出来る、不均一系
の触媒、酸化硅素と酸化チタンを含をする結晶性物質を
用いる方法がIiiされた(GB2083.816.2
,116,974]、この方法では、触媒が不均一系の
ため、反応後の生成物から単に触媒を機械的に分離すれ
ばよく、工業的に有利な方法である。しかしながら結晶
性の酸化硅素と酸化チタン系の化合物を触媒に用いる方
法は、使用する触媒の活性が不充分であり、また、触媒
活性が触媒調製方法により変動する等の難点がある。
Subsequently, a method using a crystalline substance containing silicon oxide and titanium oxide, a heterogeneous catalyst that can easily separate the catalyst from the reaction system, was developed (GB2083.816.2
, 116, 974], in this method, since the catalyst is heterogeneous, it is only necessary to mechanically separate the catalyst from the product after the reaction, and it is an industrially advantageous method. However, methods using crystalline silicon oxide and titanium oxide compounds as catalysts have drawbacks such as insufficient activity of the catalysts used and the catalytic activity varying depending on the catalyst preparation method.

〔発明が解決しようとする課B] 従来提案されている結晶性の酸化硅素と酸化チタン系化
合物を触媒とするフェノール類の過酸化水素によるヒド
ロキシル化は、上述の如く、触媒の活性が不充分であっ
たり、触媒活性の製造ハツチ毎の変動が認められる等の
問題点がある。
[Problem B to be solved by the invention] As mentioned above, the hydroxylation of phenols with hydrogen peroxide using crystalline silicon oxide and titanium oxide compounds as catalysts has insufficient catalyst activity. There are problems such as variations in catalyst activity depending on the production hatch.

本発明の課題とするところは、従来法の如き問題点のな
い効率の高い、芳香族ヒドロキノ化合物の製造法を提供
することにある。
An object of the present invention is to provide a highly efficient method for producing aromatic hydroquino compounds that does not have the problems of conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

これらの問題点を解決するために、本発明考らはフェノ
ール類と過酸化水素による芳香族ジヒドロ片ノ化合物又
はアルコキンフェノール類の製造法、特に、ヒドロキシ
ル化反応に用いる触媒に関し、種々研究した結果、フェ
ノール類の過酸化水素によるヒドロキシル化反応に関し
ては、従来報告されたことのない、特定の微結晶サイズ
の酸化硅素と酸化チタンを含有する結晶性物質を触媒に
用いると、効率よく目的とする生成物が得られることを
見出して本発明を完成するに至った。
In order to solve these problems, the inventors of the present invention conducted various studies on the production method of aromatic dihydrophenols or alkokephenols using phenols and hydrogen peroxide, and in particular on the catalysts used in the hydroxylation reaction. As a result, regarding the hydroxylation reaction of phenols with hydrogen peroxide, using a crystalline substance containing silicon oxide and titanium oxide with a specific microcrystalline size as a catalyst, which has never been reported, can efficiently achieve the desired purpose. The present invention was completed based on the discovery that a product can be obtained.

すなわち、本発明は、 酸化硅素と酸化チタンを含有する結晶性物質の存在下に
フェノール類及び/又はアルコキンベンゼン類を過酸化
水素によってヒドロキシル化し芳香族のしドロキシ化合
物を製造するに際し、酸化硅素と酸化チタンを含有する
結晶性’!!71質の微結晶サイズが10.000人未
満の範囲にあるものを使用することを特徴とする芳香族
ヒドロキシ化合物の製造法である。
That is, the present invention provides a method for producing an aromatic hydrogen hydroxy compound by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide in the presence of a crystalline substance containing silicon oxide and titanium oxide. and crystalline containing titanium oxide! ! This is a method for producing an aromatic hydroxy compound, characterized in that a compound having a crystallite size of less than 10,000 particles is used.

本発明によれば芳香族ジヒドロキシ化合物又はアルコキ
ンフェノール類が製造される。
According to the present invention, aromatic dihydroxy compounds or alcoquine phenols are produced.

本発明の方法に於いて用いられる触媒の微結晶サイズの
定義は、以下に述べる方法による値である。すなわち、
通常の走査型電子顕微鏡の二次電子像の大きさを観察し
、その微結晶サイズを直接測定する方法による6 通常、結晶の微結晶サイズは、粉末X線回折の半値[↑
Jから算出するが、本発明の方法の結晶性化合物は微結
晶サイズが5000人程度以下と比較的微結晶サイズが
太きいものである。従って、通常の粉末X線回折では、
試料の前処理の目的で、サンプルを乳鉢等ですりつぶす
磨砕処理が必要である。
The definition of the crystallite size of the catalyst used in the method of the present invention is the value according to the method described below. That is,
By observing the size of the secondary electron image of a normal scanning electron microscope and directly measuring the crystallite size 6 Normally, the crystallite size of a crystal is determined by the half value of powder X-ray diffraction [↑
Calculated from J, the crystalline compound according to the method of the present invention has a relatively large microcrystal size of about 5,000 or less. Therefore, in normal powder X-ray diffraction,
For the purpose of sample pretreatment, it is necessary to grind the sample in a mortar or the like.

微結晶サイズが1000人程度以下であれば、磨砕によ
っても微結晶サイズが殆ど変化しないが、本発明の方法
では、場合によっては乳鉢等による磨砕処理で、微結晶
サイズが変化する危険があるため、粉末X線回折の半値
巾法を採用せず、走査型電子顕微鏡による微結晶サイズ
測定法を採用している。微結晶サイズの大小を示す走査
型電子顕微鏡写真のり体側は、実施例および比較例に示
しである。
If the microcrystal size is about 1,000 or less, the microcrystal size will hardly change even after grinding, but in the method of the present invention, there is a risk that the microcrystal size may change due to the grinding process using a mortar or the like depending on the case. Therefore, instead of using the half-width method of powder X-ray diffraction, a microcrystal size measurement method using a scanning electron microscope is used. Scanning electron micrographs showing the size of microcrystals on the glue body side are shown in Examples and Comparative Examples.

微結晶サイズが10.000人未満の酸化硅素と酸化チ
タンを含有する結晶性物質は、例えば以下の方法により
調製する。
A crystalline material containing silicon oxide and titanium oxide having a microcrystal size of less than 10,000 is prepared, for example, by the following method.

■チタン源となるチタンの塩、四塩化チタン、チタン酸
、硫化チタンまたはチタンのイソプロポキサイド等のチ
タンのアルコキサイド等のアルコル溶液又は水溶液、■
シリカ源となる水ガラス、コロイド状シリカゾルまたは
硅酸エチル等のアルコール溶液又は水溶液、■四級アン
モニウム塩水溶液とをpHを適当に調整しながら混合し
、ゲル状の沈澱を得る。この沈澱を100〜250°C
の加熱下に水熱合成すると、結晶性の化合物が得られる
■Alcoholic or aqueous solutions of titanium salts, titanium tetrachloride, titanic acid, titanium sulfide, or titanium alkoxides such as titanium isopropoxide as titanium sources,■
An alcoholic or aqueous solution of water glass, colloidal silica sol or ethyl silicate as a silica source, and (1) an aqueous quaternary ammonium salt solution are mixed while adjusting the pH appropriately to obtain a gel-like precipitate. This precipitate was heated at 100 to 250°C.
Hydrothermal synthesis under heating yields a crystalline compound.

本発明の方法で用いる結晶性物質のノリ力とチタンの割
合は通常Si/Ti=20〜200(原子比)が多用さ
れる。
As for the bond strength and titanium ratio of the crystalline material used in the method of the present invention, Si/Ti=20 to 200 (atomic ratio) is usually used.

また、結晶性の硅素とチタンの酸化物から成る触媒体は
、その微結晶サイズが本発明の方法の範囲に入るもので
あれば、製造方法、出発原料によらず使用可能である。
In addition, a catalyst consisting of a crystalline silicon and titanium oxide can be used regardless of the manufacturing method or starting materials, as long as its microcrystal size falls within the range of the method of the present invention.

本発明の方法では、アルコキンベンゼン類又はフェノー
ル類を溶媒と共に又は溶媒無しに、−ト込の微結晶サイ
ズを持つ結晶性化合物の存在下に反応させる6 溶媒を用いる場合には、メタノール又はターシャリ−ブ
チルアルコール等のアルコール類が多用され、溶媒に対
し、基質であるアルコキシベンゼン類、フェノール類を
5〜50−t%添加して反応させる。アルコキシベンゼ
ン類としては、アニソール、エトキシフェノール、等が
用いられ、フェノル類としては、フェノール、オルト−
クレゾール、メタ−クレゾール等のアルキルフェノール
が用いられる。
In the method of the present invention, alkoxybenzenes or phenols are reacted with or without a solvent in the presence of a crystalline compound having a microcrystalline size of -6. When a solvent is used, methanol or tertiary -Alcohols such as butyl alcohol are often used, and 5 to 50-t% of alkoxybenzenes and phenols as substrates are added to the solvent for reaction. As alkoxybenzenes, anisole, ethoxyphenol, etc. are used, and as phenols, phenol, ortho-
Alkylphenols such as cresol and meta-cresol are used.

触媒であるチタニアとシリカから成る結晶性化合物の使
用量は、ハツチ式反応の場合を例として示すと、基質に
対して0.1〜30−t%の範囲が適当である。
The appropriate amount of the catalyst, a crystalline compound consisting of titania and silica, is in the range of 0.1 to 30-t% based on the substrate, taking the case of the Hatchi reaction as an example.

使用する過酸化水素は、過酸化水素の水溶液が使用でき
、無水の過酸化水素を使用する必要が無いめ、爆発等の
危険が無い点も本発明の特徴の一つである。通常、30
〜60−t%の過酸化水素水溶液が使用される。
One of the features of the present invention is that an aqueous solution of hydrogen peroxide can be used as the hydrogen peroxide, and there is no need to use anhydrous hydrogen peroxide, so there is no risk of explosion or the like. Usually 30
~60-t% aqueous hydrogen peroxide solution is used.

過酸化水素の使用量は、基質であるフェノール類に対し
、0.3倍〜等モル使用する。すなわち、反応終了液中
の残留過酸化水素濃度を充分低く保つ様に反応条件を設
定する。
The amount of hydrogen peroxide to be used is 0.3 to equimolar to the phenol that is the substrate. That is, the reaction conditions are set so as to keep the residual hydrogen peroxide concentration in the reaction-completed liquid sufficiently low.

反応温度は40〜100°C1特に50〜90°Cの範
囲が多用される。反応に要する時間は、ハツチ式反応の
場合を例として示すと、1〜10時間の範囲である。
The reaction temperature is often in the range of 40 to 100°C, particularly 50 to 90°C. The time required for the reaction is in the range of 1 to 10 hours, taking the Hutch reaction as an example.

〔実施例〕〔Example〕

以下実施例および比較例により、本発明を説明する。 The present invention will be explained below with reference to Examples and Comparative Examples.

(実施例1) 200mRのフラスコに、窒素雰囲気下342gのテト
ラエトキシ硅素(164mmol)および1.9#If
!のテトライソプロポキシチタン(6,4mmol)を
加え混合した。これに、攪拌下、38.9gの25%水
酸化テトラプロピルアンモニウム水溶液を徐々に滴下注
入した。90°Cにて3時間攪拌することにより、エタ
ノールを30d留去した。残留物をチクンライニングを
付けたオートクレーブに移し、更に800dの脱イオン
水を添加した。175°Cで自己発生圧力下に、ゆるや
かに攪拌しながら7時間加熱した。
(Example 1) In a 200 mR flask, 342 g of tetraethoxy silicon (164 mmol) and 1.9 #If under nitrogen atmosphere
! of tetraisopropoxytitanium (6.4 mmol) was added and mixed. To this, 38.9 g of 25% aqueous tetrapropylammonium hydroxide solution was gradually added dropwise while stirring. By stirring at 90°C for 3 hours, 30 d of ethanol was distilled off. The residue was transferred to a chikun-lined autoclave and an additional 800 d of deionized water was added. Heated at 175° C. under autogenous pressure for 7 hours with gentle stirring.

オートクレーブを冷却後、内容物を取出し、遠心分離し
、上澄み液を抜取り、水洗、遠心分離を数回繰返し、沈
澱物を洗浄後、110°Cで4時間乾燥した。次いで空
気流通下に500°Cまで徐々に昇温し、500°Cで
5時間焼成した。生成物の粉末χ線回折パターンは結晶
性チタノシリケートの回折パターンとよく一致した。走
査型電子顕微鏡写真から、微結晶サイズは3000人で
あった(第1図)。
After cooling the autoclave, the contents were taken out, centrifuged, the supernatant was taken out, water washing and centrifugation were repeated several times, and the precipitate was washed and dried at 110°C for 4 hours. Next, the temperature was gradually raised to 500°C under air circulation and baked at 500°C for 5 hours. The powder chi-ray diffraction pattern of the product was in good agreement with that of crystalline titanosilicate. A scanning electron micrograph showed that the microcrystal size was 3000 (Fig. 1).

冷却管を付けた、30rrlのフラスコに上記の方法で
得た粉末状の結晶性チタノシリケート0.4g、15g
のターシャリ−ブチルアルコール、フェノール1.5g
を添加、85°Cに加熱攪拌した。これに30%過酸化
水素水溶液1.5gを30分間を要して滴下注入した。
0.4g and 15g of the powdered crystalline titanosilicate obtained by the above method in a 30rrl flask equipped with a cooling tube.
of tert-butyl alcohol, phenol 1.5g
was added and stirred while heating to 85°C. To this, 1.5 g of a 30% aqueous hydrogen peroxide solution was added dropwise over a period of 30 minutes.

その後更に2時間、90°Cで攪拌を続行しヒドロキシ
化反応を行なわせた。
Thereafter, stirring was continued at 90°C for another 2 hours to carry out the hydroxylation reaction.

反応紡了後、フラスコを遠心分離器にかけ、上澄み液を
回収しガスクロマトグラフィーにより分析した。過酸化
水素基準でハイドロキンの収率が28%、カテコールの
収率が26%であり、ジヒドロキシ化合物の合計収率は
過酸化水素基準で54%であった。
After the reaction was completed, the flask was centrifuged, and the supernatant was collected and analyzed by gas chromatography. The yield of hydroquine was 28%, the yield of catechol was 26%, and the total yield of dihydroxy compounds was 54%, based on hydrogen peroxide.

(比較例−1) Tiz(SQ、)i−8HzO1,07g、 NaC1
3,60g、テトラプロピルアンモニウムプロマー(F
l、72g、H2SO41,82gを脱イオン水17.
4g中に添加混合した(A液)。JIS−3号 水ガラ
ス22.1g、脱イオン水14.5gを混合した(B液
)。NaC112,2g、テトラプロピルアンモニウム
ブロマイド0.7 g、Na1l(0,72g 、NZ
SO40,60gを脱イオン水62.0gに混合した(
C液)。
(Comparative Example-1) Tiz(SQ,)i-8HzO1.07g, NaCl
3.60g, tetrapropylammonium promer (F
72 g of H2SO4 and 1.82 g of deionized water 17.
4g and mixed (liquid A). 22.1 g of JIS-3 water glass and 14.5 g of deionized water were mixed (liquid B). 112.2 g of NaC, 0.7 g of tetrapropylammonium bromide, 112.2 g of NaCl (0.72 g, NZ
60 g of SO4 was mixed with 62.0 g of deionized water (
C liquid).

上記A液とB液とを各々微量定量ポンプでC液中に同時
に注入した。この間、C液は充分に攪拌し、C液のpH
を10〜105の範囲に保持する様にA、B両液の注入
速度を調整した。注入に要する時間は20〜30分であ
った。注入により、ゲル状の沈澱が化成したが、更に3
0分間攪拌を続行し熟成を行った。次いで沈澱ゲルを含
む母液をホモジナイザーで処理し、均一化してから、水
熱合成用オートクレーブに充填した。使用したオートク
レ−ブは耐アルカリ性ガラスを用いてライニング付きで
内容物が金属と接触しない構造のものであった。
The above-mentioned liquids A and B were simultaneously injected into liquid C using micrometer metering pumps. During this time, the C solution is sufficiently stirred and the pH of the C solution is
The injection speeds of both solutions A and B were adjusted so as to maintain the value in the range of 10 to 105. The time required for injection was 20-30 minutes. A gel-like precipitate was formed by injection, but 3 more
Stirring was continued for 0 minutes to carry out ripening. The mother liquor containing the precipitated gel was then treated with a homogenizer to homogenize it, and then filled into a hydrothermal synthesis autoclave. The autoclave used was constructed of alkali-resistant glass and lined to prevent the contents from coming into contact with metal.

2−3回転/秒で攪拌しながらオートクレープを加熱し
、2時間を要して150°Cまで昇温、次いで3時間を
要して210°Cまで昇温した。  210’Cで更に
3時間撹拌を続行してから、装置を放冷した。
The autoclave was heated while stirring at 2-3 revolutions/second, and the temperature was raised to 150°C over 2 hours, and then to 210°C over 3 hours. Stirring was continued for an additional 3 hours at 210'C, then the apparatus was allowed to cool.

得られたオートクレーブ内容物を脱イオン水で洗浄し、
乾燥後、空気流通下に550°Cまで昇温し、4時間焼
成した。次いで(Nl(−1hcO+水溶液でイオン交
換処理後、450°Cで3時間焼成し触媒として用いた
The resulting autoclave contents were washed with deionized water;
After drying, the temperature was raised to 550°C under air circulation and baked for 4 hours. Then, after ion exchange treatment with (Nl(-1hcO+) aqueous solution, it was calcined at 450°C for 3 hours and used as a catalyst.

得られた触媒のX線回折バクーンは結晶状チタノシリケ
ートのものとよく一致した。走査型電子顕微鏡による観
察から、微結晶サイズの平均値は30.000人であっ
た(第2回)。
The X-ray diffraction pattern of the obtained catalyst was in good agreement with that of crystalline titanosilicate. Observation using a scanning electron microscope revealed that the average size of microcrystals was 30,000 (second time).

本触媒を用いて、実施例1と同様の反応を実施した。得
らねたハイドロ1ノンの収率は過酸化水素基準で0.7
%、カテコールの収率は0.6%で、ノヒドロキノー\
ンーどンの収率は1.3%であった。
The same reaction as in Example 1 was carried out using this catalyst. The yield of unobtained hydro-1-non was 0.7 based on hydrogen peroxide.
%, the yield of catechol was 0.6%, and the yield of catechol was 0.6%.
The yield of noodles was 1.3%.

(実施例−2〜4、比較例−2〜3) 微結晶サイズの異なる、結晶性のシリカとチタニアから
成る化合物を触媒とし、実施例−1と同様の方法と反応
条件で、アニソールのヒドロキシル化を実施した。得ら
れた結晶を次表に示す。
(Examples 2 to 4, Comparative Examples 2 to 3) Using a compound consisting of crystalline silica and titania with different microcrystal sizes as a catalyst, the hydroxyl of anisole was treated using the same method and reaction conditions as in Example 1. implemented. The obtained crystals are shown in the following table.

C発明の効果〕 本発明の方法に依り、過酸化水素による、フェノール類
およびアルコキンヘアゼン類のヒドロキシル化を効率よ
く、高い反応速度で進行させることができ、工業的に有
利にジヒドロキシフェノール類およびアルコキンフェノ
ール類を取得することができる。
C Effects of the Invention] According to the method of the present invention, hydroxylation of phenols and alkoxyphenols with hydrogen peroxide can proceed efficiently and at a high reaction rate, and it is industrially advantageous to hydroxylate dihydroxyphenols and alkoxyphenols. and alcoquine phenols can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1関は実施例1で使用した触媒の結晶構造を示す走査
型電子顕微鏡写真である。 第2し1は比較例1で使用した触媒の結晶構造を示す走
査型電子顕微鏡写真である。 特許出願人  三井東圧化学株式会社 第1図 第2図
The first panel is a scanning electron micrograph showing the crystal structure of the catalyst used in Example 1. 2nd 1 is a scanning electron micrograph showing the crystal structure of the catalyst used in Comparative Example 1. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)酸化硅素と酸化チタンを含有する結晶性物質の存
在下にフェノール類及び/又はアルコキシベンゼン類を
過酸化水素によってヒドロキシル化し芳香族のヒドロキ
シ化合物を製造するに際し、酸化硅素と酸化チタンを含
有する結晶性物質の微結晶サイズが10,000Å未満
の範囲にあるものを使用することを特徴とする芳香族ヒ
ドロキシ化合物の製造法。
(1) When producing an aromatic hydroxy compound by hydroxylating phenols and/or alkoxybenzenes with hydrogen peroxide in the presence of a crystalline substance containing silicon oxide and titanium oxide, silicon oxide and titanium oxide are added. A method for producing an aromatic hydroxy compound, characterized in that a crystalline substance having a microcrystal size of less than 10,000 Å is used.
JP2175172A 1990-07-04 1990-07-04 Method for producing aromatic hydroxy compound Expired - Lifetime JP2866715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175172A JP2866715B2 (en) 1990-07-04 1990-07-04 Method for producing aromatic hydroxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175172A JP2866715B2 (en) 1990-07-04 1990-07-04 Method for producing aromatic hydroxy compound

Publications (2)

Publication Number Publication Date
JPH0466546A true JPH0466546A (en) 1992-03-02
JP2866715B2 JP2866715B2 (en) 1999-03-08

Family

ID=15991528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175172A Expired - Lifetime JP2866715B2 (en) 1990-07-04 1990-07-04 Method for producing aromatic hydroxy compound

Country Status (1)

Country Link
JP (1) JP2866715B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479711B1 (en) 1999-04-28 2002-11-12 Mitsui Chemicals, Inc. Process for producing aromatic hydroxy compound
JP2015511945A (en) * 2012-02-17 2015-04-23 ローディア オペレーションズ Process for the hydroxylation of aromatic compounds, hydroxylation catalyst and process for preparing the catalyst
CN104936939A (en) * 2013-09-20 2015-09-23 三井化学株式会社 Method for producing aromatic dihydroxy compound
JP2018177715A (en) * 2017-04-17 2018-11-15 三井化学株式会社 Process for producing alkoxyphenols
JP2020523284A (en) * 2017-06-13 2020-08-06 ローディア オペレーションズ Compositions comprising hydroquinone and catechol, methods for making these compositions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479711B1 (en) 1999-04-28 2002-11-12 Mitsui Chemicals, Inc. Process for producing aromatic hydroxy compound
JP2015511945A (en) * 2012-02-17 2015-04-23 ローディア オペレーションズ Process for the hydroxylation of aromatic compounds, hydroxylation catalyst and process for preparing the catalyst
JP2019001711A (en) * 2012-02-17 2019-01-10 ローディア オペレーションズ Method for hydroxylation of aromatic compounds, hydroxylation catalyst and method for preparing catalyst
CN104936939A (en) * 2013-09-20 2015-09-23 三井化学株式会社 Method for producing aromatic dihydroxy compound
JP2018177715A (en) * 2017-04-17 2018-11-15 三井化学株式会社 Process for producing alkoxyphenols
JP2020523284A (en) * 2017-06-13 2020-08-06 ローディア オペレーションズ Compositions comprising hydroquinone and catechol, methods for making these compositions

Also Published As

Publication number Publication date
JP2866715B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
AU2020102258A4 (en) MIXED CRYSTAL TiO2/BiOBr COMPOSITE AND PREPARATION METHOD AND APPLICATION THEREOF
WO2020248695A1 (en) Alkali metal ion-modified titanium silicon molecular sieve ts-1 for gas phase epoxidation reaction of propylene and hydrogen peroxide, and preparation method therefor
WO2020248696A1 (en) Fluidized reaction method for synthesizing propylene oxide by gas phase epoxidation of propylene and hydrogen peroxide
Ida et al. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10–x N y, and their photocatalytic activity
CN105728019B (en) A kind of preparation method and application of the ZSM-5 molecular sieve with Jie&#39;s micropore
US6576589B1 (en) Method for making anatase type titanium dioxide photocatalyst
CA2514586C (en) Modified layered metallosilicate material and production process thereof
WO2020248694A1 (en) Alkali metal ion-modified titanium silicon molecular sieve for gas phase epoxidation reaction between propylene and hydrogen peroxide, and preparation method therefor
JP2009521392A5 (en)
JP2013040092A (en) Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
CN112939013B (en) High-silicon small-grain Y-type molecular sieve and preparation method and application of template-free molecular sieve
CN106006665B (en) A kind of preparation method of titanium-silicon molecular sieve TS-1
Chen et al. Microwave hydrothermal synthesis of nanocrystalline rutile
JP2003126695A (en) Potassium niobate photocatalyst and manufacturing method therefor
JP7145506B2 (en) Method for producing vanadium dioxide particles
JPH0466546A (en) Production of armatic hydroxy compound
Huang et al. The clean synthesis of small-particle TS-1 with high-content framework Ti by using NH4HCO3 and suspended seeds as an assistant
Yin et al. Postsynthesis of Ti-UZM-35 titanosilicate as efficient catalyst for phenol hydroxylation reaction
CN109607561A (en) Laminar hetero-atom molecular-sieve and its synthetic method
Tang et al. Regulation of framework titanium siting in MWW-type titanosilicates by boron and aluminum incorporation and its effect on the catalytic performance
CN106964352B (en) Novel photocatalysis material TiO2@Fe2O3、SrTiO3@Fe2O3Preparation and application
JPH11335121A (en) Production of anatase titanium oxide
CN104556116A (en) Method for assisted synthesis of TS-1 molecular sieve by using aerosol
Xia et al. Crystallization kinetics of pure TS-1 zeolite using quaternary ammonium halides as templates
CN102266748A (en) Method for preparing titanic acid/titanium dioxide mixed nano-powder material