JPH046648B2 - - Google Patents

Info

Publication number
JPH046648B2
JPH046648B2 JP63129527A JP12952788A JPH046648B2 JP H046648 B2 JPH046648 B2 JP H046648B2 JP 63129527 A JP63129527 A JP 63129527A JP 12952788 A JP12952788 A JP 12952788A JP H046648 B2 JPH046648 B2 JP H046648B2
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
particles
resin
less
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP63129527A
Other languages
Japanese (ja)
Other versions
JPH01275422A (en
Inventor
Yukio Oda
Yasuo Kawai
Mitsuhiko Morihira
Mikito Kitayama
Juji Shibue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63129527A priority Critical patent/JPH01275422A/en
Publication of JPH01275422A publication Critical patent/JPH01275422A/en
Publication of JPH046648B2 publication Critical patent/JPH046648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、水酸化アルミニウムを不飽和ポリエ
ステル樹脂、アクリル樹脂等に充填して得られる
オニツクス調、マーブル調等の人造大理石製造用
の水酸化アルミニウムとその製造方法に関する。 [従来の技術] 水酸化アルミニウムを不飽和ポリエステル樹脂
やアクリル樹脂に充填し、オニツクス調、マーブ
ル調の成形体を得ることはよく知られている。 最近、成形体の強度、表面平滑性、耐煮沸特
性、及びペースト状態におけるフイラーの沈降を
改良する目的でフイラーとして粒径の細かい水酸
化アルミニウムが使用されるようになつてきた。 また、BMC(バルクモールデイングコンパウン
ド)及び、SMC(シートモールデイングコンパウ
ンド)のプレス成形によつて成形体を得るにあた
つてはプレス時の樹脂とフイラーの分離を防ぐた
めにもフイラーとして粒径の細かい水酸化アルミ
ニウムを用いることが有利である。 [発明が解決しようとする課題] しかし、粒径の細かい、すなわち、比表面積の
大きい水酸化アルミニウムを樹脂フイラーとして
用いた場合、フイラーの樹脂への分散不良や、樹
脂充填粘度が高いという問題があり、フイラーの
高充填が困難になることは避けられない。 また、比表面積の大きな水酸化アルミニウムを
フイラーとした不飽和ポリエステル樹脂組成物
は、水酸化アルミニウムの表面に、硬化促進剤と
して用いられるナフテン酸コバルト等の油溶性硬
化促進剤がトラツプされるのでゲル化タイムが遅
延し、生産性が低下し、さらに成形体が黄色味を
帯びるなどの問題がある。 [課題を解決するための手段] 発明者は上記の課題を解決すべく鋭意検討を重
ねた結果、人造大理石用に好適な水酸化アルミニ
ウムの開発に成功し、この水酸化アルミニウム
を、析出水酸化アルミニウムを粉砕して製造する
場合においては粉砕原料である析出水酸化アルミ
ニウムの1次粒子径と不純物であるNa2Oの含有
量が粉砕物の比表面積や樹脂充填粘度に非常に大
きな影響を与えることを見出し、これに基づいて
本発明を完成するに至つたものである。 すなわち、本発明は、比表面積と樹脂充填粘度
の低い水酸化アルミニウム及び目的とする粉砕水
酸化アルミニウムの平均粒子径にほゞ等しい1次
粒子径を持つ2次凝集粒で、Na2O不純物量が少
ない析出水酸化アルミニウムを粉砕原料とし、こ
れを粉砕して製造することを特徴とする人造大理
石用水酸化アルミニウムの製造法とを提供するに
ある。 すなわち、本発明の要旨は、沈降法で測定され
た平均粒子径が4〜8μm、窒素の吸着法で測定
された比表面積が2m2/g以下、20℃で10ポイズ
の粘度を有する不飽和ポリエステル樹脂100重量
部に水酸化アルミニウム200重量部を充填した配
合物をブルツクフイールド型粘度計で35℃にて測
定した樹脂充填粘度が1000ポイズ以下、45μm以
上の粒子径をもつ粒子の割合が1%以下、白色度
が96以上であることを特徴とする人造大理石用水
酸化アルミニウム及び加圧粉砕法で測定した平均
径が4〜8μmの範囲の1次粒子から構成された
平均粒子径が20〜50μmで固定Na2O含有量が0.20
重量%以下、好ましくは0.15重量%以下の水酸化
アルミニウム2次凝集粒を粉砕することを特徴と
する前記人造大理石用水酸化アルミニウムの製造
方法を提供することにある。 ここで、白色度は光電白度計で測定した値をい
う。1次粒子径の平均径は.0.75t/cm2の圧力で
加圧解砕し、その平均径を空気透過法で測定した
値である。Na2O含有量は、いわゆる固定Na2O
を云い、水洗などで除去されるいわゆる付着ソー
ダ分を含まない。 水酸化アルミニウムの2次凝集粒の粉砕方法
は、特に限定しないが、例えばボールミルなど粉
粒体を粉砕する一般的方法が採用される。 最初に、本発明の水酸化アルミニウムについて
数値の限定理由を説明する。 沈降法で測定した平均粒子径は、4〜8μmの
範囲内が必須であり、4μm以下では低比表面積
と低粘度の両立が不可能になり、また、8μm以
上では成形体にした時の強度、表面平滑性などが
悪化し、加えて、BMC、及びSMCのプレス成形
時の樹脂とフイラーの分離を防ぐことが難かしく
なる。 BET法で測定した比表面積は、2m2/g以下
であることが必須であり、これを越えると、フイ
ラーの樹脂への分散不良や不飽和ポリエステル樹
脂を過酸化物硬化触媒で硬化させる時のゲル化タ
イムの著しい遅延を招く。樹脂充填粘度は、35℃
で測定し、1000ポイズ以下であることが必須であ
り、これを越えると、樹脂とフイラーの混練や注
型による成形が困難になる、フイラーの充填量を
増すことができないため目標とする色感、量感が
得られない、また、BMCなどにおいてはガラス
繊維の混入量を増せないため、目標とする強度が
得られない、フイラーの高充填ができないためプ
レス時の流動特性に劣る等の障害が起こる。 45μm以上の粒子径を持つ粒子の割合は1%以
下であることが必須であり、これを越えると成形
体にした時の表面平滑性が悪化し、また、BMC、
及び、SMCのプレス成形時の樹脂とフイラーの
分離を防ぐことが難かしくなる。 光電白色度計で測定した白色度は、96以上であ
ることが必須であり、これ未満では得られる成形
体が淡黄色、或いは、薄茶色に着色し、人造大理
石に適した良好な色調のものが得られなくなる。 次に、本発明の水酸化アルミニウムの製造方法
において被粉砕原料である水酸化アルミニウムの
2次凝集粒について数値の限定理由を説明する。 沈降法で測定した平均粒子径は、20〜50μmの
範囲内であることが必須であり、20μm未満では
粉砕物の粒度分布が狭くなり過ぎる結果、樹脂充
填粘度が上昇し、また、50μmを越えると、粉砕
物の粗粒残分が多くなるため、表面平滑性に劣
り、また、BMC、及び、SMCのプレス成形時の
樹脂とフイラーの分離を防ぐことが難かしくな
る。 0.75t/cm2の圧力で加圧解砕し、その平均径を
空気透過法で測定することで得られた1次粒子平
均径は、4〜8μmの範囲内にあることが必須で
あり、この範囲外では、平均径4〜8μmまで粉
砕した時の比表面積、及び、樹脂充填粘度が高く
なる。 水酸化アルミニウムの1次粒子平均径は、詳し
くは、次のような方法で測定する。すなわち、第
1図に示すごとき金型(円筒ルツボ形、直径30
mm、深さ50mm)内に、23℃RH65%の雰囲気下に
1時間放置した水酸化アルミニウム15gを装入
し、油圧プレスにより0.75t/cm2の圧力で30秒間
加圧する。ついで金型内から水酸化アルミニウム
を取り出し、樹脂フイルム製の袋に入れ指圧によ
り圧塊をほぐし得られた解砕粉を空気透過法によ
りその平均粒子径(ブレーン径)を測定するもの
である。 水酸化アルミニウムの凝集粒に包含された固定
Na2O含有量は0.20wt%以下であることが必須で
あり、より好ましいレベルは、0.15wt%以下であ
る。この理由は後述する。 粉砕媒体であるボール径は、3〜20mmφの範囲
内にあることが好ましい。3mmφ未満では粉砕水
酸化アルミニウムの粒度分布が狭くなり過ぎ、樹
脂充填粘度が高くなり、20mmφを越えると1次粒
子の劈開やチツピングが増加又は進むため粉砕水
酸化アルミニウムの比表面積が大きくなるので好
ましくない。 [作用] 析出水酸化アルミニウムの1次粒子径が、粉砕
物の比表面積や樹脂充填粘度に大きな影響を与え
る理由は次のように考えられる。 第2図は、平均粒子径70μm、1次粒子平均径
25μmの析出水酸化アルミニウムの、第3図は、
これを5mmφのアルミナボールを用いた強制撹拌
方式のミルで平均粒子径9μmまで粉砕した水酸
化アルミニウムの電子顕微鏡写真である。第4図
は、平均粒子径30μの、1次粒子平均径7μmの析
出水酸化アルミニウムの、第5図は、これを5mm
φのアルミナボールを用いた強制撹拌方式のミル
で平均粒径6μmまで粉砕した水酸化アルミニウ
ムの電子顕微鏡写真である。写真より明らかなよ
うに、1次粒平均径25μmの水酸化アルミニウム
を平均粒径9μmまで粉砕すると1次粒子の破壊
が当然起こるため、水酸化アルミニウムの劈開性
により、板状で不定形な粒子形状となり、その結
果、樹脂に高充填した際の粘度が高くなる。さら
に、1次粒子を破壊しなければならないので、粉
砕時間が長くなり、粒子表面が荒れ、多量のチツ
ピング粒が発生するため、比表面積が大きくな
る。これに対して、1次粒平均径が7μmの水酸
化アルミニウムを平均粒径6μmまで粉砕するこ
とは、いわば、2次凝集粒の解砕であり、1次粒
子の破壊はほとんどなく、解砕物の粒子形状は、
析出水酸化アルミニウムの1次粒子の丸味を持つ
た粒子形状をよく保つているため、樹脂に高充填
した際の粘度は低い。さらに粉砕時間が短いた
め、比表面積も小さい。 さらに、析出水酸化アルミニウムの1次粒子径
が、4〜8μmの範囲にあつても、固定Na2O含有
量によつて、1次粒子への解砕のし易さが大きく
変わる。すなわち、Na2O含有量が少ないほど1
次粒子への解砕が容易になり、粒子形状が均一で
比表面積の小さな解砕物が得られる。逆にNa2O
含有量が多くなるほど、1次粒子への解砕が困難
になりチツピング粒や不定形状の粒子の割合が増
加する。Na2O含有量が、解砕のし易さに影響す
る理由は次のように考えられる。 析出反応で、水酸化アルミニウムの粒子中に取
り込まれるNa2O不純物は、その1部が結晶の粒
界、すなわち1次粒子間の界面に偏在していると
推定される。界面に偏在するNa2Oは、いわゆる
水酸化アルミニウムの1次粒子同志の結合を強め
るバインダー的な作用を持つと想像される。その
結果、1次粒子の解砕が困難になり、むしろ、1
次粒子の劈開やチツピングが進行することが確め
られた。 すなわち、第4図に示されるような形態の水酸
化アルミニウムでもNa2O含有量が0.20%を越え
るとこの現象が顕著にあらわれ、解砕物を電子顕
微鏡で詳細に調べたところ、1次粒子がつながつ
たまゝの不定形粒子とチツピング粒が多く観察さ
れた。固定Na2O含有量が0.20%以下であれば、
本発明品を得ることができるが、解砕時間を短か
くし、より均一形状の粒子を得るためには、固定
Na2O含有量が0.15%以下であることがより好ま
しい。 [実施例] 以下、本発明を第1表に示す実施例及び第2表
に示す比較例により、具体的に説明する。表中の
樹脂・水酸化アルミニウム複合組成物の評価は次
のように行なつた。尚、本発明が、これら実施例
に限定されるものでないことはいうまでもない。 1 樹脂充填粘度及び 2 分散時間 (配合) 不飽和ポリエステル樹脂*1 100部 水酸化アルミニウム 200部 上記配合で撹拌混練を行ない、完全にペースト
状になるまでの時間を分散時間とし、その時の粘
度(BS型粘度計使用、35℃)を樹脂充填粘度と
する。樹脂充填粘度は、1000ポイズ以下が好まし
く、分散時間は10分以下が望ましい。 *1 昭和高分子(株)製リゴラツク2004WM−2
粘度9P(20℃) 3 成形体の色調、 4 ゲル化タイム及び 5 成形体の表面平滑性 (配合) 不飽和ポリエステル樹脂*2 100部 MEKPO(メチル・エチル・ケトン パーオキ
サイド商品名パーメツクN日本油脂(株)製)1部 6%ナフテン酸コバルト 0.2部 水酸化アルミニウム 150部 *2 屈折率1.52、粘度18p(25℃) 上記配合で撹拌混練を行ない、25℃の恒温槽に
て、組成物の粘度を連続して測定し、樹脂の硬化
により、粘度が上昇し始めるまでの時間をゲル化
タイムとする。 ゲル化タイムは、60分以下が好ましい。 また、上記配合で脱泡混練を行ない、3mφ×
15mm厚の成形型に注型し、1晩室温(25℃)で硬
化後、50℃、3時間加熱硬化させた硬化物の色調
を、スガ試験機(株)製カラーテスターSM−4−
CHで測定し、ハンター色度座標Labで表わした。
これを成形体の色調とする。ハンター色度座標は
(L、a、b)で表示され、軸Lは明度を表わし、
a、bは知覚色度指数で側と側があり、それ
ぞれ、赤と緑、黄と青を表わす。人造大理石とし
ては、黄味を表わすbが重要であり、10以下であ
ることが好ましい。 成形体の表面平滑性は、上記硬化物の表面性状
を肉眼で観察した結果であるが、表中、×は表面
光沢なし、△は、表面光沢不良、○は表面光沢良
好であることを表わす。 実施例 1〜5 純度95%以上の水酸化ナトリウムを精製水に溶
解し、NaOH濃度150g/の溶液を作成した。
この溶液にAl2O3換算で60〜70wt%の純度の試薬
級水酸化アルミニウムを加熱溶解し、A/Cが
0.65の過飽和のアルミン酸ナトリウム溶液を調製
した。尚、AはAl2O3濃度(g/)、Cは
NaOH濃度(g/)である。上記のアルミン
酸ナトリウム溶液に、平均径が1μの水酸化アル
ミニウムを所定の濃度範囲で種子結晶として添加
し、溶液の温度を70℃以上に保つたまゝ析出を行
なわしめた。さらに析出終了後のスラリーから1
部を抜き出し、それを種子結晶として2回目の析
出を行なつた。このように析出操作を繰り返し、
その時の種子の濃度、溶液温度の水準を変えるこ
とにより、第1の実施例に示された平均粒径、1
次粒平均径、Na2O含有量をもつ請求項2記載の
析出水酸化アルミニウムを得た。析出水酸化アル
ミニウムは、溶液から真空過により分離し、精
製水で洗浄した後、100℃で乾燥した。粉砕容量
1のビーズ・ミル(三井三池化工機製)に、粉
砕メデイアとして5m/mφあるいは10m/mφ
のアルミナセラミツク・ビーズを7.7Kgと、上記
の水酸化アルミニウムを1Kg容器に装入し、アジ
テーターの回転数が300rpmの条件で8分間解砕
した。粉砕した水酸化アルミニウムは、いずれも
第5図に示したように、析出水酸化アルミニウム
のの1次粒子の形状を保つており、チツピング粒
子、劈開した不定形粒子の割合は少ないものであ
つた。第1表に粉砕物の性状と樹脂に充填した時
の諸特性を示す。平均径が4.5μmから7.5μmの範
囲の微細な粒度にもかかわらず、比表面積が2
m2/g以下で樹脂ペースト粘度が低く、かつ樹脂
中への分散性が良く、硬化特性(ゲル化タイム)
も優れたものである。さらに黄色味の少ない(b
値小)色調の成形体が得られた。 比較例 1〜3 アルミネート液のA/Cが0.55(比較例1、2)
あるいは、0.82(比較例3)であることを除けば、
実施例1とほゞ同じ条件範囲で平均粒径あるいは
1次粒子平均径が請求項2から外れる析出水酸化
アルミニウム(比較例1〜3)を得た。これを実
施例と同様の方法で解砕して解砕物を得た。平均
径が15μの析出物(比較例1)の解砕物は、粒度
分布が実施例の解砕物よりシヤープになり樹脂充
填粘度が大きくなつた。又、1次粒子平均径が
17μの析出物(比較例2)は、6μの平均粒径まで
解砕したところ、チツピングと劈開粒子が増え比
表面積の大きなものしか得られなかつた。又、1
次粒子平均径が3.5μの析出物(比較例3)は、解
砕物中に1次粒子の凝集粒子の割合が、実施例の
解砕物より多くなり、樹脂充填粘度が大きくなつ
た。 比較例 4 析出時のアルミネート液の温度が55℃であるこ
とを除けば、実施例とほゞ同じ条件範囲で操作し
て、平均粒径及び1次粒子平均径は、請求項2の
範囲に含まれるものの、不純物である固定Na2O
の含有量が0.20%以上の析出水酸化アルミニウム
を得た。実施例と同じ条件で解砕したところ、粉
砕平均粒径が大きかつたためさらに10分間解砕時
間を延長して平均粒径が6μの解砕物を得た。解
砕物を電子顕微鏡で観察したところ、1次粒子が
結合したまゝの劈開粒子と多くのチツピング粒子
が認められた。 比較例 5〜6 実施例1の析出水酸化アルミニウムを解砕する
操作において、実施例中の粉砕メデイアの径を2
m/m(比較例5)と30m/m(比較例6)に変
えて、解砕物を得た。2m/mのビーズで解砕し
たものは、解砕力が不足するためか凝集粒の割合
が増加し、樹脂充填粘度が大きなものしか得られ
なかつた。一方、30m/mφのメデイアを用いる
と、解砕力が強すぎて1次粒子自体が破壊され、
比表面積が大きくなり、ゲル化タイムが長くなつ
た。 比較例 7〜8 実施例1の析出水酸化アルミニウムを解砕する
条件のうち解砕時間を3分と20分に変えて、平均
粒径が15μm(比較例7)と3μ(比較例8)の粉
砕水酸化アルミニウムを得た。平均粒径が15μの
ものは凝集した粗粒が多く残り、樹脂充填粘度が
大きくなるとともに、成形体の表面平滑性が低下
した。 一方、3μのものは、1次粒子自体が破壊され、
BET比表面積が著しく増大した。 比較例 9 A/Cを0.65に調製した通常のバイヤー液を析
出液に用いることを除けば、実施例と同様の方法
で、平均径6μの粉砕水酸化アルミニウムを得た
が、粉末の白色度が小さく、樹脂に充填した成形
体は黄色に着色した。 これらの結果より、本発明による細粒水酸化ア
ルミニウムは従来のものに比べ比表面積が小さい
ので、樹脂への分散性が良好であり、また、不飽
和ポリエステル樹脂に充填した時のゲル化タイム
の遅延に対する抑制効果があり、成形体の色調が
黄色味を帯びることも少ない、加えて、樹脂に充
填した際の粘度が低いため、高充填が可能である
ことがわかる。 また、本発明の方法により、本発明になる人造
大理石用水酸化アルミニウムを製造できることが
わかる。
[Industrial Application Field] The present invention relates to aluminum hydroxide for producing artificial marble such as onyx-like or marble-like marble obtained by filling unsaturated polyester resin, acrylic resin, etc. with aluminum hydroxide, and a method for producing the same. [Prior Art] It is well known to fill an unsaturated polyester resin or acrylic resin with aluminum hydroxide to obtain an onyx-like or marble-like molded product. Recently, fine-grained aluminum hydroxide has been used as a filler for the purpose of improving the strength, surface smoothness, boiling resistance, and settling of the filler in a paste state. In addition, when obtaining a molded product by press molding BMC (bulk molding compound) and SMC (sheet molding compound), the particle size of the filler is adjusted to prevent separation of the resin and filler during pressing. It is advantageous to use fine aluminum hydroxide. [Problems to be Solved by the Invention] However, when aluminum hydroxide with a small particle size, that is, a large specific surface area, is used as a resin filler, there are problems such as poor dispersion of the filler into the resin and high resin filling viscosity. Therefore, it is inevitable that high filler filling becomes difficult. In addition, unsaturated polyester resin compositions using aluminum hydroxide, which has a large specific surface area, as a filler have gels because an oil-soluble curing accelerator such as cobalt naphthenate, which is used as a curing accelerator, is trapped on the surface of the aluminum hydroxide. There are problems such as a delay in curing time, a decrease in productivity, and a yellowish tinge to the molded product. [Means for Solving the Problems] As a result of intensive studies to solve the above problems, the inventor succeeded in developing aluminum hydroxide suitable for use in artificial marble. When manufacturing aluminum by pulverizing it, the primary particle size of precipitated aluminum hydroxide, which is the raw material for pulverization, and the content of Na 2 O, which is an impurity, have a very large effect on the specific surface area of the pulverized product and the resin filling viscosity. Based on this discovery, we have completed the present invention. In other words, the present invention uses aluminum hydroxide with a low specific surface area and resin-filled viscosity, and secondary agglomerated particles with a primary particle diameter approximately equal to the average particle diameter of the target pulverized aluminum hydroxide, and with a low content of Na 2 O impurities. To provide a method for producing aluminum hydroxide for use in artificial marble, which is characterized in that precipitated aluminum hydroxide with a small amount of aluminum hydroxide is used as a pulverizing raw material, and is produced by pulverizing the same. That is, the gist of the present invention is to provide an unsaturated material having an average particle diameter of 4 to 8 μm as measured by a sedimentation method, a specific surface area of 2 m 2 /g or less as measured by a nitrogen adsorption method, and a viscosity of 10 poise at 20°C. A blend of 100 parts by weight of polyester resin filled with 200 parts by weight of aluminum hydroxide has a resin filling viscosity of 1000 poise or less, measured at 35°C with a Burckfield viscometer, and a proportion of particles with a particle size of 45 μm or more. Aluminum hydroxide for artificial marble, characterized by having a whiteness of 96 or more and a whiteness of 96 or more, and an average particle size of 20 μm consisting of primary particles with an average diameter in the range of 4 to 8 μm as measured by a pressure crushing method. Fixed Na 2 O content of 0.20 at ~50 μm
It is an object of the present invention to provide a method for producing aluminum hydroxide for artificial marble, which comprises pulverizing secondary agglomerated particles of aluminum hydroxide in an amount of not more than 0.15% by weight, preferably not more than 0.15% by weight. Here, the whiteness refers to a value measured with a photoelectric whiteness meter. The average diameter of primary particles is . This is the value obtained by crushing under pressure at a pressure of 0.75 t/cm 2 and measuring the average diameter using an air permeation method. Na2O content is the so-called fixed Na2O
It does not contain so-called adhering soda content, which is removed by washing with water. The method for pulverizing the secondary agglomerated particles of aluminum hydroxide is not particularly limited, but a general method for pulverizing powder particles, such as a ball mill, may be employed. First, the reasons for limiting the numerical values for aluminum hydroxide of the present invention will be explained. The average particle diameter measured by the sedimentation method must be within the range of 4 to 8 μm; if it is less than 4 μm, it will be impossible to achieve both low specific surface area and low viscosity, and if it is more than 8 μm, the strength of the molded product will decrease. , surface smoothness deteriorates, and in addition, it becomes difficult to prevent separation of the resin and filler during press molding of BMC and SMC. The specific surface area measured by the BET method must be 2 m 2 /g or less, and if it exceeds this, it may cause poor dispersion of the filler into the resin or when curing unsaturated polyester resin with a peroxide curing catalyst. This results in a significant delay in gelation time. Resin filling viscosity is 35℃
It is essential that the value is 1000 poise or less. If this value is exceeded, it becomes difficult to knead the resin and filler or mold by casting, and the amount of filler filled cannot be increased, so the target color feeling cannot be achieved. In addition, in BMC, etc., it is not possible to increase the amount of glass fiber mixed in, so the target strength cannot be obtained, and it is not possible to achieve high filler filling, which causes problems such as poor flow characteristics during pressing. happen. It is essential that the proportion of particles with a particle size of 45 μm or more is 1% or less; if this exceeds this, the surface smoothness of the molded product will deteriorate, and BMC,
Additionally, it becomes difficult to prevent separation of the resin and filler during press molding of SMC. The whiteness measured with a photoelectric whiteness meter must be 96 or higher; if it is less than this, the resulting molded product will be colored pale yellow or light brown, and the color tone will be good and suitable for artificial marble. will not be obtained. Next, the reason for limiting the numerical value of the secondary agglomerated particles of aluminum hydroxide, which is the raw material to be crushed in the method for producing aluminum hydroxide of the present invention, will be explained. The average particle diameter measured by the sedimentation method must be within the range of 20 to 50 μm; if it is less than 20 μm, the particle size distribution of the crushed product will be too narrow, resulting in an increase in resin filling viscosity, and if it exceeds 50 μm. This increases the amount of coarse particles remaining in the pulverized material, resulting in poor surface smoothness and making it difficult to prevent separation of the resin and filler during press molding of BMC and SMC. It is essential that the average diameter of the primary particles obtained by crushing under a pressure of 0.75t/cm 2 and measuring the average diameter using an air permeation method is within the range of 4 to 8 μm. Outside this range, the specific surface area when crushed to an average diameter of 4 to 8 μm and the resin filling viscosity become high. Specifically, the average primary particle diameter of aluminum hydroxide is measured by the following method. In other words, a mold like the one shown in Figure 1 (cylindrical crucible shape, diameter 30 mm)
15 g of aluminum hydroxide, which had been left in an atmosphere of 23° C. and RH 65% for 1 hour, was charged into a chamber (23° C. and 50 mm deep) and pressurized with a hydraulic press at a pressure of 0.75 t/cm 2 for 30 seconds. Next, the aluminum hydroxide is taken out from the mold, placed in a resin film bag, and the compacted powder is loosened by finger pressure.The average particle diameter (Blane diameter) of the resulting crushed powder is measured by an air permeation method. Fixation contained in agglomerated particles of aluminum hydroxide
It is essential that the Na 2 O content be below 0.20 wt%, with a more preferred level being below 0.15 wt%. The reason for this will be explained later. The diameter of the ball serving as the grinding medium is preferably within the range of 3 to 20 mmφ. If it is less than 3 mmφ, the particle size distribution of the crushed aluminum hydroxide becomes too narrow and the resin filling viscosity becomes high, and if it exceeds 20 mmφ, the cleavage and chipping of the primary particles increases or progresses, so the specific surface area of the crushed aluminum hydroxide increases, so it is preferable. do not have. [Function] The reason why the primary particle size of precipitated aluminum hydroxide has a large effect on the specific surface area and resin filling viscosity of the pulverized product is considered as follows. Figure 2 shows an average particle diameter of 70 μm and an average primary particle diameter of
Figure 3 shows the precipitated aluminum hydroxide with a thickness of 25 μm.
This is an electron micrograph of aluminum hydroxide that was ground to an average particle size of 9 μm using a forced stirring mill using 5 mm diameter alumina balls. Figure 4 shows precipitated aluminum hydroxide with an average particle size of 30μm and a primary particle average diameter of 7μm, and Figure 5 shows precipitated aluminum hydroxide with an average primary particle diameter of 7μm.
This is an electron micrograph of aluminum hydroxide pulverized to an average particle size of 6 μm using a forced stirring mill using φ alumina balls. As is clear from the photo, when aluminum hydroxide with an average primary particle diameter of 25 μm is crushed to an average particle diameter of 9 μm, the primary particles naturally break, and due to the cleavage properties of aluminum hydroxide, plate-like and amorphous particles are formed. As a result, the viscosity increases when the resin is highly filled. Furthermore, since the primary particles must be destroyed, the grinding time becomes longer, the particle surface becomes rougher, a large amount of chipped particles are generated, and the specific surface area becomes larger. On the other hand, pulverizing aluminum hydroxide with an average primary particle diameter of 7 μm to an average particle diameter of 6 μm is, so to speak, the disintegration of secondary agglomerated particles, with almost no destruction of the primary particles, and the crushed The particle shape of
Since the rounded particle shape of the primary particles of precipitated aluminum hydroxide is well maintained, the viscosity is low when the resin is highly filled. Furthermore, since the grinding time is short, the specific surface area is also small. Furthermore, even if the primary particle size of precipitated aluminum hydroxide is in the range of 4 to 8 μm, the ease of crushing into primary particles varies greatly depending on the fixed Na 2 O content. In other words, the lower the Na 2 O content, the more
It becomes easier to crush into secondary particles, and a crushed product with uniform particle shape and small specific surface area can be obtained. Conversely, Na 2 O
As the content increases, it becomes more difficult to crush into primary particles, and the proportion of chipped particles and irregularly shaped particles increases. The reason why the Na 2 O content affects the ease of crushing is considered to be as follows. It is estimated that a part of the Na 2 O impurity incorporated into the aluminum hydroxide particles during the precipitation reaction is unevenly distributed at the grain boundaries of the crystals, that is, at the interfaces between primary particles. Na 2 O, which is unevenly distributed at the interface, is thought to have a binder-like effect that strengthens the bonds between the primary particles of aluminum hydroxide. As a result, it becomes difficult to disintegrate the primary particles;
It was confirmed that cleavage and chipping of secondary particles progressed. In other words, even with aluminum hydroxide in the form shown in Figure 4, this phenomenon becomes noticeable when the Na 2 O content exceeds 0.20%, and when the crushed material was examined in detail with an electron microscope, it was found that the primary particles were Many connected amorphous particles and chipping particles were observed. If the fixed Na 2 O content is below 0.20%,
Although the product of the present invention can be obtained, in order to shorten the crushing time and obtain particles with a more uniform shape, it is necessary to
More preferably, the Na 2 O content is 0.15% or less. [Examples] The present invention will be specifically described below with reference to Examples shown in Table 1 and Comparative Examples shown in Table 2. The resin/aluminum hydroxide composite compositions shown in the table were evaluated as follows. It goes without saying that the present invention is not limited to these Examples. 1 Resin filling viscosity and 2 Dispersion time (compounding) Unsaturated polyester resin *1 100 parts Aluminum hydroxide 200 parts The above composition is stirred and kneaded, and the time until it becomes completely paste-like is defined as the dispersion time, and the viscosity at that time ( Using a BS type viscometer, 35℃) is the resin filling viscosity. The resin filling viscosity is preferably 1000 poise or less, and the dispersion time is preferably 10 minutes or less. *1 Rigoratsuku 2004WM-2 manufactured by Showa Kobunshi Co., Ltd.
Viscosity 9P (20℃) 3. Color tone of molded object, 4. Gelation time and 5. Surface smoothness of molded object (compound) Unsaturated polyester resin *2 100 parts MEKPO (Methyl Ethyl Ketone Peroxide Product Name: Permek N NOF) Co., Ltd.) 1 part 6% Cobalt naphthenate 0.2 parts Aluminum hydroxide 150 parts *2 Refractive index 1.52, viscosity 18p (25℃) The above formulation was stirred and kneaded, and the composition was heated in a constant temperature bath at 25℃. The viscosity is measured continuously, and the time until the viscosity starts to increase due to curing of the resin is defined as the gelation time. The gelation time is preferably 60 minutes or less. In addition, defoaming kneading was performed with the above formulation, and 3 mφ×
The color tone of the cured product was poured into a 15 mm thick mold, cured overnight at room temperature (25°C), and then heated at 50°C for 3 hours using Color Tester SM-4- manufactured by Suga Test Instruments Co., Ltd.
Measured in CH and expressed in Hunter chromaticity coordinates Lab.
This is the color tone of the molded product. Hunter chromaticity coordinates are expressed as (L, a, b), where axis L represents lightness;
a and b are perceptual chromaticity indexes, which have sides and represent red and green, yellow and blue, respectively. For artificial marble, b, which represents yellowness, is important, and is preferably 10 or less. The surface smoothness of the molded product is the result of observing the surface properties of the cured product with the naked eye. In the table, × indicates no surface gloss, △ indicates poor surface gloss, and ○ indicates good surface gloss. . Examples 1 to 5 Sodium hydroxide with a purity of 95% or more was dissolved in purified water to create a solution with a NaOH concentration of 150 g/.
Reagent-grade aluminum hydroxide with a purity of 60 to 70 wt% in terms of Al 2 O 3 is dissolved in this solution by heating, and the A/C is
A 0.65 supersaturated sodium aluminate solution was prepared. In addition, A is Al 2 O 3 concentration (g/), and C is
NaOH concentration (g/). Aluminum hydroxide having an average diameter of 1 μm was added as seed crystals in a predetermined concentration range to the above sodium aluminate solution, and precipitation was performed while maintaining the temperature of the solution at 70° C. or higher. Furthermore, 1 from the slurry after the completion of precipitation.
A portion was extracted and used as a seed crystal for a second precipitation. Repeat the precipitation operation in this way,
By changing the seed concentration and solution temperature level at that time, the average particle size shown in the first example, 1
Precipitated aluminum hydroxide according to claim 2 having an average diameter of secondary particles and a Na 2 O content was obtained. The precipitated aluminum hydroxide was separated from the solution by vacuum filtration, washed with purified water, and then dried at 100°C. A bead mill (manufactured by Mitsui Miike Kakoki) with a crushing capacity of 1 is used as a crushing media of 5 m/mφ or 10 m/mφ.
7.7 kg of alumina ceramic beads and 1 kg of the above aluminum hydroxide were placed in a container and crushed for 8 minutes at an agitator rotation speed of 300 rpm. As shown in Figure 5, the pulverized aluminum hydroxide all maintained the shape of the primary particles of the precipitated aluminum hydroxide, and the proportion of chipped particles and cleaved amorphous particles was small. . Table 1 shows the properties of the pulverized product and its properties when filled in resin. Despite the fine particle size with an average diameter ranging from 4.5 μm to 7.5 μm, the specific surface area is 2.
m 2 /g or less, the resin paste viscosity is low, the dispersibility in the resin is good, and the curing characteristics (gelling time) are low.
is also excellent. Even less yellow (b
A molded article with a color tone (low value) was obtained. Comparative Examples 1 to 3 A/C of aluminate liquid is 0.55 (Comparative Examples 1 and 2)
Or, except that it is 0.82 (comparative example 3),
Precipitated aluminum hydroxide (Comparative Examples 1 to 3) having an average particle diameter or an average primary particle diameter outside of Claim 2 was obtained under substantially the same condition range as in Example 1. This was crushed in the same manner as in the example to obtain a crushed product. The crushed precipitate with an average diameter of 15 μm (Comparative Example 1) had a sharper particle size distribution and a higher resin filling viscosity than the crushed material of the example. In addition, the average diameter of the primary particles is
When the 17μ precipitate (Comparative Example 2) was crushed to an average particle size of 6μ, chipping and cleavage particles increased and only particles with a large specific surface area were obtained. Also, 1
In the precipitate having an average primary particle diameter of 3.5 μm (Comparative Example 3), the proportion of agglomerated primary particles in the crushed material was higher than that in the crushed material of the example, and the resin filling viscosity was increased. Comparative Example 4 Except for the temperature of the aluminate solution at the time of precipitation being 55°C, the operation was performed under substantially the same range of conditions as in the example, and the average particle diameter and average primary particle diameter were within the range of claim 2. Fixed Na 2 O, which is an impurity although contained in
Precipitated aluminum hydroxide with a content of 0.20% or more was obtained. When the material was crushed under the same conditions as in the example, the average particle size of the crushed particles was large, so the crushing time was extended for an additional 10 minutes to obtain a crushed product with an average particle size of 6 μm. When the crushed material was observed under an electron microscope, cleaved particles in which primary particles remained bonded and many chipping particles were observed. Comparative Examples 5 to 6 In the operation of crushing the precipitated aluminum hydroxide in Example 1, the diameter of the crushing media in Example 2 was
m/m (Comparative Example 5) and 30 m/m (Comparative Example 6), crushed materials were obtained. In the case of crushing with beads of 2 m/m, the proportion of agglomerated particles increased, probably due to insufficient crushing force, and only those with high resin filling viscosity could be obtained. On the other hand, if a 30m/mφ media is used, the crushing force is too strong and the primary particles themselves are destroyed.
The specific surface area became larger and the gelation time became longer. Comparative Examples 7 to 8 Among the conditions for crushing precipitated aluminum hydroxide in Example 1, the crushing time was changed to 3 minutes and 20 minutes, and the average particle size was 15 μm (Comparative Example 7) and 3 μm (Comparative Example 8) of ground aluminum hydroxide was obtained. When the average particle size was 15μ, many aggregated coarse particles remained, the resin filling viscosity increased, and the surface smoothness of the molded product decreased. On the other hand, in the case of 3μ, the primary particles themselves are destroyed,
BET specific surface area increased significantly. Comparative Example 9 Pulverized aluminum hydroxide with an average diameter of 6 μm was obtained in the same manner as in Example, except that ordinary Bayer's solution prepared at an A/C of 0.65 was used as the precipitation solution, but the whiteness of the powder was was small, and the molded body filled with resin was colored yellow. From these results, the fine-grained aluminum hydroxide according to the present invention has a smaller specific surface area than conventional ones, so it has good dispersibility in resin, and also has a shorter gelation time when filled into unsaturated polyester resin. It can be seen that there is an effect of suppressing the delay, the color tone of the molded product is less likely to be yellowish, and in addition, the viscosity when filled into the resin is low, so high filling is possible. Moreover, it can be seen that the aluminum hydroxide for artificial marble of the present invention can be produced by the method of the present invention.

【表】【table】

【表】【table】

【表】 [効果] かくして得られた水酸化アルミニウムは、特に
人造大理石用フイラーとして、品質設計されたも
のであり、この用途に用いられた時にその優れた
特性を発揮する。 例えば、不飽和ポリエステル樹脂に充填し、注
型法によつて洗面化粧台やキツチンカウンタート
ツプなどを製造する際、本発明の水酸化アルミニ
ウムをフイラーとして用いれば、樹脂への分散性
が良いため、撹拌混練が短時間ですむ。また、コ
ストダウンの目的で樹脂分を減らすためにフイラ
ーを高充填しても低粘度であるため、注型作業が
行ない易い。さらに、不飽和ポリエステル樹脂の
硬化時間が従来の細粒水酸化アルミニウムを充填
した場合に比べ、格段に短いので生産性に優れ
る。加えて、硬化物の黄色味が少ないため、顔料
を加えない場合にも、加えた場合にも、美麗な色
調の製品が得られる。 また、BMCやSMCのプレス成形法によつて洗
面化粧台やバスタブなどを製造する際、本発明の
水酸化アルミニウムをフイラーとして用いれば、
高充填が可能であり、プレス時の流動特性に優れ
る。さらに、得られた成形体の表面平滑性に優れ
るため、高級感があり、加えて、耐汚染性にも優
れる。
[Table] [Effects] The quality of the aluminum hydroxide thus obtained has been specially designed to be used as a filler for artificial marble, and exhibits its excellent properties when used for this purpose. For example, when the aluminum hydroxide of the present invention is used as a filler when filling unsaturated polyester resin and manufacturing washstands and kitchen countertops by casting, the aluminum hydroxide of the present invention can be used as a filler because it has good dispersibility in the resin. Stirring and kneading can be done in a short time. In addition, even if a high filler is used to reduce the resin content for the purpose of cost reduction, the viscosity is low, making it easy to perform casting operations. Furthermore, the curing time of the unsaturated polyester resin is much shorter than that of the conventional case filled with fine-grained aluminum hydroxide, resulting in excellent productivity. In addition, since the cured product has little yellow tinge, products with beautiful colors can be obtained both when pigments are not added and when pigments are added. Furthermore, when the aluminum hydroxide of the present invention is used as a filler when manufacturing washstands, bathtubs, etc. using the BMC or SMC press molding method,
High filling is possible and has excellent flow characteristics during pressing. Furthermore, since the obtained molded product has excellent surface smoothness, it has a luxurious feel and also has excellent stain resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1次粒子平均径測定のための加圧解砕
法に使用する金型の断面図、第2図〜第5図は水
酸化アルミニウムの粒子構造を示す電子顕微鏡写
真である。
FIG. 1 is a cross-sectional view of a mold used in the pressure crushing method for measuring the average diameter of primary particles, and FIGS. 2 to 5 are electron micrographs showing the particle structure of aluminum hydroxide.

Claims (1)

【特許請求の範囲】 1 沈降法で測定された平均粒子径が4〜8μm、
窒素の吸着法(BET法)で測定された比表面積
が2m2/g以下、20℃で10ポイズの粘度を有する
不飽和ポリエステル樹脂100重量部に水酸化アル
ミニウム200重量部を充填した配合物をブルツク
フイールド型粘度計で35℃で測定した樹脂充填粘
度が1000ポイズ以下、45μm以上の粒子径をもつ
粒子の割合が1%以下、白色度が96以上であるこ
とを特徴とする人造大理石用水酸化アルミニウ
ム。 2 加圧粉砕法で測定した平均径が4〜8μmの
1次粒子から構成された平均粒子径が20〜50μm
で、固定Na2O含有量が0.20重量%以下の水酸化
アルミニウムの2次凝集粒を粉砕することを特徴
とする請求項1記載の人造大理石用水酸化アルミ
ニウムの製造方法。 3 水酸化アルミニウムの2次凝集粒の粉砕を、
粉砕媒体であるボール径が3〜20mmφであるボー
ルミル等により行うことを特徴とする請求項2記
載の人造大理石用水酸化アルミニウムの製造方
法。
[Claims] 1. The average particle diameter measured by a sedimentation method is 4 to 8 μm,
A blend of 100 parts by weight of an unsaturated polyester resin with a specific surface area of 2 m 2 /g or less as measured by the nitrogen adsorption method (BET method) and a viscosity of 10 poise at 20°C and 200 parts by weight of aluminum hydroxide is used. Water for artificial marble, characterized by having a resin filling viscosity of 1000 poise or less, a proportion of particles with a particle size of 45 μm or more being 1% or less, and a whiteness of 96 or more, as measured at 35°C with a Burckfield viscometer. Aluminum oxide. 2. The average particle diameter is 20-50 μm, which is composed of primary particles with an average diameter of 4-8 μm measured by pressure pulverization method.
2. The method for producing aluminum hydroxide for artificial marble according to claim 1, wherein secondary agglomerated particles of aluminum hydroxide having a fixed Na 2 O content of 0.20% by weight or less are pulverized. 3 Pulverization of secondary agglomerated particles of aluminum hydroxide,
3. The method for producing aluminum hydroxide for artificial marble according to claim 2, characterized in that the process is carried out using a ball mill or the like having a ball diameter of 3 to 20 mm as a grinding medium.
JP63129527A 1987-12-21 1988-05-27 Aluminum hydroxide for artificial marble and its production Granted JPH01275422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129527A JPH01275422A (en) 1987-12-21 1988-05-27 Aluminum hydroxide for artificial marble and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-324744 1987-12-21
JP32474487 1987-12-21
JP63129527A JPH01275422A (en) 1987-12-21 1988-05-27 Aluminum hydroxide for artificial marble and its production

Publications (2)

Publication Number Publication Date
JPH01275422A JPH01275422A (en) 1989-11-06
JPH046648B2 true JPH046648B2 (en) 1992-02-06

Family

ID=26464881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129527A Granted JPH01275422A (en) 1987-12-21 1988-05-27 Aluminum hydroxide for artificial marble and its production

Country Status (1)

Country Link
JP (1) JPH01275422A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008737A1 (en) * 1989-01-26 1990-08-09 Showa Denko Kabushiki Kaisha Aluminum hydroxide, process for its production and composition
JPH0649573B2 (en) * 1989-07-19 1994-06-29 昭和電工株式会社 Aluminum hydroxide for artificial marble and manufacturing method thereof
DE4024044C2 (en) * 1990-07-28 1998-09-10 Nabaltec Gmbh Process for the production of a filler, use of the filler for flame fixing and flame-retardant plastic
JP4352520B2 (en) * 1999-08-26 2009-10-28 パナソニック電工株式会社 Artificial marble composition
AU2002301811B2 (en) * 2001-11-07 2007-08-23 Sumitomo Chemical Company, Limited Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder
AU2007203595B2 (en) * 2001-11-07 2009-04-23 Sumitomo Chemical Company, Limited Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder
JP7252704B2 (en) * 2017-08-25 2023-04-05 ジャパンコンポジット株式会社 UNSATURATED POLYESTER RESIN COMPOSITION, MOLDING MATERIAL, MOLDED PRODUCT, AND ARTIFICIAL MARBLE
JP7420142B2 (en) 2019-09-17 2024-01-23 株式会社レゾナック Electrical and electronic components containing thermosetting resin compositions and cured products thereof

Also Published As

Publication number Publication date
JPH01275422A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
KR960002532B1 (en) Unsaturated polyester resin composition having less coloration and excellent transparency
CA2066473C (en) Dry grinding
JPS629256B2 (en)
JPS5845106A (en) Precipitated silicic acid and its manufacture
KR0159504B1 (en) Process for producing aluminium hydroxide
JPH0316914A (en) Dry grinding/wet grinding calcium carbonate filled composition
EP1603849B1 (en) Unusually narrow particle size distribution calcined kaolins
JP3500305B2 (en) Amorphous silica particles having double structure, production method and use thereof
JPH046648B2 (en)
JP3536988B2 (en) Method for producing aluminum hydroxide having rounded particle surface
CN111548756B (en) Preparation method of calcium carbonate composite filler for epoxy resin adhesive
US20030234304A1 (en) Superfine powders and methods for manufacture of said powders
JP3575150B2 (en) Aluminum hydroxide for resin filling and resin composition using the same
US5015295A (en) Filler for polyester molding compound and method
JPH0350142A (en) Aluminum hydroxide for artificial marble and its production
JPH0527580B2 (en)
KR100508961B1 (en) a composition powder with surface treatment and manufacturing method thereof
WO1990001470A1 (en) Simulated colored granite and process
JPH11172051A (en) Filler for rubber and its production, and rubber composition
US20090011237A1 (en) Superfine powders and their methods of manufacture
WO1991011404A1 (en) Simulated colored granite and process
JP2001322813A (en) Method for manufacturing aluminum hydroxide powder
JPH0948611A (en) Production of fine powder of precipitated silicic acid having abrasiveness
JP2005290059A (en) Red iron oxide pigment, and coating material and resin composition produced by using the same
JP3634434B2 (en) Artificial marble and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 17