JP3575150B2 - Aluminum hydroxide for resin filling and resin composition using the same - Google Patents

Aluminum hydroxide for resin filling and resin composition using the same Download PDF

Info

Publication number
JP3575150B2
JP3575150B2 JP33455495A JP33455495A JP3575150B2 JP 3575150 B2 JP3575150 B2 JP 3575150B2 JP 33455495 A JP33455495 A JP 33455495A JP 33455495 A JP33455495 A JP 33455495A JP 3575150 B2 JP3575150 B2 JP 3575150B2
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
resin
viscosity
filling
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33455495A
Other languages
Japanese (ja)
Other versions
JPH09176367A (en
Inventor
浩史 佐々木
利之 溝江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33455495A priority Critical patent/JP3575150B2/en
Publication of JPH09176367A publication Critical patent/JPH09176367A/en
Application granted granted Critical
Publication of JP3575150B2 publication Critical patent/JP3575150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は樹脂充填用水酸化アルミニウムに係わり、更に詳しくは樹脂への適用において、成型性が良好で、特にBMC(Bulk Moulding Compound)成型に適したコンパウンド粘度挙動を与え、硬化時の成型サイクル性に優れ、硬化後の成型体の機械的強度及び外観に優れた樹脂組成物を提供し得る樹脂充填用水酸化アルミニウムに関するものである。
【0002】
【従来の技術】
従来、無機フィラーを樹脂に充填、硬化して得られる人工大理石は、キッチンカウンター、バスタブ等の用途に広く用いられている。これらの無機フィラーの中でも水酸化アルミニウムは透明性、化学的安定性、難燃性等の物性の他に、硬度がシリカ等に比べ低いことより、金型或いは樹脂との混合に用いる撹拌装置の磨耗が少なく、また価格面でも安価であることより人工大理石用フィラーとして非常に有用である。更に有機物質等の不純物の少ない高白色のものは成型体の着色も少なく、高級感のある人工大理石を与えるものとして、人工大理石用フィラーとして特に優れている。
【0003】
しかし従来市販の水酸化アルミニウムをフィラーとして用いた場合、BMC成型においては充分なコンパウンド硬さが得られない等の問題があった。それ故コンパウンド硬さを保持する(充填粘度を高くする)方法として、粒径の小さい水酸化アルミニウムを使用したり、充填量を増やしたり、増粘剤等を添加する方法等がとられてきた。しかしながら、これらの方法により樹脂充填粘度を上昇させる場合には、充分な硬さのコンパウンドは得られるものの、混合時の粘度が高いため樹脂中に水酸化アルミニウムが均一に分散できず、このため成型体の機械的強度が充分得られないとか、気泡の巻き込みやプレス時に巣ができるなど成型体の外観や機械的強度に悪影響を及ぼす等の問題が生起する。
【0004】
【発明が解決しようとする課題】
かかる事情下に鑑み、本発明者等は多くの実験結果より、BMC用途に適した樹脂組成物としては、プレス時(すなわち低ずり速度時)に巣が発生しない程度の充分なコンパウンド硬さを有し、しかも混合時(すなわち高ずり速度時)には水酸化アルミニウム粉末が均一に混合できる程度の低粘性が要求されるため、ある一定範囲のチクソ性が必要となること、しかして、BMC用途に適した充填材としては、25℃で8〜10ポイズの粘度を有するビニルエステル樹脂100重量部に水酸化アルミニウム200重量部を充填した樹脂組成物を25℃に保ち、DVU−B型粘度計でNo.7ローターを使用し5rpm(低ずり速度時)での粘度が500ポイズ〜2000ポイズである場合には、プレス時に巣が発生しない程度の充分なコンパウンド硬さを呈すること、またローター回転数のみを20rpmにして粘度測定をした値(高ずり速度時)で前記した5rpmでの測定粘度値を割った値(5rpm粘度/20rpm粘度:これをチクソ性指数と称する)が1〜3の範囲にある場合には水酸化アルミニウムが樹脂中に均一に分散し、気泡がなく、外観が美麗で機械的強度にも優れた成形体が得られることを見出し、これを指標として多くの水酸化アルミニウムの粉末物性を変数として組み合わせ実験整理した結果、ある特定範囲の平均粒子径、BET比表面積、X線形状係数を有し、かつ高白色度を有する水酸化アルミニウムを用いる場合には上記問題点が全て解決されたBMC用途に適した樹脂充填用水酸化アルミニウムが得られること、またこれを充填材として用いる場合には優れた物性を有する成形体を提供しえる樹脂組成物が得られることを見い出し本発明を完成するに至った。
【0005】
【課題を解決するための手段】
すなわち本発明は、平均粒子径5μm〜20μm、BET比表面積0.5m /g〜4.5m /g、X線による形状係数〜10〔ギブサイト(002)面/(110)面のピーク強度比〕、白色度93以上であることを特徴とするBMC成形に用いる樹脂充填用水酸化アルミニウムを提供するにある。
【0006】
さらに本発明は、上記の樹脂充填用水酸化アルミニウムを不飽和ポリエステル樹脂、ビニルエステル樹脂またはメタアクリレート樹脂100重量部に対し50〜400重量部充填してなる樹脂組成物を提供するにある。
【0007】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明に用いる水酸化アルミニウム粉末は、一般式Al ・nH O(式中n=1〜3)で示されるアルミナ水和物、一般的にはアルミナ三水和物が使用される。
【0008】
本発明に用いる水酸化アルミニウム粉末の平均粒子径は5μm〜30μm、好ましくは8μm〜20μmの範囲である。5μmより小さいと、樹脂充填時の粘度が高くなりすぎ均一分散が困難になり、またゲル化時間が遅くなる等の問題があり、樹脂中への人工大理石の質感が付与し得る量の水酸化アルミニウムの充填が困難になる。逆に、30μmより大きいと最終的に得られる樹脂組成物成型体の表面光沢が悪くなり、また機械的強度も低下するばかりでなく、硬化条件によっては水酸化アルミニウム粉末の重力沈降等が起こり樹脂中の充填物の分散が不均一な成型体が得られる場合がある。ここで本発明に用いる平均粒子径は、レーザー回折法による粒度分布測定装置で測定した値をいう。
【0009】
また、本発明に用いる水酸化アルミニウム粉末のBET比表面積は0.5m /g〜4.5m /g、好ましくは1.5m /g〜3.0m /gの範囲である。該粉末のBET比表面積が0.5m /gより小さいと水酸化アルミニウム表面上の物理吸着水分が少なく、充分なコンパウンド硬さが得られずプレス成型が困難になる。逆に4.5m /gより大きいと水酸化アルミニウム粉末表面上の物理吸着水分が多くなりすぎゲル化時間(コンパウンドが硬化し成形体になるまでの時間)が遅くなり場合によっては硬化不良を起こす可能性があり、また樹脂充填粘度も高くなる。ここで本発明に用いるBET比表面積は窒素の吸着法で測定した値をいう。
【0010】
さらに本発明に用いる水酸化アルミニウム粉末のX線形状係数は2〜10、好ましくは4〜8の範囲である。この値が2より小さいとBMC成型に必要なチクソ性、即ち混合時の粘度が低くプレス時の粘度が高いという粘度挙動が得られない。逆にこの値が10より大きいとチクソ性は発生するものの実質混合時の粘度は高くなり、樹脂中への該粉末の均一分散が難しくなり、更にプレス成型時の粘度も高くなりすぎ成型体に巣が生じる場合がある。ここで本発明に用いるX線形状係数とは、水酸化アルミニウム粉末を電圧50kV,40mAの条件で発生させたCu−Kα線にてX線回折測定を行ったときのギブサイト(002)面のピーク強度をギブサイト(110)面のピーク強度で割った値を指し、粉砕によりへき開面がどれだけ現れたかを示す値である。
【0011】
本発明に用いる水酸化アルミニウム粉末の白色度は93以上、好ましくは95以上の範囲である。この値が93より小さいと成型体が着色し高級感のある人工大理石の外観は得られない。ここで本発明に於ける白色度は粉末のハンター白度を指す。
これらの物性をそれぞれ独立して有する水酸化アルミニウムは従来から存在したが、本発者等はこれらの物性全てを同時に満足する場合に、BMC成型用樹脂充填材として、優れた作業性、並びに物性を有する樹脂組成物が得られることを見出したもので、例え平均粒子径及びBET比表面積がこの範囲内にあったとしてもX線形状係数がこの範囲から外れている場合にはBMC成型に適したチクソ性が得られない等の問題が生じる。
【0012】
このような物性を有する水酸化アルミニウム粉末を得る方法としては、特に制限されないが、白色度が高く粒度分布のシャープな水酸化アルミニウム原料、例えば、平均粒子径約20〜120μm、BET比表面積0.05〜0.5m /g、D90% /D10% 比が3.5以下、より好ましくは3以下で、白色度が85以上の水酸化アルミニウム粉末を原料として用い、これを振動ミル等の体積粉砕機を用いて粉砕することにより得ることができる。
【0013】
本発明の実施に際し、水酸化アルミニウムは得られる成型体の機械的強度或いは耐煮沸性等を向上させる目的で、水酸化アルミニウム表面をシランカップリング剤等の表面処理剤で処理して用いることもできる。
【0014】
このようなシランカップリング剤としては特に限定されないが、例えばメタクリル系シラン,アクリル系シラン,ビニル系シラン,エポシキ系シラン,アミノ系シラン等が挙げられる。またこれらシランカップリング剤はシリケート等と併用してもよく、目的に応じて使い分けることができる。
これら表面処理剤の添加量は所望とする物性並びに価格のバランスより自ずと決定されるが、通常、水酸化アルミニウム粉末100重量部に対し約0.1〜3重量部の範囲で使用されるのが一般的である。
またこれら表面処理剤の添加方法については特に限定されるものではないが、ヘンシェルミキサー,ブレンダー等で水酸化アルミニウム粉末を撹拌しながら添加する方法が一般的であり、また粉砕機に水酸化アルミニウムと同時にこれらの表面処理剤を添加し粉砕と同時に処理を行ってもよい。
【0015】
本発明の水酸化アルミニウムの配合対象となる樹脂としてはBMC成形に用いられる樹脂であれば特に制限されないが、人工大理石用としては、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、メチルメタアクリレート樹脂等が挙げられる。
該樹脂中への本発明の水酸化アルミニウムの添加量(充填量)は公知の範囲であればよく、例えば人工大理石用に用いる場合には樹脂100重量部に対し約50重量部〜約400重量部、好ましくは約150重量部〜約300重量部の範囲で使用すればよい。樹脂に対する水酸化アルミニウムの添加量が少ない場合は人工大理石の風合いをだすことが困難となり、また樹脂量が相対的に多くなることよりコストも高くなるので好ましくない。また逆に水酸化アルミニウムの充填量が多すぎる場合には樹脂中での水酸化アルミニウム粉末の分散性が悪くなり得られた成形体の機械的強度が低下する。
【0016】
【発明の効果】
以上、詳述した如く、本発明の水酸化アルミニウム粉末は、これをかなり多量に不飽和ポリエステル樹脂、ビニルエステル或いはメタアクリレート等の樹脂に充填し人工大理石等の成形体を得る場合に於いても、混合時に樹脂中への均一分散が可能で、プレス時に充分なコンパウンド硬さを与え、かつ得られる樹脂成形体も優れた機械的強度や外観性をも有するもので、BMC成形用樹脂充填水酸化アルミニウム粉末として極めて有効であり、その産業的価値は頗る大である。
【0017】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はかかる実施例により制限を受けるものではない。
尚、本実施例に於いて粒度分布は以下の方法により測定した。
粒度分布:0.2%ヘキサメタリン酸ナトリウム水溶液60ml中に水酸化アルミニウム粉末0.5gを加え10分間超音波分散し得られた試料液をレーザー回折式のマイクロトラック粒度分析計モデル7997−10−SRAにて、それぞれ累積50パーセント粒径,累積90パーセント粒径及び累積10パーセント粒径を測定し、算出した。
【0018】
実施例1
白色度98でBET比表面積0.13m /g、平均粒子径62.1μm、D90% /D10% 比が3.2である粒度分布のシャープな水酸化アルミニウム300gを内容積2リットルのアルミナ製ポット(直径8mmのアルミナ製ボール2.9kgを充填)に投入し振幅3mmで30分振動ミル粉砕を行った。その結果得られた水酸化アルミニウムは平均粒子径9.8μm、BET比表面積1.58m /g、X線形状係数4.0、白色度97であった。
上記水酸化アルミニウム200重量部を25℃で8.5ポイズの粘度を有するビニルエステル樹脂(商品名XP−675、武田薬品工業株式会社製)100重量部に充填し、よく混合した。この組成物の25℃におけるDVU−B型粘度計(No.7ローター使用)で測定したときの5rpmでの粘度は1200ポイズであり、そのチクソ性指数は1.5であった。
この組成物を硬化して得た成形体の外観は、透明感があり着色が少なく良好であった。
【0019】
実施例2
実施例1に使用した粉砕原料を用い、粉砕時間を60分に変更した他は実施例1と同条件で振動ミル粉砕を行った。
その結果得られた水酸化アルミニウムは平均粒子径7.1μm、BET比表面積2.63m /g、X線形状係数6.8、白色度96であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は1640ポイズであり、チクソ性指数は2.0であった。
この組成物を硬化して得た成形体の外観は、透明感があり着色が少なく良好であった。
【0020】
試験例1
粉砕原料に白色度96でBET比表面積0.14m /g、平均粒子径88.0μm、D90% /D10% 比が2.7である粒度分布のシャープな水酸化アルミニウムを使用する以外は実施例1と同条件で振動ミル粉砕を行った。 その結果得られた水酸化アルミニウムは平均粒子径12.0μm、BET比表面積1.70m /g、X線形状係数2.3、白色度96であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は850ポイズであり、チクソ性指数は1.3であった。
この組成物を硬化して得た成形体の外観は、透明感があり着色が少なく良好であった。
【0021】
実施例
試験例1に使用した粉砕原料を用い、粉砕時間を60分に変更した他は試験例1と同条件で振動ミル粉砕を行った。
その結果得られた水酸化アルミニウムは平均粒子径9.0μm、BET比表面積2.44m /g、X線形状係数8.0、白色度95であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は1850ポイズであり、チクソ性指数は2.3であった。
この樹脂組成物を硬化して得た成形体の外観は、透明感があり着色が少なく良好であった。
【0022】
比較例1
粉砕原料に白色度96でBET比表面積0.15m /g、平均粒子径74.4μm、D90% /D10% 比が4.0である水酸化アルミニウムを使用した以外は実施例1と同条件で振動ミル粉砕を行った。その結果得られた水酸化アルミニウムは平均粒子径35.2μm、BET比表面積1.23m /g、X線形状係数3.5、白色度96であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は460ポイズであり、チクソ性指数は1.3であった。
【0023】
比較例2
比較例1に使用した粉砕原料を用い、粉砕時間を60分に変更した他は比較例1と同条件で振動ミル粉砕を行った。
その結果得られた水酸化アルミニウムは平均粒子径13.9μm、BET比表面積2.42m /g、X線形状係数15.3、白色度95であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は2500ポイズであり、チクソ性指数は3.5であった。
【0024】
比較例3
実施例1に使用した粉砕原料を用い、粉砕時間を10分に変更した他は実施例1と同条件で振動ミル粉砕を行った。
その結果得られた水酸化アルミニウムは平均粒子径32.7μm、BET比表面積1.00m /g、X線形状係数1.7、白色度98であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は450ポイズであり、チクソ性指数は1.2であった。
【0025】
比較例4
実施例1に使用した粉砕原料を用い、粉砕時間を120分に変更した他は実施例1と同条件で振動ミル粉砕を行った。
その結果得られた水酸化アルミニウムは平均粒子径5.3μm、BET比表面積4.85m /g、X線形状係数9.4、白色度94であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は3100ポイズであり、チクソ性指数は2.9であった。
【0026】
比較例5
粉砕原料に白色度83でBET比表面積0.21m /g、平均粒子径67.1μm、D90% /D10% 比が3.3である水酸化アルミニウムを使用する以外は実施例1と同条件で振動ミル粉砕を行った。 その結果得られた水酸化アルミニウムは平均粒子径11.0μm、BET比表面積1.32m /g、X線形状係数3.5、白色度89であった。
このものを用い実施例1と同じ方法で樹脂組成物を作製し、粘度を測定した。
その結果5rpmでの粘度は1030ポイズであり、チクソ性指数は1.4であった。
この樹脂組成物を硬化して得た成形体の外観は、透明感はあるものの黄色く着色しており人工大理石の色調として好ましくなかった。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum hydroxide for filling a resin, and more particularly, to a resin having good moldability in application to a resin, giving a compound viscosity behavior particularly suitable for BMC (Bulk Molding Compound) molding, and improving molding cycle properties during curing. The present invention relates to an aluminum hydroxide for resin filling which can provide a resin composition which is excellent and has excellent mechanical strength and appearance of a molded article after curing.
[0002]
[Prior art]
Conventionally, artificial marble obtained by filling and curing an inorganic filler in a resin has been widely used for applications such as kitchen counters and bathtubs. Among these inorganic fillers, aluminum hydroxide is transparent, chemically stable, in addition to its physical properties such as flame retardancy, because its hardness is lower than that of silica, etc., it can be used in a stirrer used for mixing with a mold or a resin. It is very useful as a filler for artificial marble due to its low abrasion and low price. Further, a high-white one containing few impurities such as organic substances has little coloring of the molded product, and gives a high-grade artificial marble, and is particularly excellent as a filler for artificial marble.
[0003]
However, when conventional commercially available aluminum hydroxide is used as a filler, there has been a problem that sufficient compound hardness cannot be obtained in BMC molding. Therefore, as a method for maintaining the compound hardness (to increase the filling viscosity), a method of using aluminum hydroxide having a small particle size, increasing the filling amount, or adding a thickener or the like has been adopted. . However, when the resin filling viscosity is increased by these methods, a compound having sufficient hardness can be obtained, but the viscosity at the time of mixing is high, so that aluminum hydroxide cannot be uniformly dispersed in the resin. Problems such as insufficient mechanical strength of the body, entrapped air bubbles and formation of nests at the time of pressing adversely affect the appearance and mechanical strength of the molded body.
[0004]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors have found from a number of experimental results that a resin composition suitable for BMC use has a sufficient compound hardness such that nests do not occur at the time of pressing (that is, at a low shear rate). And at the time of mixing (ie, at high shear rate), a low viscosity is required so that the aluminum hydroxide powder can be uniformly mixed. Therefore, a certain range of thixotropy is required. As a filler suitable for the application, a resin composition obtained by charging 200 parts by weight of aluminum hydroxide to 100 parts by weight of a vinyl ester resin having a viscosity of 8 to 10 poise at 25 ° C. is maintained at 25 ° C., and a DVU-B type viscosity is used. No. in total. When the viscosity at 5 rpm (at low shear rate) is 500 poise to 2000 poise using a 7 rotor, the compound must exhibit sufficient compound hardness to the extent that nests do not occur during pressing. The value (5 rpm viscosity / 20 rpm viscosity: this is referred to as a thixotropic index) obtained by dividing the viscosity value measured at 5 rpm by the value measured at 20 rpm (at a high shear rate) is in the range of 1-3. In this case, aluminum hydroxide was uniformly dispersed in the resin, and it was found that a molded article having no bubbles, a beautiful appearance, and excellent mechanical strength was obtained. As a result of conducting experiments by combining physical properties as variables, it was found that aluminum hydroxide having a high average brightness, a specific range of average particle diameter, a BET specific surface area, and an X-ray shape factor. In the case where a resin is used, it is possible to obtain an aluminum hydroxide for resin filling suitable for BMC applications in which all of the above problems are solved, and in the case where this is used as a filler, a molded article having excellent physical properties can be provided. It has been found that a resin composition can be obtained, and the present invention has been completed.
[0005]
[Means for Solving the Problems]
That is, the present invention has an average particle diameter of 5 m to 20 [mu] m, BET specific surface area 0.5m 2 /g~4.5m 2 / g, a shape factor 4 -10 by X-ray [gibbsite (002) plane / (110) plane of the Peak intensity ratio], and a whiteness of 93 or more.
[0006]
The present invention further provides a resin composition obtained by filling the above-mentioned aluminum hydroxide for resin filling with 50 to 400 parts by weight based on 100 parts by weight of an unsaturated polyester resin, a vinyl ester resin or a methacrylate resin.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
As the aluminum hydroxide powder used in the present invention, an alumina hydrate represented by the general formula Al 2 O 3 .nH 2 O (where n = 1 to 3), generally alumina trihydrate, is used. .
[0008]
The average particle size of the aluminum hydroxide powder used in the present invention is in the range of 5 μm to 30 μm, preferably 8 μm to 20 μm. If the particle size is less than 5 μm, the viscosity at the time of filling the resin becomes too high, making uniform dispersion difficult, and there is a problem that the gelation time is delayed, and the amount of hydroxylation that can give the texture of artificial marble to the resin is increased. Filling of aluminum becomes difficult. Conversely, if it is larger than 30 μm, not only the surface gloss of the finally obtained resin composition molded body will deteriorate, and also the mechanical strength will decrease, but also depending on the curing conditions, gravitational sedimentation of the aluminum hydroxide powder and the like will occur. In some cases, a molded product in which the dispersion of the filler therein is uneven is obtained. Here, the average particle diameter used in the present invention refers to a value measured by a particle size distribution measuring device by a laser diffraction method.
[0009]
Further, BET specific surface area of the aluminum hydroxide powder used in the present invention is in the range of 0.5m 2 /g~4.5m 2 / g, preferably 1.5m 2 /g~3.0m 2 / g. If the BET specific surface area of the powder is smaller than 0.5 m 2 / g, the amount of physically adsorbed water on the aluminum hydroxide surface is small, and sufficient compound hardness cannot be obtained, so that press molding becomes difficult. Conversely, if it is more than 4.5 m 2 / g, the amount of physically adsorbed water on the surface of the aluminum hydroxide powder becomes too large, and the gelation time (time until the compound hardens and becomes a molded product) becomes slow, and in some cases poor curing may occur. May occur, and the resin filling viscosity will increase. Here, the BET specific surface area used in the present invention refers to a value measured by a nitrogen adsorption method.
[0010]
Further, the X-ray shape factor of the aluminum hydroxide powder used in the present invention is in the range of 2 to 10, preferably 4 to 8. If this value is less than 2, the thixotropy required for BMC molding, that is, the viscosity behavior of low viscosity during mixing and high viscosity during pressing cannot be obtained. Conversely, if this value is greater than 10, thixotropic properties are generated, but the viscosity at the time of substantial mixing increases, making it difficult to uniformly disperse the powder in the resin, and further increasing the viscosity at the time of press molding becomes too high. Nests may form. Here, the X-ray shape factor used in the present invention refers to the peak of the gibbsite (002) plane when X-ray diffraction measurement is performed with Cu-Kα radiation generated from aluminum hydroxide powder at a voltage of 50 kV and 40 mA. It refers to a value obtained by dividing the intensity by the peak intensity of the gibbsite (110) plane, and is a value indicating how much cleavage surface appears due to pulverization.
[0011]
The whiteness of the aluminum hydroxide powder used in the present invention is 93 or more, preferably 95 or more. When this value is smaller than 93, the molded article is colored and a high-grade artificial marble appearance cannot be obtained. Here, the whiteness in the present invention indicates the Hunter whiteness of the powder.
Aluminum hydroxide having each of these physical properties independently existed in the past, but the present inventors, when satisfying all of these physical properties simultaneously, have excellent workability and physical properties as a resin filler for BMC molding. It has been found that a resin composition having the following formula can be obtained. Even if the average particle diameter and the BET specific surface area are within this range, if the X-ray shape factor is out of this range, it is suitable for BMC molding. In addition, problems such as inability to obtain a thixotropic property occur.
[0012]
A method for obtaining an aluminum hydroxide powder having such physical properties is not particularly limited, but an aluminum hydroxide raw material having a high whiteness and a sharp particle size distribution, for example, an average particle diameter of about 20 to 120 μm, and a BET specific surface area of 0. An aluminum hydroxide powder having a ratio of 0.05 to 0.5 m 2 / g, a D 90% / D 10% ratio of 3.5 or less, more preferably 3 or less, and a whiteness of 85 or more is used as a raw material. Can be obtained by pulverizing using a volume pulverizer.
[0013]
In the practice of the present invention, aluminum hydroxide may be used by treating the surface of aluminum hydroxide with a surface treating agent such as a silane coupling agent for the purpose of improving the mechanical strength or boiling resistance of the obtained molded article. it can.
[0014]
Such a silane coupling agent is not particularly limited, but examples include methacrylic silane, acrylic silane, vinyl silane, epoxy silane, amino silane and the like. These silane coupling agents may be used in combination with a silicate or the like, and can be used properly according to the purpose.
The amount of the surface treating agent to be added is naturally determined according to the desired balance between physical properties and price, but it is usually used in the range of about 0.1 to 3 parts by weight based on 100 parts by weight of the aluminum hydroxide powder. General.
The method of adding these surface treatment agents is not particularly limited, but a method of adding aluminum hydroxide powder while stirring with a Henschel mixer, a blender or the like is generally used. At the same time, these surface treatment agents may be added and the treatment may be performed simultaneously with the pulverization.
[0015]
The resin to be compounded with the aluminum hydroxide of the present invention is not particularly limited as long as it is a resin used for BMC molding. For artificial marble, for example, unsaturated polyester resin, vinyl ester resin, methyl methacrylate resin, etc. No.
The addition amount (filling amount) of the aluminum hydroxide of the present invention to the resin may be in a known range. For example, when used for artificial marble, about 50 parts by weight to about 400 parts by weight with respect to 100 parts by weight of the resin. Parts, preferably from about 150 parts to about 300 parts by weight. When the amount of aluminum hydroxide added to the resin is small, it is difficult to obtain the texture of artificial marble, and the cost is increased due to the relatively large amount of resin, which is not preferable. On the other hand, if the amount of the aluminum hydroxide is too large, the dispersibility of the aluminum hydroxide powder in the resin is deteriorated, and the mechanical strength of the obtained molded body is reduced.
[0016]
【The invention's effect】
As described above in detail, the aluminum hydroxide powder of the present invention can be used in a case where a considerably large amount of the aluminum hydroxide powder is filled into a resin such as an unsaturated polyester resin, vinyl ester or methacrylate to obtain a molded article such as artificial marble. It can be uniformly dispersed in the resin at the time of mixing, gives sufficient compound hardness at the time of pressing, and the obtained resin molded product also has excellent mechanical strength and appearance. It is extremely effective as an aluminum oxide powder, and its industrial value is extremely large.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by such Examples.
In this example, the particle size distribution was measured by the following method.
Particle size distribution: 0.5 g of aluminum hydroxide powder was added to 60 ml of 0.2% sodium hexametaphosphate aqueous solution, and the mixture was ultrasonically dispersed for 10 minutes. The resulting sample solution was subjected to laser diffraction microtrack particle size analyzer model 7997-10-SRA. , The cumulative 50% particle size, the cumulative 90% particle size, and the cumulative 10% particle size were measured and calculated, respectively.
[0018]
Example 1
300 g of a sharp particle size distribution aluminum hydroxide having a BET specific surface area of 0.13 m 2 / g, an average particle diameter of 62.1 μm, a D 90% / D 10% ratio of 3.2 at a whiteness of 98, and an inner volume of 2 liters. The mixture was charged into an alumina pot (filled with 2.9 kg of alumina balls having a diameter of 8 mm) and subjected to vibration mill pulverization at an amplitude of 3 mm for 30 minutes. The resulting aluminum hydroxide had an average particle size of 9.8 μm, a BET specific surface area of 1.58 m 2 / g, an X-ray shape factor of 4.0, and a whiteness of 97.
200 parts by weight of the above aluminum hydroxide was charged into 100 parts by weight of a vinyl ester resin (trade name: XP-675, manufactured by Takeda Pharmaceutical Co., Ltd.) having a viscosity of 8.5 poise at 25 ° C. and mixed well. The viscosity at 5 rpm of this composition measured at 25 ° C with a DVU-B viscometer (using a No. 7 rotor) was 1200 poise, and its thixotropy index was 1.5.
The appearance of the molded article obtained by curing this composition was transparent, less colored and good.
[0019]
Example 2
Vibration mill pulverization was performed under the same conditions as in Example 1 except that the pulverization raw material used in Example 1 was used and the pulverization time was changed to 60 minutes.
The resulting aluminum hydroxide had an average particle size of 7.1 μm, a BET specific surface area of 2.63 m 2 / g, an X-ray shape factor of 6.8, and a whiteness of 96.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 1640 poise, and the thixotropy index was 2.0.
The appearance of the molded article obtained by curing this composition was transparent, less colored and good.
[0020]
Test example 1
Except for using sharp aluminum hydroxide having a particle size distribution with a whiteness of 96, a BET specific surface area of 0.14 m 2 / g, an average particle diameter of 88.0 μm, and a D 90% / D 10% ratio of 2.7 as the pulverized raw material. Was subjected to vibration mill pulverization under the same conditions as in Example 1. The resulting aluminum hydroxide had an average particle size of 12.0 μm, a BET specific surface area of 1.70 m 2 / g, an X-ray shape factor of 2.3, and a whiteness of 96.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 850 poise, and the thixotropy index was 1.3.
The appearance of the molded article obtained by curing this composition was transparent, less colored and good.
[0021]
Example 3
Vibration mill pulverization was performed under the same conditions as in Test Example 1 except that the pulverization raw material used in Test Example 1 was used and the pulverization time was changed to 60 minutes.
The resulting aluminum hydroxide had an average particle size of 9.0 μm, a BET specific surface area of 2.44 m 2 / g, an X-ray shape factor of 8.0, and a whiteness of 95.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 1850 poise, and the thixotropy index was 2.3.
The appearance of a molded article obtained by curing this resin composition was transparent, less colored, and good.
[0022]
Comparative Example 1
Example 1 was repeated except that aluminum hydroxide having a BET specific surface area of 0.15 m 2 / g, an average particle diameter of 74.4 μm, and a D 90% / D 10% ratio of 4.0 was used as the pulverized raw material at a whiteness of 96. Vibration mill grinding was performed under the same conditions. The resulting aluminum hydroxide had an average particle size of 35.2 μm, a BET specific surface area of 1.23 m 2 / g, an X-ray shape factor of 3.5, and a whiteness of 96.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 460 poise, and the thixotropy index was 1.3.
[0023]
Comparative Example 2
Vibration mill pulverization was performed under the same conditions as in Comparative Example 1 except that the pulverizing raw material used in Comparative Example 1 was used and the pulverizing time was changed to 60 minutes.
The resulting aluminum hydroxide had an average particle size of 13.9 μm, a BET specific surface area of 2.42 m 2 / g, an X-ray shape factor of 15.3, and a whiteness of 95.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 2500 poise, and the thixotropy index was 3.5.
[0024]
Comparative Example 3
Vibration mill pulverization was performed under the same conditions as in Example 1 except that the pulverization raw material used in Example 1 was used and the pulverization time was changed to 10 minutes.
The resulting aluminum hydroxide had an average particle size of 32.7 μm, a BET specific surface area of 1.00 m 2 / g, an X-ray shape factor of 1.7, and a whiteness of 98.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 450 poise, and the thixotropy index was 1.2.
[0025]
Comparative Example 4
Vibration mill pulverization was performed under the same conditions as in Example 1 except that the pulverization raw material used in Example 1 was used and the pulverization time was changed to 120 minutes.
The resulting aluminum hydroxide had an average particle size of 5.3 μm, a BET specific surface area of 4.85 m 2 / g, an X-ray shape factor of 9.4, and a whiteness of 94.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 3100 poise, and the thixotropy index was 2.9.
[0026]
Comparative Example 5
Example 1 was repeated except that an aluminum hydroxide having a BET specific surface area of 0.21 m 2 / g, an average particle diameter of 67.1 μm, and a D 90% / D 10% ratio of 3.3 was used as the pulverized raw material at a brightness of 83. Vibration mill grinding was performed under the same conditions. The resulting aluminum hydroxide had an average particle size of 11.0 μm, a BET specific surface area of 1.32 m 2 / g, an X-ray shape factor of 3.5, and a whiteness of 89.
Using this, a resin composition was prepared in the same manner as in Example 1, and the viscosity was measured.
As a result, the viscosity at 5 rpm was 1030 poise, and the thixotropy index was 1.4.
The appearance of the molded product obtained by curing the resin composition was yellow although it was transparent, and was not preferable as the color tone of the artificial marble.

Claims (2)

平均粒子径5μm〜20μm、BET比表面積0.5m /g〜4.5m /g、X線による形状係数〜10〔ギブサイト(002)面/(110)面のピーク強度比〕および白色度93以上であることを特徴とするBMC成形に用いる樹脂充填用水酸化アルミニウム。The average particle diameter of 5 m to 20 [mu] m, BET specific surface area 0.5m 2 /g~4.5m 2 / g, a shape factor 4 -10 by X-ray [gibbsite (002) plane / (110) plane peak intensity ratio of] and Aluminum hydroxide for resin filling used in BMC molding, having a whiteness of 93 or more. 請求項1記載の樹脂充填用水酸化アルミニウムを不飽和ポリエステル樹脂、ビニルエステル樹脂またはメタアクリレート樹脂100重量部に対し50〜400重量部充填してなる樹脂組成物。A resin composition obtained by filling 50 to 400 parts by weight of the aluminum hydroxide for resin filling according to claim 1 with respect to 100 parts by weight of an unsaturated polyester resin, a vinyl ester resin or a methacrylate resin.
JP33455495A 1995-12-22 1995-12-22 Aluminum hydroxide for resin filling and resin composition using the same Expired - Fee Related JP3575150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33455495A JP3575150B2 (en) 1995-12-22 1995-12-22 Aluminum hydroxide for resin filling and resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33455495A JP3575150B2 (en) 1995-12-22 1995-12-22 Aluminum hydroxide for resin filling and resin composition using the same

Publications (2)

Publication Number Publication Date
JPH09176367A JPH09176367A (en) 1997-07-08
JP3575150B2 true JP3575150B2 (en) 2004-10-13

Family

ID=18278710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33455495A Expired - Fee Related JP3575150B2 (en) 1995-12-22 1995-12-22 Aluminum hydroxide for resin filling and resin composition using the same

Country Status (1)

Country Link
JP (1) JP3575150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549190B2 (en) 2018-07-31 2023-01-10 Uacj Corporation Aluminum member and method of manufacturing aluminum member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887454B1 (en) 1999-06-29 2005-05-03 Albemarle Corporation Process for the production of aluminium hydroxide
KR100894589B1 (en) * 2001-06-21 2009-04-24 쇼와 덴코 가부시키가이샤 Aluminum hydroxide and production process thereof
KR100894590B1 (en) * 2001-06-21 2009-04-24 쇼와 덴코 가부시키가이샤 Aluminum hydroxide and production process thereof
CN101360777B (en) * 2005-11-30 2012-12-19 亚什兰许可和知识产权有限公司 Prepregs and cured in place solid surfaces prepared therefrom
CN109810442B (en) * 2019-01-24 2021-06-08 广州秀珀化工涂料有限公司 MMA-vinyl blind guiding brick material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549190B2 (en) 2018-07-31 2023-01-10 Uacj Corporation Aluminum member and method of manufacturing aluminum member

Also Published As

Publication number Publication date
JPH09176367A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP4748938B2 (en) Dental paste, dental article, and method
US4389497A (en) Use of agglomerates of silicic acid as fillers in dental materials
JP3553315B2 (en) Silanized silicic acid, process for its preparation and low viscosity polymer system containing it with low yield value
WO2002015847A1 (en) Dental curable composition
JPS60120703A (en) Inorganic-organic filler, manufacture and use
CN103998008A (en) Composite filler particles and process for the preparation thereof
KR102124431B1 (en) Process for manufacturing a filled polymeric materials with modified filler particles
CA1315908C (en) Unsaturated polyester resin composition having less coloration and excellent transparency
JP3575150B2 (en) Aluminum hydroxide for resin filling and resin composition using the same
US20220281744A1 (en) Modified boron nitride powder
JP4387012B2 (en) Dental surface modified filler
JPH08231760A (en) Surface-modified ground calcium carbonate and vinyl chloride resin composition compounded with the calcium carbonate
JPH046648B2 (en)
US20030207980A1 (en) Fine particle of aluminum hydroxide for filling resin and resin composition using the same
JPH0157082B2 (en)
JPS59101409A (en) Composite filler
JP5010072B2 (en) Aluminum hydroxide powder for resin filling and resin composition using the same
JPH0310603B2 (en)
JP2005263648A (en) Filler, composite resin by using the same and dental prosthesis by using composite resin
WO1990001470A1 (en) Simulated colored granite and process
JP2763558B2 (en) Stone-grain artificial stone
JP3423846B2 (en) Artificial marble pattern material
JPH0527580B2 (en)
JPH08253356A (en) Artificial marble and its production
JPH0791086B2 (en) Glass powder for thermosetting resin moldings

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees