JPH0466363B2 - - Google Patents

Info

Publication number
JPH0466363B2
JPH0466363B2 JP61049551A JP4955186A JPH0466363B2 JP H0466363 B2 JPH0466363 B2 JP H0466363B2 JP 61049551 A JP61049551 A JP 61049551A JP 4955186 A JP4955186 A JP 4955186A JP H0466363 B2 JPH0466363 B2 JP H0466363B2
Authority
JP
Japan
Prior art keywords
weight
nylon
magnetic powder
magnetic
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61049551A
Other languages
Japanese (ja)
Other versions
JPS62208608A (en
Inventor
Tadao Katahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61049551A priority Critical patent/JPS62208608A/en
Publication of JPS62208608A publication Critical patent/JPS62208608A/en
Publication of JPH0466363B2 publication Critical patent/JPH0466363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は熱可塑性樹脂と磁性粉末とからなる複
合磁性材料に関するものである。 〔従来技術〕 熱可塑性樹脂と磁性粉末を混合、混練、射出成
形することによつて製造されるいわゆるプラスチ
ツク磁石は、複雑な形状が後加工なしで得られる
こと、量産性に優れること、寸法精度の高いこ
と、焼結磁石の欠点である脆さがないことなどの
特長のため、近年種々の用途に用いられてきてい
る。ここで使用される樹脂としては、磁性粉末を
混合、混練した時の粘度上昇を考慮して溶融粘度
の低いものが使用される。 〔発明が解決しようとする問題点〕 しかし乍らこの種の複合磁性材料においては、
溶融粘度の低いものを用いても、成形性や磁性粉
末の配向性を充分ならしめるためには、磁性粉末
の充填率を約85重量%に制約せざるを得なかつ
た。そしてこのように充填率が充分でないため
に、複合磁性材料の磁気特性は満足できるもので
はなかつた。 従つて本発明は、成形性が磁性粉末の配向性が
充分で而も充填率を従来より高くできる複合磁性
材料を得ようとするものである。 〔問題点を解決するための手段〕 本発明によれば、ナイロン3〜20重量%、磁石
粉末79.8〜95重量%、滑剤0.1〜5重量%、及び
一般式 但しR1〜R2はアルキル基 で示される有機金属化合物の表面処理剤0.5〜3
重量%から成ることを特徴とする複合磁性材料が
得られる。 上記の一般式であらわされる有機金属化合物の
表面処理剤は、磁性粉末の表面と溶融状態のナイ
ロンの間の摩擦抵抗を減少させ、複合体全体とし
ての溶融粘度も低下させる。従つて加工性を損う
ことなく従来より多くの磁性粉末を混合すること
を可能とし、且つその磁性粉末の磁場中での配向
性を著しく改善する。更に高級脂肪酸やワツクス
を加えることにより、上記表面処理剤との相乗効
果と相まつて成形性、配向度が一層改善されると
共に、成形加工時の離型性も改善され、ひいては
金型の摩耗を減少させる。 〔実施例〕 以下本発明の実施例を比較例と対比して説明す
る。 表1は3つの本発明の実施例と3つの比較例の
組成(重量%)をまとめて示した表である。
[Industrial Application Field] The present invention relates to a composite magnetic material comprising a thermoplastic resin and magnetic powder. [Prior art] So-called plastic magnets, which are manufactured by mixing, kneading, and injection molding thermoplastic resin and magnetic powder, are capable of obtaining complex shapes without post-processing, are excellent in mass production, and have excellent dimensional accuracy. In recent years, magnets have been used for a variety of purposes due to their characteristics, such as high hardness and lack of brittleness, which is a disadvantage of sintered magnets. As the resin used here, one having a low melt viscosity is used in consideration of the increase in viscosity when the magnetic powder is mixed and kneaded. [Problems to be solved by the invention] However, in this type of composite magnetic material,
Even if a material with a low melt viscosity is used, the filling rate of the magnetic powder must be limited to approximately 85% by weight in order to ensure sufficient moldability and orientation of the magnetic powder. Since the filling rate is not sufficient as described above, the magnetic properties of the composite magnetic material are not satisfactory. Accordingly, the present invention aims to provide a composite magnetic material which has sufficient moldability and orientation of magnetic powder, and which can have a higher filling rate than conventional materials. [Means for solving the problem] According to the present invention, 3 to 20% by weight of nylon, 79.8 to 95% by weight of magnetic powder, 0.1 to 5% by weight of lubricant, and the general formula However, R 1 to R 2 are surface treatment agents of organometallic compounds represented by alkyl groups 0.5 to 3
A composite magnetic material is obtained, characterized in that it consists of % by weight. The organometallic compound surface treatment agent represented by the above general formula reduces the frictional resistance between the surface of the magnetic powder and the molten nylon, and also reduces the melt viscosity of the composite as a whole. Therefore, it is possible to mix more magnetic powder than before without impairing processability, and the orientation of the magnetic powder in a magnetic field is significantly improved. Furthermore, by adding higher fatty acids and waxes, together with the synergistic effect with the above-mentioned surface treatment agents, the moldability and degree of orientation are further improved, and the mold releasability during molding is also improved, which in turn reduces mold wear. reduce [Example] Examples of the present invention will be described below in comparison with comparative examples. Table 1 is a table summarizing the compositions (% by weight) of three Examples of the present invention and three Comparative Examples.

【表】 表1の組成を以下の条件を混合、混練し、ペレ
ツト化した。 (1) 表面処理剤をミキサで20%n−ヘキサン溶液
として磁性粉末と混合し、120℃×1Hr乾燥を
行つた。但し希土類は真空引をしながら乾燥し
た。 (2) 上記の表面処理をした磁性粉末を、ナイロ
ン、滑剤と表1に示す比率でスーパーミキサで
10分間混合した。 (3) 混合された試料を二軸混練押出し機により混
練してリボン状になし、更に粉砕してペレツト
状とした。なお混練の温度は12−ナイロンでは
220℃、6−ナイロンでは240℃である。 (4) 上記のようにして形成したペレツト試料で流
動性を測定した。この測定は、断面の底辺が5
mm、頂辺が3mm、高さが2.5mmの対称な台形の
空隙路を、アルキメデス渦巻状に構成したスパ
イラルフロー試験用金型を用い、温度280℃、
圧力70Kg/cm2、射出時間4secでテストしたとき
のスパイラルに沿うフローの長さを以て流動性
試験値としたもので、表2に得られた結果を示
してある。なおあとに詳しく説明するが、上の
ような条件下では、スパイラルのフローの長さ
は60mm以下であると生産性が阻害される。 (5) 次に上記のペレツトを用いて50トンの磁場射
出成形機で成形した。成形条件は、温度が12−
ナイロンで270℃、6−ナイロンで290℃、圧力
が70Kg/cm2、成形磁場が12000Oe、成形品の寸
法がφ30×φ10×6である。 (6) 上記と同様にして成形したφ13×10の成形品
の減磁特性を測定した結果を磁気特性とし、同
様に1/4″×1/2″×5″の成形品をASTM規
格D790−70に準拠して測定した結果を曲げ強
度とし、更に外観の観察による評価を成形性と
して、これら3つの特性を表2に示した。
[Table] The composition shown in Table 1 was mixed and kneaded under the following conditions and pelletized. (1) A surface treatment agent was mixed with magnetic powder as a 20% n-hexane solution using a mixer, and dried at 120°C for 1 hour. However, rare earths were dried under vacuum. (2) Mix the above surface-treated magnetic powder with nylon and lubricant in the ratio shown in Table 1 in a super mixer.
Mixed for 10 minutes. (3) The mixed sample was kneaded using a twin-screw kneading extruder into a ribbon shape, and further pulverized into a pellet shape. The kneading temperature is 12-nylon.
220°C, 240°C for 6-nylon. (4) Fluidity was measured using the pellet sample formed as described above. In this measurement, the base of the cross section is 5
A spiral flow test mold was used, in which a symmetrical trapezoidal cavity channel with a top side of 3 mm and a height of 2.5 mm was configured in an Archimedean spiral shape, at a temperature of 280°C.
The length of the flow along the spiral when tested at a pressure of 70 kg/cm 2 and an injection time of 4 seconds was used as the fluidity test value, and Table 2 shows the results obtained. As will be explained in detail later, under the above conditions, productivity will be hindered if the length of the spiral flow is less than 60 mm. (5) Next, the above pellets were molded using a 50-ton magnetic field injection molding machine. The molding conditions are a temperature of 12−
The temperature was 270° C. for nylon, 290° C. for 6-nylon, the pressure was 70 Kg/cm 2 , the molding magnetic field was 12000 Oe, and the dimensions of the molded product were φ30×φ10×6. (6) The magnetic properties are the results of measuring the demagnetization characteristics of a φ13 x 10 molded product molded in the same manner as above, and the magnetic properties are also measured using the 1/4″ x 1/2″ x 5″ molded product according to ASTM standard D799. Table 2 shows these three properties, with bending strength being the result measured in accordance with -70, and formability being evaluated by observing the appearance.

【表】 表2から分るように、実施例1、2を比較例
1、2と対比し、実施例3を比較例3と対比すれ
ばすぐ分るように、成形性(表面光沢など)、流
動性(スパイラルフローの長さ)、曲げ強度、磁
気特性いずれの点からも本発明の実施例の特性が
比較例と比較して優れていることが明らかであ
る。 以上は3つの実施例を3つの比較例と対比して
説明したものであるが、次に他の多くの実施例の
結果をまとめて、本発明の効果的な条件すなわち
材料名や重量比範囲などについて説明する。 本発明で用いられるナイロン樹脂としては、前
記の6−ナイロン、12−ナイロンのほかに、6.6
−ナイロン、6.10−ナイロン、11−ナイロン等が
挙げられるが、比較的耐熱性を要求される場合は
6−ナイロン、6.6−ナイロンが好ましく、寸法
精度、耐衝撃性等が要求される場合は、12−ナイ
ロンなどが好ましい。形状パウダー、ペレツトの
いずれでも使用可能であるが、混合混練の作業性
を考慮するとバウダーが望ましい。 磁性粉末はいるれも使用可能であり、先に挙げ
たものを含めて、永久磁石粉末としてはSrフエ
ライト、Baフエライト、希土類コバルト、アル
ニコ等の粉末が使用され、高透磁率粉末としては
ソフトフエライト、カルボニル鉄、センダスト、
パーマロイ等の粉末が挙げられるが、これに限定
されるものではない。なおこれらに共通して、粉
末の重量が95重量%を超えると成形が不可とな
り、又80重量%より少ないと磁気特性が不充分と
なる。 有機金属化合物としては先に示した一般式で示
される化合物が挙げられるが、好ましくはR1
R2がイソプロピル基、R3がメチル基、R4がC2
上のアルキル基即ちアセトアルコキシアルミニウ
ムジイソプロピレートである。この化合物の添加
量の適正値は磁性粉末の比表面積、表面活性によ
つて変わるが、通常は0.1〜3重量%であり、3
重量%を越えても流動性、配向度効果は増加せ
ず、コスト的に不利となるので、最も好ましくは
1重量%前後である。なお表面処理剤が有効なの
は、磁性粉末表面を被覆し、その外周のナイロン
相との結合を高めるからであると考えられる。 ここで表面処理剤に関連して流動性について説
明すると、複合磁石では成形時の流動性が生産コ
ストに直接結びつき、流動性が良ければ成形サイ
クルが短縮できる。それで一般的には流動性は、
先に説明したような測定条件では、スパイラルフ
ローが60mm以上は必要である。 第1図は表面処理剤の添加量とスパイラルフロ
ーの長さの関係を示した図である。この面からだ
け見れば表面処理剤を2重量%以上用いることは
意味がない。 滑剤としてはポリエチレンワツクス、高級脂肪
酸、及びその塩、DOPのような可塑剤がいずれ
も使用できるが、好ましくはステアリン酸塩、特
に好ましくは先の実施例に用いたステアリン酸亜
鉛である。これらは0.1〜5重量%の範囲で添加
されるが、0.1重量%以下では効果が認められず、
5重量%を越える場合は機械的強度が低下するの
で好ましくない。 以上述べたように、本発明によれば非常に効果
的な表面処理剤とその効果を相乗的に向上させる
滑剤を見出し、その組合せの効果を発見したこと
により配向性を改善した高磁気特性品を得ること
ができ、加えて流動性を著しく向上せしめ、成形
性を大幅に改善することが出来た。今後複合磁石
がOA機器を中心とますます需要が増加し、小型
化、薄型化、軽量化が要されつつある傾向から、
本発明の工業的価値は極めて大である。
[Table] As can be seen from Table 2, when comparing Examples 1 and 2 with Comparative Examples 1 and 2, and comparing Example 3 with Comparative Example 3, moldability (surface gloss, etc.) It is clear that the properties of the examples of the present invention are superior to the comparative examples in terms of fluidity (length of spiral flow), bending strength, and magnetic properties. The above is an explanation of three examples in comparison with three comparative examples, but next we will summarize the results of many other examples to determine the effective conditions of the present invention, such as material name and weight ratio range. etc. will be explained. In addition to the above-mentioned 6-nylon and 12-nylon, examples of the nylon resin used in the present invention include 6.6-nylon and 12-nylon.
-nylon, 6.10-nylon, 11-nylon, etc., but when relatively heat resistance is required, 6-nylon and 6.6-nylon are preferable, and when dimensional accuracy, impact resistance, etc. are required, 12-Nylon and the like are preferred. Either shaped powder or pellets can be used, but in consideration of the workability of mixing and kneading, a powder is preferable. Any magnetic powder can be used, including those listed above. Sr ferrite, Ba ferrite, rare earth cobalt, alnico, etc. powders are used as permanent magnet powders, and soft ferrites are used as high magnetic permeability powders. , carbonyl iron, sendust,
Examples include powders such as permalloy, but are not limited thereto. In common with these, if the weight of the powder exceeds 95% by weight, molding becomes impossible, and if it is less than 80% by weight, the magnetic properties become insufficient. Examples of the organometallic compound include compounds represented by the general formula shown above, but preferably R 1 ,
R 2 is an isopropyl group, R 3 is a methyl group, and R 4 is an alkyl group of C 2 or more, ie, acetalkoxyaluminum diisopropylate. The appropriate amount of this compound added varies depending on the specific surface area and surface activity of the magnetic powder, but is usually 0.1 to 3% by weight.
Even if the amount exceeds 1% by weight, the fluidity and orientation effect will not increase and it will be disadvantageous in terms of cost, so it is most preferably about 1% by weight. It is believed that the surface treatment agent is effective because it coats the surface of the magnetic powder and enhances its bond with the nylon phase on its outer periphery. Here, fluidity will be explained in relation to surface treatment agents. For composite magnets, fluidity during molding is directly linked to production costs, and if fluidity is good, the molding cycle can be shortened. So, in general, liquidity is
Under the measurement conditions described above, a spiral flow of 60 mm or more is required. FIG. 1 is a diagram showing the relationship between the amount of surface treatment agent added and the length of the spiral flow. From this point of view alone, it is meaningless to use more than 2% by weight of the surface treatment agent. As the lubricant, any of polyethylene wax, higher fatty acids and their salts, and plasticizers such as DOP can be used, but stearate is preferred, and zinc stearate used in the previous example is particularly preferred. These are added in a range of 0.1 to 5% by weight, but no effect is observed below 0.1% by weight.
If it exceeds 5% by weight, mechanical strength decreases, which is not preferable. As described above, according to the present invention, a highly effective surface treatment agent and a lubricant that synergistically improve the effect have been discovered, and by discovering the effect of the combination, a product with high magnetic properties with improved orientation. In addition, the fluidity was significantly improved, and the moldability was significantly improved. Demand for composite magnets will continue to increase in the future, mainly for office automation equipment, and as the demand for smaller, thinner, and lighter magnets is increasing,
The industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面処理剤の添加量とスパイラルのフ
ロー長さの関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of surface treatment agent added and the spiral flow length.

Claims (1)

【特許請求の範囲】 1 ナイロン3〜20重量%、磁石粉末79.8〜95重
量%、滑剤0.1〜5重量%、及び一般式 但し、R1〜R4はアルキル基 で示される有機金属化合物の表面処理剤0.5〜3
重量%から成ることを特徴とする複合磁性材料。
[Claims] 1. 3 to 20% by weight of nylon, 79.8 to 95% by weight of magnet powder, 0.1 to 5% by weight of lubricant, and general formula However, R 1 to R 4 are organic metal compound surface treatment agents represented by an alkyl group of 0.5 to 3
A composite magnetic material characterized in that it consists of % by weight.
JP61049551A 1986-03-08 1986-03-08 Composite magnetic material Granted JPS62208608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049551A JPS62208608A (en) 1986-03-08 1986-03-08 Composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049551A JPS62208608A (en) 1986-03-08 1986-03-08 Composite magnetic material

Publications (2)

Publication Number Publication Date
JPS62208608A JPS62208608A (en) 1987-09-12
JPH0466363B2 true JPH0466363B2 (en) 1992-10-23

Family

ID=12834327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049551A Granted JPS62208608A (en) 1986-03-08 1986-03-08 Composite magnetic material

Country Status (1)

Country Link
JP (1) JPS62208608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW338167B (en) * 1995-10-18 1998-08-11 Seiko Epson Corp Rare-earth adhesive magnet and rare-earth adhesive magnet components
TW323374B (en) * 1995-11-06 1997-12-21 Seiko Epson Corp
US6140278A (en) * 1998-11-04 2000-10-31 National Research Council Of Canada Lubricated ferrous powder compositions for cold and warm pressing applications

Also Published As

Publication number Publication date
JPS62208608A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
JPH0466363B2 (en)
JPH0265103A (en) Resin binder for rare earth-iron and resin magnet using same
JPH0467761B2 (en)
JP2767244B2 (en) Method for producing composite magnet composition
JPH0525365B2 (en)
JP2752775B2 (en) Plastic magnet composition
JPH08167512A (en) Resin bound magnet and magnetic raw material
JPH04257203A (en) Plastic magnet composite
JPS595218B2 (en) How to make plastic magnets
US6680000B2 (en) Polyamide plastic magnetic material and magnet made of same
JPS63248101A (en) Composition for plastic magnet
JPH01270204A (en) Composition for plastic magnet
JPS62211902A (en) Anisotropic composite magnet
JPS60216524A (en) Manufacture of permanent magnet
JP2756860B2 (en) Materials for polyamide plastic magnets
JPS60156751A (en) Magnetic material composition having improved molding property
JPH03270201A (en) Composite magnetic material and plastic magnet
JPH08167511A (en) Resin bound magnet and its component material
JPH03207761A (en) Composition for synthetic resin magnet
JPH08293407A (en) Composition for resin coupling type magnet and resin coupling type magnet
JPS63192204A (en) Plastic magnet material
JPH02185002A (en) Bonded magnet
JPH09115712A (en) Composition for resin-bonded magnet, and resin-bonded magnet
JPH09180932A (en) Composition for plastic magnet
JPS6020418B2 (en) Method for producing ferrite composition