JPH04662A - Learning machine - Google Patents

Learning machine

Info

Publication number
JPH04662A
JPH04662A JP2101937A JP10193790A JPH04662A JP H04662 A JPH04662 A JP H04662A JP 2101937 A JP2101937 A JP 2101937A JP 10193790 A JP10193790 A JP 10193790A JP H04662 A JPH04662 A JP H04662A
Authority
JP
Japan
Prior art keywords
learning
output signal
unit
error
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2101937A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koda
敏行 香田
〆木 泰治
Taiji Shimeki
Shigeo Sakagami
茂生 阪上
Koji Yamamoto
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101937A priority Critical patent/JPH04662A/en
Publication of JPH04662A publication Critical patent/JPH04662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PURPOSE:To improve the efficiency and the accuracy of learning by constituting the learning machine so that a weight change in a multi-input-output signal processing part in which magnitude of an error is below a threshold is not executed, and also, the threshold becomes smaller as learning advances. CONSTITUTION:In an error signal calculating part 11, an error in the uppermost layer is calculated from a difference of an actual output signal outputted from an output signal calculating part 1 and a teacher signal, and based on the calculated error, a weight change amount calculating part 12 calculates a change amount of a weight coefficient stored in a memory of the output signal calculating part 1. Subsequently, when it is decided that the error is smaller than a set threshold T, a weight change amount control part 13 sets the weight coefficient change amount to '0'. In this case, a threshold control part 16 switches the threshold T to a smaller value as learning advances, based on a result of decision by a learning progress deciding part 15. In such a way, the learning efficiency and the accuracy are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデータ処理装置の学習機械に関するものであム 従来の技術 従来へ 学習機械としては、 例えばり、 E、ルメル
ハート (Rumelhart)、  G、  E、 
 ヒントン (Hinton)  及び RlJ、 ウ
ィリアムスゝ (Williams)  によ る″ラ
ーニンクa 117°リセ1ンテーシ逼ンスゝ へ′イ
 ハゝツクー7′ロへ1ケゝ−ティンクゝ エラース”
(LearningRepresentations 
 by  Back−Propagating  Er
rors)”ネイチt−(Nature)、  vol
、323.  pp、533−536.  Oct。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a learning machine for a data processing device.Background ArtThe learning machine includes, for example, E. Rumelhart, G.E.
Hinton and RlJ, Williams, ``Learning A 117° Reset 1 Instances To 'I Hightsku 7' To 1 Case Tink Erras.''
(Learning Representations
by Back-Propagating Er
rors)”Nature (Nature), vol.
, 323. pp, 533-536. Oct.

9、1986)に示されていも この従来の学習機械は
 第6図に示すように出力信号算出部と重み係数更新部
からなり、前記出力信号算出部は層構造をもち、 各層
内相互の結合がなく、上位層にのみ信号が伝搬するよう
にネットワーク接続された複数の多入力−出力信号処理
部600から構成されも 各多入力−出力信号処理部600はそれに接続されてい
る下層の多入力−出力信号処理部600の出力とその接
続の度合である重み係数とを掛は合わせたものの総和を
しきい値開数で変換した後、その値を上層への出力とし
て伝達する働きをしてい4 重み係数更新部は 前記出
力信号算出部の入力部601から入力される信号に応じ
て、教師信号発生部602が前記入力信号にたいする望
ましい出力信号を教師信号tkとして発生L 誤差信号
算出部603において前記出力信号算出部から出力され
る実際の出力信号□b(om?;t、、  出力信号算
出部における最上位層の第に番目の多入力−出力信号処
理部の出力を表す。)と前記教師信号との差から誤差 E=0.5 (th  ok) ” が計算され この値で現在の結合状態(重み係数の大き
さ)でのネットワークの性能を評価す4このようにして
計算された誤差Eをもとに重み変更量算出部604は前
記出力信号算出部の重み係数の変更量△W l 1を次
式に基づいて計算すム△w+」=  −taE/&wx ここで、 εは学習レートと呼ばれる正の定数であ4 
以上のように重みの更新を繰り返すことにより、誤差を
小さくしてゆき、誤差が十分小さくなると、出力信号が
望ましい値に十分近くなったものとして、学習を終了す
ム 発明が解決しようとする課題 しかしながら上記のような構成では、 誤差の値が十分
小さくなっている多入力−出力信号処理部についても誤
差Eの値が減少すれば重みを更新するので学習効率が悪
く、学習に要する時間が長くなるという課題を有してい
た 本発明はかかる点に鑑へ 学習に要する時間の短い学習
機械を提供することを目的とすも課題を解決するための
手段 第1の発明ζよ 層構造をもち、 各層内相互の結合が
なく、上位層にのみ信号が伝搬するようにネットワーク
接続された複数の多入力−出力信号処理部からなる出力
信号算出部と、該出力信号算出部で得られた出力信号を
もとに前期出力信号算出部の重み係数の値を更新する重
み係数更新部を具備し 前記多入力−出力信号処理部は
、 複数の重み係数を保持するメモリと、複数のデータ
を入力する入力部と、前記メモリに貯えられた重み係数
で前記入力部からの人力データを重み付けする乗算手段
と、前記乗算手段で重み付けされた複数のデータを多数
加え合わせる加算手段と、該加算手段の出力を一定範囲
の値に制限するしきい値処理部を備え 前記重み係数更
新部は、 上記出力信号算出部の出力信号の望ましい値
として教師信号を与える教師信号発生部と、前記出力信
号と該教師信号との誤差を求める誤差信号算出部と、前
記誤差信号算出部の出力に応じて前記メモリに蓄えられ
た重み係数の変更量を計算する重み変更量算出部と、前
記誤差信号算出部の出力がしきい値以下であるかどうか
を判定する誤差信号判定部と、学習の進み具合いを判定
する学習進度判定部と、前記学習進度判定部の判定結果
に応じて前記しきい値の値を次第に減少させるしきい値
制御部と、前記誤差信号判定部において誤差の値がしき
い値以下と判定された場合には前記重み係数変更量を0
にする重み変更量制御部とを備えた学習機械であム また第2の発明は、 前期誤差信号判定部の出力を計数
し全ての出力信号が前記しきい値以下の場合に飛び越し
信号を出力する飛び越し判定部と、学習の進み具合いを
判定する学習進度判定部と、前記学習進度判定部の判定
結果に応じて前記しきい値の値を次第に減少させるしき
い値制御部と、前記飛び越し信号に応じて前記重み変更
量算出部における重み変更操作をとばす重み変更量制御
部とを備えた学習機械であも 作用 第1の発明によれば 前記した構成により誤差の大きさ
がしきい値以下の多入力−出力信号処理部については重
み変更はしないので、学習効率が向上し 学習に要する
時間を短縮することができるだけでなく、学習が進むに
つれてしきい値を小さくして行くことにより、出力信号
算出部の出力をより精度よく教師信号に一致させること
ができるので、学習の精度が向上する。
9, 1986), this conventional learning machine consists of an output signal calculation section and a weighting coefficient updating section, as shown in Fig. 6, and the output signal calculation section has a layered structure, and mutual connections within each layer. It is composed of a plurality of multi-input-output signal processing units 600 that are network-connected so that the signal propagates only to the upper layer. - The output of the output signal processing unit 600 is multiplied by a weighting coefficient representing the degree of connection, and the sum is converted by a threshold numerical value, and then the value is transmitted as an output to the upper layer. 4. The weighting coefficient updating section causes the teacher signal generating section 602 to generate a desirable output signal for the input signal as the teacher signal tk in accordance with the signal input from the input section 601 of the output signal calculating section.In the error signal calculating section 603 The actual output signal □b(om?;t,, represents the output of the th multi-input-output signal processing unit of the highest layer in the output signal calculation unit) and the An error E = 0.5 (th ok) is calculated from the difference from the teacher signal, and this value is used to evaluate the performance of the network in the current connection state (size of weighting coefficient)4. Based on the error E, the weight change amount calculation unit 604 calculates the change amount ΔW l 1 of the weighting coefficient of the output signal calculation unit based on the following formula Δw+'=-taE/&wx Here, ε is It is a positive constant called the learning rate and is 4
By repeating the update of the weights as described above, the error is made smaller, and when the error becomes small enough, the output signal is considered to be sufficiently close to the desired value, and learning is terminated. Problem to be solved by the invention. However, in the above configuration, even in a multi-input-output signal processing unit where the error value is sufficiently small, the weights are updated when the error E value decreases, so the learning efficiency is poor and the time required for learning is long. In view of this, the present invention aims to provide a learning machine that requires less time for learning. , an output signal calculation section consisting of a plurality of multi-input-output signal processing sections connected to a network so that there is no mutual coupling within each layer and signals propagate only to upper layers, and an output obtained from the output signal calculation section. The multi-input/output signal processing unit includes a weighting coefficient updating unit that updates the value of the weighting coefficient of the first output signal calculation unit based on the signal, and the multi-input/output signal processing unit includes a memory that holds a plurality of weighting coefficients, and a memory that stores a plurality of data as input. an input unit that weights the manual data from the input unit with a weighting coefficient stored in the memory; an addition unit that adds together a plurality of pieces of data weighted by the multiplication unit; The weighting coefficient updating unit includes a threshold processing unit that limits the output to a value within a certain range; an error signal calculation unit that calculates an error with a teacher signal; a weight change amount calculation unit that calculates a change amount of the weighting coefficient stored in the memory according to an output of the error signal calculation unit; an error signal determination unit that determines whether the output is below a threshold; a learning progress determination unit that determines the progress of learning; and a value of the threshold according to the determination result of the learning progress determination unit. a threshold value control unit that gradually decreases the weighting coefficient; and a threshold value control unit that gradually decreases the weighting coefficient change amount when the error value is determined to be less than the threshold value by the error signal determination unit.
A second invention is a learning machine comprising: a weight change amount control unit which counts the outputs of the first error signal determination unit, and outputs a jump signal when all output signals are equal to or less than the threshold value. a learning progress determining unit that determines the progress of learning; a threshold control unit that gradually reduces the value of the threshold according to a determination result of the learning progress determining unit; and the skipping signal. According to the first aspect of the present invention, the learning machine has a weight change amount control unit that skips the weight change operation in the weight change amount calculation unit in accordance with the weight change amount calculation unit. Since the input-output signal processing section does not change the weights, it not only improves learning efficiency and shortens the time required for learning, but also reduces the threshold value as learning progresses, thereby improving output signal calculation. Since the output of the section can be made to match the teacher signal more precisely, the accuracy of learning is improved.

まf;’82の発明によれば 人力データに対して全て
の多入力−出力信号処理部の誤差がしきい値以下の場合
、重み変更操作をとばすので、学習効率が向上するだけ
でなく、演算量が大幅に削減できるので、学習に要する
時間が短縮できる。また 学習が進むにつれてしきい値
を小さくして行くことにより、出力信号算出部の出力を
より精度よく教師信号に一致させることができるので、
学習の精度が向上すム 実施例 第1図は第1の発明の実施例における学習機械の構成図
を示すものであも 第1図において、 1は出力信号算
出部 2は該出力信号算出部1で得られた出力信号をも
とに前期出力信号算出部1の重み係数の値を更新する重
み係数更新部であa出力信号算出部1 i;t、、  
第2図に示すように多段の回路網的構成をしており、 
3は多入力−出力信号処理区 4は出力信号算出部1の
入力部であムこのような出力信号算出部lを構成する多
入力−出力信号処理部3の構成を具体的に示したものが
第3図であも jg3図において、 5は多入力−出力
信号処理部3の入力部 6は入力部5からの複数入力を
重み付ける重み係数を格納するメモリ、7はメモリ6の
重み係数と入力部5からの入力を各々掛は合わせる乗算
器 8は乗算器7の各々の出力を足し合わせる加算器 
9は加算器8の出力を一定範囲の値に制限するしきい値
処理部である。
According to the invention of 1982, when the error of all the multi-input-output signal processing units is less than the threshold value for human data, the weight change operation is skipped, which not only improves the learning efficiency, but also improves the learning efficiency. Since the amount of calculation can be significantly reduced, the time required for learning can be shortened. In addition, by decreasing the threshold value as learning progresses, the output of the output signal calculation unit can be made to match the teacher signal more precisely.
FIG. 1 shows a configuration diagram of a learning machine in an embodiment of the first invention. In FIG. 1, 1 is an output signal calculation section, and 2 is an output signal calculation section. The weighting coefficient updating unit updates the value of the weighting coefficient of the output signal calculation unit 1 based on the output signal obtained in step 1.
As shown in Figure 2, it has a multi-stage circuit network configuration.
3 is a multi-input/output signal processing section; 4 is an input section of the output signal calculation section 1; the configuration of the multi-input/output signal processing section 3 constituting the output signal calculation section 1 is specifically shown. is also shown in Figure 3. In Figure 3, 5 is an input section of the multi-input-output signal processing section 3, 6 is a memory that stores weighting coefficients for weighting multiple inputs from the input section 5, and 7 is a weighting coefficient of the memory 6. 8 is a multiplier that multiplies the inputs from input section 5 and 8 is an adder that adds together the outputs of each multiplier 7.
9 is a threshold processing section that limits the output of the adder 8 to values within a certain range.

しきい値処理部9の人出力特性を第4図に示す。FIG. 4 shows the human output characteristics of the threshold processing section 9.

例えば 出力を(0,1)の範囲に制限するしきい値処
理部9の入出力特性は f    (I)    =1/(1+  exp(−
I  十 〇 ))        (1)と数式的に
表現できる。ここで、 ■はしきい値処理部9の入力で
あム な耘 しきい値処理部9の入出力特性としては上
記以外のしきい値開数でもよしも 重み係数更新部2の
構成図を第1図に示す。
For example, the input/output characteristics of the threshold processing unit 9 that limits the output to the range (0, 1) are f (I) = 1/(1+ exp(-
I 10 )) It can be expressed mathematically as (1). Here, ■ is the input to the threshold processing section 9. As for the input/output characteristics of the threshold processing section 9, a threshold numerical value other than the above may be used. Shown in Figure 1.

10は教師信号発生部 11は誤差信号算出部12は重
み変更量算出部 13は重み変更量制御部 14は誤差
信号判定部 15は学習進度判定部 16はしきい値制
御部であム 以上のように構成された実施例の学習機械について、以
下その動作を説明すも 出力信号算出部1の入力部4に入力信号が入力されると
、各多入力−出力信号処理部3は、 該多入力−出力信
号処理部3に接続されている下層の多入力−出力信号処
理部3の出力とメモリ6に記憶されているその接続の度
合である重み係数とを乗算器7により掛は合わせ、前記
乗算器7の各々の出力の総和を加算器8で計算した丸 
しきい値処理部9で変換しその値を上層の多入力−出力
信号処理部へ出力する。つまり、第3図に示す多入力−
出力信号処理部3(上 入力部5への入力値を0」(下
層のj番目の多入力−出力信号処理部の出力)、メモリ
6に格納されている重み係数をWll」(i番目の多入
力−出力信号処理部と下層のj番目の多入力−出力信号
処理部との結合重み)とすれ(瓜 01− f (ΣWIj OJ)         (
2)を計算しているわけであム 重み係数更新部21友 前記出力信号算出部1の入力部
4から入力される信号に応じて、教師信号発生部10が
前記入力信号にたいする望ましい出力信号を教師信号t
kとして発生L  誤差信号算出部11において前記出
力信号算出部1から出力される実際の出力信号Qkと前
記教師信号との差か収 最上位層におけるに番目の多入
力−出力信号処理部の誤差 E =0.5 (t k−o h)  ”      
   (3)が計算され この値で現在の結合状態(重
み係数の大きさ)でのネットワークの性能を評価する。
10 is a teacher signal generation section; 11 is an error signal calculation section; 12 is a weight change amount calculation section; 13 is a weight change amount control section; 14 is an error signal judgment section; 15 is a learning progress judgment section; 16 is a threshold control section; The operation of the learning machine of the embodiment configured as above will be described below. When an input signal is input to the input section 4 of the output signal calculation section 1, each multi-input-output signal processing section 3 performs the following operations. The output of the lower-layer multi-input-output signal processing section 3 connected to the input-output signal processing section 3 is multiplied by a weighting coefficient representing the degree of connection stored in the memory 6 by a multiplier 7, The sum of the outputs of each of the multipliers 7 is calculated by the adder 8.
The threshold value processing unit 9 converts the signal and outputs the value to the multi-input/output signal processing unit in the upper layer. In other words, the multiple inputs shown in Figure 3 -
Output signal processing unit 3 (upper) sets the input value to the input unit 5 to 0” (output of the j-th multi-input-output signal processing unit in the lower layer), and sets the weighting coefficient stored in the memory 6 to “Wll” (i-th The coupling weight between the multi-input-output signal processing unit and the j-th multi-input-output signal processing unit in the lower layer) and (U01-f (ΣWIj OJ) (
2). According to the signal inputted from the input section 4 of the output signal calculation section 1, the teacher signal generation section 10 calculates a desired output signal for the input signal. teacher signal t
L generated as k Difference or aberration between the actual output signal Qk outputted from the output signal calculation section 1 and the teacher signal in the error signal calculation section 11 Error of the second multi-input-output signal processing section in the top layer E = 0.5 (tk-oh)”
(3) is calculated, and this value is used to evaluate the performance of the network in the current connection state (size of weighting coefficient).

このようにして計算された誤差Eをもとに重み変更量算
出部12は前記出力信号算出部1のメモリ6に記憶され
ている重み係数の変更量△Wllを次式に基づいて計算
すも △wa」=  −εaE/aw1+       (4
)ここで、 εは学習レートと呼ばれる正の定数であも
 重み変更量制御部13は、 誤差信号判定部14にお
いて誤差1tb−○klがしきい値制御部16により設
定されたしきい値Tより小さいと判定された場合圏 前
記出力信号算出部1における最上位層の重み係数変更量
をOにすム この時しきい値制御部16は、 学習進度
判定部15の判定結果をもとに学習が進むにつれ 前記
しきい値Tを小さい値に切り換えて行く。また 前記学
習進度判定部15における学習進度の判定(上 前記出
力信号算出部1の最上位層における多入力−出力信号処
理部3の誤差総和による判定 学習回数による判定 前
記出力信号算出部1の最上位層において、しきい値以上
の誤差を出力する多入力−出力信号処理部の個数による
判定 前記誤差信号算出部の一回の学習における最大出
力の値による判定の何れの方法を用いてもよ(を 以上のようにして、重みの更新を繰り返すことにより、
誤差を小さくしてゆき、誤差が十分小さくなると、出力
信号が望ましい値に十分近くなったものとして、学習を
終了すム このように本実施例によれは 誤差の大きさがしきい値
T以下の多入力−出力信号処理部については重み変更は
しないので、学習効率が向上し学習に要する時間を短縮
することができも しかL 学習が進むにつれしきい値
Tの値を小さくして行くことにより、出力信号算出部1
の出力Okをより精度よく教師信号tmに一致させるこ
とができるので、学習の精度が向上すム 第5図は、 第2の発明の実施例における学習機械の構
成図を示すものであ、4 10は教師信号発生部 11
は誤差信号算出i  12は重み変更量算出部 14は
誤差信号判定部 15は学習進度判定部 16はしきい
値制御艮 23は重み変更量側@仏 24は飛び越し判
定部であ4以上のように構成された第2の発明における
実施例の学習機械について、以下その動作を説明する。
Based on the error E calculated in this way, the weight change amount calculation unit 12 calculates the change amount ΔWll of the weighting coefficient stored in the memory 6 of the output signal calculation unit 1 based on the following formula. △wa”= −εaE/aw1+ (4
) Here, ε is a positive constant called the learning rate.The weight change amount control unit 13 determines that the error 1tb−○kl is the threshold value T set by the threshold control unit 16 in the error signal determination unit 14. If it is determined that the weight coefficient is smaller than the range, the weighting coefficient change amount of the top layer in the output signal calculation unit 1 is set to O. At this time, the threshold value control unit 16, based on the determination result of the learning progress determination unit 15, As learning progresses, the threshold value T is switched to a smaller value. Determination of the learning progress in the learning progress determination unit 15 (above) Determination based on the sum of errors of the multi-input-output signal processing unit 3 in the highest layer of the output signal calculation unit 1 Determination based on the number of learning times In the upper layer, either of the following methods may be used: determination based on the number of multi-input-output signal processing units that output an error greater than a threshold value, or determination based on the value of the maximum output in one learning of the error signal calculation unit. (By repeating the update of the weights as above,
As the error is made smaller, when the error becomes small enough, the output signal is assumed to be sufficiently close to the desired value, and learning is terminated.In this way, according to this embodiment, if the error is smaller than the threshold value T, Since the weights are not changed in the input-output signal processing section, the learning efficiency can be improved and the time required for learning can be shortened. However, by decreasing the value of the threshold T as learning progresses, Output signal calculation section 1
Since the output Ok can be matched with the teacher signal tm more accurately, the learning accuracy is improved. Figure 5 shows a configuration diagram of the learning machine in the embodiment of the second invention. 10 is a teacher signal generation section 11
is the error signal calculation i 12 is the weight change amount calculation unit 14 is the error signal judgment unit 15 is the learning progress judgment unit 16 is the threshold control device 23 is the weight change amount side The operation of the learning machine according to the embodiment of the second invention configured as follows will be described below.

出力信号算出部1の入力部4に入力信号が入力されると
、各多入力−出力信号処理部31戴  該多入力−出力
信号処理部3に接続されている下層の多入力−出力信号
処理部3の出力とメモリ6に記憶されているその接続の
度合である重み係数とを乗算器7により掛は合わせ、前
記乗算器7の各々の出力の総和を加算器8で計算した後
、しきい値処理部9で変換しその値を上層の多入力−出
力信号処理部へ出力すム つまり、第3図に示す多入力
−出力信号処理部3は、 入力部5への入力値をo+(
下層のj番目の多入力−出力信号処理部の出力)、メモ
リ6に格納されている重み係数をWll(i番目の多入
力−出力信号処理部と下層のj番目の多入力−出力信号
処理部との結合重み)とすれ(戯 01 = f (Σv+zr  oJ)       
   (2)を計算しているわけであム 重み係数更新部2(上 前記出力信号算出部1の入力部
4から人力される信号に応じて、教師信号発生部lOが
前記入力信号にたいする望ましい出力信号を教師信号t
bとして発生し 誤差信号算出部11において前記出力
信号算出部1から出力される実際の出力信号Okと前記
教師信号との差か収 最上位層におけるに番目の多入力
−出力信号処理部の誤差 E=0.5 (tb  oh) ’      (3)
が計算され この値で現在の結合状態(重み係数の大き
さ)でのネットワークの性能を評価する。
When an input signal is input to the input section 4 of the output signal calculation section 1, each multi-input-output signal processing section 31 is connected to the multi-input-output signal processing section 3 in the lower layer. The output of the unit 3 is multiplied by a weighting coefficient representing the degree of connection stored in the memory 6 by a multiplier 7, and the sum of the outputs of each of the multipliers 7 is calculated by an adder 8. The threshold processing unit 9 converts the value and outputs it to the upper layer multi-input-output signal processing unit.In other words, the multi-input-output signal processing unit 3 shown in FIG. (
(output of the j-th multi-input-output signal processing unit in the lower layer), and the weighting coefficients stored in the memory 6 are connection weight with
(2) is calculated by the weighting coefficient updating unit 2 (above).In response to the signal manually inputted from the input unit 4 of the output signal calculation unit 1, the teacher signal generation unit IO determines the desired output for the input signal. The signal is the teacher signal t
The difference between the actual output signal Ok output from the output signal calculation unit 1 and the teacher signal in the error signal calculation unit 11 is the error of the second multi-input-output signal processing unit in the top layer. E=0.5 (tb oh)' (3)
is calculated, and this value is used to evaluate the performance of the network in the current connection state (size of weighting coefficient).

このようにして計算された誤差Eをもとに重み変更量算
出部12は前記出力信号算出部1のメモリ6に記憶され
ている重み係数の変更量△W11 を次式に基づいて計
算すも △w++ =  −t a E / a wz    
   (4)ここで、 εは学習レートと呼ばれる正の
定数である。誤差信号判定部14は、 誤差1tk−O
klがしきい値制御部16により設定されたしきい値T
より小さいかどうかを調べ判定結果として誤差がしきい
値より大きい時は0を、小さいときは1を飛び越し判定
部24に出力する。飛び越し判定部24は、 前記判定
結果を計数し 最上位層の全ての多入力−出力信号処理
部の誤差1th−□illがしきい値T以下の隊 飛び
越し信号を出力すも重み変更量制御部23は、 飛び越
し判定部24が飛び越し信号を発生した除 重み変更量
算出部12における重み変更操作を飛ばすように制御す
ムこの時しきい値制御部16ζ表 学習進度判定部15
の判定結果をもとに学習が進むにつれ 前記しきい値T
を小さい値に切り換えて行く。また 前記学習進度判定
部15における学習進度の判定は、前記出力信号算出部
1の最上位層における多入力−出力信号処理部3の誤差
総和による判定 学習回数による判定 前記出力信号算
出部1の最上位層において、しきい値以上の誤差を出力
する多入力−出力信号処理部の個数による判定 前記誤
差信号算出部の一回の学習における最大出力の値による
判定の何れの方法を用いてもよ(11゜以上のようにし
て、重みの更新を繰り返すことにより、誤差を小さくし
てゆき、誤差が十分小さくなると、出力信号が望ましい
値に十分近くなったものとして、学習を終了すも このように本実施例によれば 入力データに対して全て
の多久カー出力信号処理部の誤差がしきい値T以下の場
合、重み変更量算出部における重み変更操作を飛ばすの
で、学習効率が向上するだけでなく、演算量が大幅に削
減できるので、学習に要する時間が短縮できも しかL
 学習が進むにつれしきい値Tの値を小さ(して行くこ
とにより、出力信号算出部1の出力Okをより精度よく
教師信号ti+に一致させることができるので、学習の
精度が向上すム 発明の効果 第1の発明によれば 誤差信号判定a 重み変更量算出
部 学習進度判定訊 しきい値制御部を設けることによ
り、誤差の大きさがしきい値以下の多入力−出力信号処
理部における重み変更はしないので、学習効率が向上し
 学習に要する時間を短縮することができるだけでなく
、学習が進むにつれてしきい値を小さくして行くことに
より、出力信号算出部の出力をより精度よく教師信号に
一致させることができるので、学習の精度が向上すム また 第2の発明によれ1よ 飛び越し判定皿重み変更
量側@撤 学習進度判定組 しきい値制御部を設けるこ
とにより、入力データに対して全ての多入力−出力信号
処理部の誤差の大きさがしきい値以下の場合、重み変更
量算出部における重み変更操作を飛ばすので、学習効率
が向上するだけでなく、演算量が大幅に削減できるので
学習に要する時間が短縮できも また 学習が進むにつ
れてしきい値を小さくして行くことにより、出力信号算
出部の出力をより精度よく教師信号に一致させることが
できるのて 学習の精度が向上する。
Based on the error E calculated in this way, the weight change amount calculation unit 12 calculates the change amount ΔW11 of the weighting coefficient stored in the memory 6 of the output signal calculation unit 1 based on the following formula. △w++ = -t a E / a wz
(4) Here, ε is a positive constant called the learning rate. The error signal determination unit 14 calculates the error 1tk-O
kl is the threshold T set by the threshold controller 16
It is checked whether the error is smaller than the threshold value, and if the error is larger than the threshold value, 0 is output to the interlaced judgment section 24, and if it is smaller, 1 is output to the jump judgment section 24. The interlacing judgment unit 24 counts the judgment results and outputs an interlacing signal when the error 1th-□ill of all the multi-input-output signal processing units in the top layer is equal to or less than the threshold T. 23 is a threshold control unit 16 ζ table which controls the skip determination unit 24 to skip the weight change operation in the weight change amount calculation unit 12 after the skip signal has been generated.
As learning progresses based on the judgment result of the threshold T
Switch to a smaller value. Further, the learning progress determination unit 15 determines the learning progress based on the total error of the multi-input-output signal processing unit 3 in the highest layer of the output signal calculation unit 1, the determination based on the number of times of learning, and the highest level of the output signal calculation unit 1. In the upper layer, either of the following methods may be used: determination based on the number of multi-input-output signal processing units that output an error greater than a threshold value, or determination based on the value of the maximum output in one learning of the error signal calculation unit. (By repeating the update of the weight at 11 degrees or more, the error is made smaller. When the error becomes small enough, the output signal is assumed to be sufficiently close to the desired value, and learning is terminated. According to this embodiment, if the error of all the Takuker output signal processing units with respect to input data is less than the threshold value T, the weight change operation in the weight change amount calculation unit is skipped, so that the learning efficiency is only improved. However, since the amount of calculation can be significantly reduced, the time required for learning can be shortened.
By decreasing the value of the threshold value T as learning progresses, the output Ok of the output signal calculation unit 1 can be made to match the teacher signal ti+ more accurately, so that the accuracy of learning is improved. According to the first invention, by providing the error signal judgment a, the weight change amount calculation unit, the learning progress judgment unit, and the threshold control unit, it is possible to change the weight in the multi-input-output signal processing unit where the magnitude of the error is less than or equal to the threshold value. This not only improves learning efficiency and shortens the time required for learning, but also reduces the threshold value as learning progresses, allowing the output of the output signal calculation unit to be used as the teacher signal more accurately. Since the learning accuracy can be matched, the accuracy of learning can be improved.According to the second invention, 1. When the error size of all multi-input-output signal processing units is less than the threshold value, the weight change operation in the weight change amount calculation unit is skipped, which not only improves learning efficiency but also significantly reduces the amount of calculations. Therefore, the time required for learning can be shortened.Also, by decreasing the threshold value as learning progresses, the output of the output signal calculation section can be more precisely matched to the teacher signal, improving the accuracy of learning. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の実施例における学習機械の構成を
示すブロック医 第2図は同実施例における出力信号算
出部の構成図 第3図は同実施例における多入力−出力
信号処理部の構成は 第4図は同実施例におけるしきい
値処理部の入出力特性医 第5図は第2の発明の実施例
における学習機械の構成を示すブロックに 第6図は従
来の学習機械の構成を示すブロック図であム ト・・出力信号算出部 2・・・重み変更量算出部3・
・・多入力−出力信号処理N1.4・・・出力信号算出
部の入力a 5・・・多入力−出力信号処理部の入力餓
 6・・・メモリ、7・・・乗算器 8・・・加算像 
9・・・しきい値処理訊 10・・・教師信号発生訊 
11・・・誤差信号算出部 12・・・重み変更量算出
K  13・・・重み変更量算出部 14・・・誤差信
号算出部 24・・・飛び越し判定糺 代理人の氏名 弁理士 粟野重孝 ほか1名第 図
FIG. 1 is a block diagram showing the configuration of a learning machine in an embodiment of the first invention. FIG. 2 is a configuration diagram of an output signal calculation unit in the embodiment. FIG. 3 is a multi-input-output signal processing unit in the embodiment. Fig. 4 shows the input/output characteristics of the threshold processing section in the same embodiment. Fig. 5 shows a block diagram showing the structure of the learning machine in the embodiment of the second invention. Fig. 6 shows the structure of the conventional learning machine. This is a block diagram showing the configuration: output signal calculation section 2... weight change amount calculation section 3.
...Multi-input-output signal processing N1.4...Input a of the output signal calculation section 5...Input a of the multi-input-output signal processing section 6...Memory, 7...Multiplier 8...・Additional statue
9...Threshold processing 10...Teacher signal generation
11... Error signal calculation section 12... Weight change amount calculation K 13... Weight change amount calculation section 14... Error signal calculation section 24... Name of jump judgment agent Patent attorney Shigetaka Awano et al. 1 person figure

Claims (10)

【特許請求の範囲】[Claims] (1)層構造をもち、各層内相互の結合がなく、上位層
にのみ信号が伝搬するようにネットワーク接続された複
数の多入力−出力信号処理部からなる出力信号算出部と
、該出力信号算出部で得られた出力信号をもとに前期出
力信号算出部の重み係数の値を更新する重み係数更新部
を具備し、前記多入力−出力信号処理部は、複数の重み
係数を保持するメモリと、複数のデータを入力する入力
部と、前記メモリに貯えられた重み係数で前記入力部か
らの入力データを重み付けする乗算手段と、前記乗算手
段で重み付けされた複数のデータを多数加え合わせる加
算手段と、該加算手段の出力を一定範囲の値に制限する
しきい値処理部を備え、前記重み係数更新部は、上記出
力信号算出部の出力信号の望ましい値として教師信号を
与える教師信号発生部と、前記出力信号と該教師信号と
の誤差を求める誤差信号算出部と、前記誤差信号算出部
の出力に応じて前記メモリに蓄えられた重み係数の変更
量を計算する重み変更量算出部と、前記誤差信号算出部
の出力がしきい値以下であるかどうかを判定する誤差信
号判定部と、学習の進み具合いを判定する学習進度判定
部と、前記学習進度判定部の判定結果に応じて前記しき
い値の値を次第に減少させるしきい値制御部と、前記誤
差信号判定部において誤差の値がしきい値以下と判定さ
れた場合には前記重み係数変更量を0にする重み変更量
制御部とを備えたことを特徴とする学習機機。
(1) An output signal calculation unit consisting of a plurality of multi-input-output signal processing units that have a layered structure and are network-connected so that there is no mutual coupling within each layer and signals propagate only to upper layers, and the output signal The multi-input/output signal processing unit includes a weighting coefficient updating unit that updates the value of the weighting coefficient of the output signal calculation unit based on the output signal obtained by the calculation unit, and the multi-input/output signal processing unit holds a plurality of weighting coefficients. a memory, an input section for inputting a plurality of data, a multiplication means for weighting the input data from the input section with a weighting coefficient stored in the memory, and adding together a large number of the plurality of data weighted by the multiplication means. The weighting coefficient updating unit includes an adding unit and a threshold processing unit that limits the output of the adding unit to a value within a certain range, and the weighting coefficient updating unit is configured to generate a teacher signal that provides a teacher signal as a desirable value of the output signal of the output signal calculation unit. a generation unit; an error signal calculation unit that calculates an error between the output signal and the teacher signal; and a weight change amount calculation unit that calculates a change amount of the weighting coefficient stored in the memory according to the output of the error signal calculation unit. an error signal determination unit that determines whether the output of the error signal calculation unit is below a threshold; a learning progress determination unit that determines the progress of learning; and a determination result of the learning progress determination unit. a threshold control unit that gradually decreases the value of the threshold value according to the threshold value; and a weight that sets the weighting coefficient change amount to 0 when the error signal determination unit determines that the error value is less than or equal to the threshold value. A learning machine characterized by comprising a change amount control section.
(2)前記学習進度判定部は、前記出力信号算出部の最
上位層における多入力−出力信号処理部の誤差総和で学
習の進み具合いを判定することを特徴とする請求項1記
載の学習機械。
(2) The learning machine according to claim 1, wherein the learning progress determination unit determines the progress of learning based on the total error of the multi-input-output signal processing unit in the highest layer of the output signal calculation unit. .
(3)前記学習進度判定部は、学習回数により学習進度
を判定することを特徴とする請求項1記載の学習機械。
(3) The learning machine according to claim 1, wherein the learning progress determination unit determines the learning progress based on the number of times of learning.
(4)前記学習進度判定部は、前記出力信号算出部の最
上位層において、しきい値以上の誤差を出力する多入力
−出力信号処理部の個数で学習進度を判定することを特
徴とする請求項1記載の学習機械。
(4) The learning progress determination unit is characterized in that the learning progress is determined by the number of multi-input-output signal processing units that output an error equal to or greater than a threshold in the top layer of the output signal calculation unit. The learning machine according to claim 1.
(5)前記学習進度判定部は、前記誤差信号算出部の一
回の学習における最大出力の値で学習進度を判定するこ
とを特徴とする請求項1記載の学習機械。
(5) The learning machine according to claim 1, wherein the learning progress determining section determines the learning progress based on a maximum output value in one learning by the error signal calculating section.
(6)層構造をもち、各層内相互の結合がなく、上位層
にのみ信号が伝搬するようにネットワーク接続された複
数の多入力−出力信号処理部からなる出力信号算出部と
、該出力信号算出部で得られた出力信号をもとに前期出
力信号算出部の重み係数の値を更新する重み係数更新部
を具備し、前記多入力−出力信号処理部は、複数の重み
係数を保持するメモリと、複数のデータを入力する入力
部と、前記メモリに貯えられた重み係数で前記入力部か
らの入力データを重み付けする乗算手段と、前記乗算平
段で重み付けされた複数のデータを多数加え合わせる加
算手段と、該加算手段の出力を一定範囲の値に制限する
しきい値処理部を備え前記重み係数更新部は、上記出力
信号算出部の出力信号の望ましい値として教師信号を与
える教師信号発生部と、前記出力信号と該教師信号との
誤差を求める誤差信号算出部と、前記誤差信号算出部の
出力に応じて前記メモリに蓄えられた重み係数の変更量
を計算する重み変更量算出部と、前記誤差信号算出部の
出力がしきい値以下であるかどうかを判定する誤差信号
判定部と、前期誤差信号判定部の出力を計数し全ての出
力信号が前記しきい値以下の場合に飛び越し信号を出力
する飛び越し判定部と、学習の進み具合いを判定する学
習進度判定部と、前記学習進度判定部の判定結果に応じ
て前記しきい値の値を次第に減少させるしきい値制御部
と、前記飛び越し信号に応じて前記重み変更量算出部に
おける重み変更操作をとばす重み変更量制御部とを備え
たことを特徴とする学習機械。
(6) An output signal calculation unit consisting of a plurality of multi-input-output signal processing units that have a layered structure and are network-connected so that there is no mutual coupling within each layer and that signals propagate only to upper layers, and the output signal The multi-input/output signal processing unit includes a weighting coefficient updating unit that updates the value of the weighting coefficient of the output signal calculation unit based on the output signal obtained by the calculation unit, and the multi-input/output signal processing unit holds a plurality of weighting coefficients. a memory, an input section for inputting a plurality of data, a multiplication means for weighting the input data from the input section with a weighting coefficient stored in the memory, and adding a large number of the plurality of data weighted by the multiplication stage. The weighting coefficient updating section includes a threshold processing section that limits the output of the adding means to a value within a certain range, and the weighting coefficient updating section is configured to generate a teacher signal that provides a teacher signal as a desirable value of the output signal of the output signal calculation section. a generation unit; an error signal calculation unit that calculates an error between the output signal and the teacher signal; and a weight change amount calculation unit that calculates a change amount of the weighting coefficient stored in the memory according to the output of the error signal calculation unit. an error signal determination unit that determines whether the output of the error signal calculation unit is below the threshold; and an error signal determination unit that counts the outputs of the first error signal determination unit, and if all output signals are below the threshold; a skip determination section that outputs a skip signal to the learning progress determination section; a learning progress determination section that determines the progress of learning; and a threshold control section that gradually decreases the threshold value according to the determination result of the learning progress determination section. and a weight change amount control unit that skips a weight change operation in the weight change amount calculation unit in response to the skipping signal.
(7)前記学習進度判定部は、前記出力信号算出部の最
上位層における多入力−出力信号処理部の誤差総和で学
習の進み具合いを判定することを特徴とする請求項6記
載の学習機械。
(7) The learning machine according to claim 6, wherein the learning progress determination unit determines the progress of learning based on the total error of the multi-input-output signal processing unit in the highest layer of the output signal calculation unit. .
(8)前記学習進度判定部は、学習回数により学習進度
を判定することを特徴とする請求項6記載の学習機械。
(8) The learning machine according to claim 6, wherein the learning progress determination unit determines the learning progress based on the number of times of learning.
(9)前記学習進度判定部は、前記出力信号算出部の最
上位層において、しきい値以上の誤差を出力する多入力
−出力信号処理部の個数で学習進度を判定することを特
徴とする請求項6記載の学習機械。
(9) The learning progress determination unit is characterized in that the learning progress is determined based on the number of multi-input-output signal processing units that output an error equal to or greater than a threshold in the highest layer of the output signal calculation unit. The learning machine according to claim 6.
(10)前記学習進度判定部は、前記誤差信号算出部の
一回の学習における最大出力の値で学習進度を判定する
ことを特徴とする請求項6記載の学習機械。
(10) The learning machine according to claim 6, wherein the learning progress determining section determines the learning progress based on a maximum output value in one learning by the error signal calculating section.
JP2101937A 1990-04-18 1990-04-18 Learning machine Pending JPH04662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101937A JPH04662A (en) 1990-04-18 1990-04-18 Learning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101937A JPH04662A (en) 1990-04-18 1990-04-18 Learning machine

Publications (1)

Publication Number Publication Date
JPH04662A true JPH04662A (en) 1992-01-06

Family

ID=14313823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101937A Pending JPH04662A (en) 1990-04-18 1990-04-18 Learning machine

Country Status (1)

Country Link
JP (1) JPH04662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521017A (en) * 1990-11-30 1996-05-28 Nec Corporation Magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104324A (en) * 1985-10-31 1987-05-14 Toshiba Corp Adaptive automatic equalizer
JPH01320565A (en) * 1988-06-22 1989-12-26 A T R Jido Honyaku Denwa Kenkyusho:Kk Learning efficiency increasing method for neural net

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104324A (en) * 1985-10-31 1987-05-14 Toshiba Corp Adaptive automatic equalizer
JPH01320565A (en) * 1988-06-22 1989-12-26 A T R Jido Honyaku Denwa Kenkyusho:Kk Learning efficiency increasing method for neural net

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521017A (en) * 1990-11-30 1996-05-28 Nec Corporation Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP6620439B2 (en) Learning method, program, and learning apparatus
Wang et al. Neural network based model predictive controllers for modular multilevel converters
JPH0738186B2 (en) Self-expanding neural network
CN105981287B (en) The improvement of convertor controls or improvement related with convertor controls
JP7287388B2 (en) Information processing device and information processing method
CN117311188B (en) Control method, system and equipment for crowd diversion railings in fixed places
JPH04114263A (en) Learning machine
WO1993003443A1 (en) Signal processor and learning method thereof
JPH04662A (en) Learning machine
EP0385637A2 (en) Learning machine with multi-input single output circuits connected in hierarchical structure
Lavaei et al. Dynamic analysis of structures using neural networks
JPH0451384A (en) Neural network and its construction method
CN109981056B (en) Output control method of digital power amplifier based on NPC inverter
Berrada et al. Optimal neural network sliding mode control without reaching phase using genetic algorithm for a wind turbine
JP3262340B2 (en) Information processing device
JP3412700B2 (en) Neural network type pattern learning method and pattern processing device
JPH02222062A (en) Learning machine
Olayinka et al. Evolving feed-forward artificial neural networks using binary and denary dataset
JPH0367358A (en) Learning machine
CN117829085B (en) Connection diagram generation method suitable for chip wiring
JPH02231670A (en) Learning device for neural network
JPH04310168A (en) Learning machine
Srikakolapu et al. DSTATCOM with Gradient Compared p-norm Least Mean Square Algorithm and Estimated PI Gains
JPH0233655A (en) Nerve circuit network type pattern processor
JP3082530B2 (en) Neural network circuit