JPH0465495B2 - - Google Patents

Info

Publication number
JPH0465495B2
JPH0465495B2 JP59201847A JP20184784A JPH0465495B2 JP H0465495 B2 JPH0465495 B2 JP H0465495B2 JP 59201847 A JP59201847 A JP 59201847A JP 20184784 A JP20184784 A JP 20184784A JP H0465495 B2 JPH0465495 B2 JP H0465495B2
Authority
JP
Japan
Prior art keywords
capacity
separator
battery
weight
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201847A
Other languages
Japanese (ja)
Other versions
JPS6180750A (en
Inventor
Akio Tanaka
Yoshinobu Kakizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP59201847A priority Critical patent/JPS6180750A/en
Publication of JPS6180750A publication Critical patent/JPS6180750A/en
Publication of JPH0465495B2 publication Critical patent/JPH0465495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は密閉型鉛蓄電池に用いるセパレーター
の改良に関する。 (従来の技術) 従来、密閉型鉛蓄電池は電極基板にい活物質が
施された陰・陽電極板を組立てるに当り、両電極
板間を一定間隔に保持し、かつ例えば希硫酸のよ
うな電解液を電極板にゆきわたらせるために両電
極板間にガラス繊維シートから成るセパレーター
を介在させるを一般とする。 (発明が解決しようとする問題点) しかし上記密閉型鉛蓄電池のセパレーターに用
いられるガラス繊維シートは電解液を吸収した際
厚みに収縮が起り易いため、該シートを比較的厚
目に形成し、これを両電極間に挿入し、これらを
圧縮状態で電そう内に装着した場合でも、ガラス
繊維シートの収縮によつて電極板とガラス繊維シ
ート間に隙間が発生してしまい、活物質が施され
ている両電極板に対して均一に密着しない。 従つて両電極板に電解液が均一にゆきわたらず
電池容量や放電時の電圧の低下或いは陰極板での
ガス吸収状態の低下による電池寿命の短命化をも
たらす欠点があり、電解液を注入しても収縮がな
くかつ電極板に対し電解液が均一にゆきわたる密
閉型鉛蓄電池用のセパレーターの開発が望まれて
いた。 (問題点を解決するための手段) 本発明はかかる現状に鑑み、電極板に電解液が
均一にゆきわたる密閉型鉛蓄電池用セパレーター
を提供するもので、ガラス繊維をシート状に形成
して成る密閉型鉛蓄電池用セパレーターにおい
て、該ガラス繊維シート内に含液時に膨潤する膨
潤性雲母を少くとも5重量%含有して成る。 本発明に用いるガラス繊維は従来のものと特に
変るものではなく、一般にはその平均繊維径が
0.1ないし5ミクロンの繊維を用いるものである。 ガラス繊維シートに含有させる含液時に膨潤す
る膨潤性雲母とは、蜜に原子が配列された面が互
いにやや弱い結合力で平行に並んでいる結晶構造
を有するもので含液時に膨潤する性質を備えるも
のである。また、ガラス繊維シートに対する膨潤
性雲母の含有量は少くとも5重量%あれば電極板
への密着性効果は発揮されるが、セパレーターの
電気抵抗値の不必要な上昇を避けるため、また経
済上の観点からその上限を50重量%程度とするの
が好ましい。 尚、膨潤性雲母をガラス繊維シートに含有させ
るには粉状体、ゾル状体のいずれでも良く、粉状
体として含有させる場合はその大きさを10ないし
50メツシユとするのがより好ましい。 また本発明セパレーターのシート状への形成は
前記ガラス繊維間に膨潤性の膨潤性雲母を少くと
も5重量%含有させ、これを所望厚さに抄造或い
は成形すること等によつてなされる。尚ガラス繊
維にこのガラス繊維より平均繊維径が太いガラス
繊維或いは合成繊維を混入し、これ含液時に膨潤
する膨潤性雲母を含有させたセパレーターとして
も良い。また膨潤性雲母の含有量が夫々異なつた
セパレーターを積層したもの、或いは膨潤性雲母
の含有シートと非含有シートとを積層したセパレ
ーターとしても良い。 (実施例) 以下本発明をその実施例並び従来例によつて説
明する。 実施例として耐酸性のすぐれたアルカリガラス
を溶融紡糸して得られた平均繊維径1ミクロンか
ら成るガラス繊維に含液時に膨潤する50メツシユ
の粉状の膨潤性雲母を5重量%、10重量%、20重
量%、30重量%、40重量%、50重量%、60重量%
の割合で夫々気含有させ抄紙法により厚さ1.0mm
に抄造し多孔質のシート状セパレーターを得た。
得られたセパレーターをサンプル1ないし7とし
た。 次に、従来例として耐酸性のすぐれたアルカリ
ガラスを溶融紡糸して得られた平均繊維径1ミク
ロンから成るガラス繊維を抄紙法により厚さ1.0
mmに抄造し多孔質のシート状セパレーターを得
た。得られたセパレーターをサンプル8とした。 その後前記実施例並びに従来例のサンプル1な
いし8の夫々について電気抵抗値、復元率、含液
量を測定した。 その結果は表−1の通りである。
(Industrial Application Field) The present invention relates to improvements in separators used in sealed lead-acid batteries. (Prior art) Conventionally, when assembling negative and positive electrode plates on which active materials are applied to the electrode substrates of sealed lead-acid batteries, the distance between the two electrode plates is maintained at a constant distance, and the In order to spread the electrolyte over the electrode plates, a separator made of a glass fiber sheet is generally interposed between the two electrode plates. (Problems to be Solved by the Invention) However, since the glass fiber sheet used for the separator of the sealed lead-acid battery described above tends to shrink in thickness when absorbing electrolyte, the sheet is formed relatively thick, Even if this is inserted between both electrodes and these are mounted in a compressed state inside an electric cell, a gap will be created between the electrode plate and the glass fiber sheet due to the shrinkage of the glass fiber sheet, and the active material will not be applied. It does not adhere uniformly to both electrode plates. Therefore, there is a drawback that the electrolyte does not spread uniformly to both electrode plates, resulting in a decrease in battery capacity and voltage during discharge, or a decrease in the gas absorption state of the cathode plate, resulting in a shortened battery life. There has been a desire to develop a separator for sealed lead-acid batteries that does not shrink even when exposed to electricity and that allows electrolyte to spread uniformly over the electrode plates. (Means for Solving the Problems) In view of the current situation, the present invention provides a sealed separator for lead-acid batteries that allows electrolyte to uniformly spread over the electrode plate. In the separator for type lead-acid batteries, the glass fiber sheet contains at least 5% by weight of swellable mica that swells when impregnated with liquid. The glass fibers used in the present invention are not particularly different from conventional ones, and generally the average fiber diameter is
Fibers of 0.1 to 5 microns are used. Swellable mica, which swells when impregnated with liquid and is contained in a glass fiber sheet, has a crystal structure in which the planes of closely arranged atoms are arranged parallel to each other with a rather weak bonding force, and has the property of swelling when impregnated with liquid. It is something to be prepared for. In addition, if the content of swellable mica in the glass fiber sheet is at least 5% by weight, the adhesion effect to the electrode plate will be exhibited, but in order to avoid an unnecessary increase in the electrical resistance value of the separator, and for economic reasons. From this viewpoint, it is preferable to set the upper limit to about 50% by weight. In addition, in order to incorporate the swellable mica into the glass fiber sheet, it may be in either a powder or sol form, and when it is contained in a powder form, the size of the mica should be
It is more preferable to set it to 50 meshes. The separator of the present invention can be formed into a sheet by incorporating at least 5% by weight of swellable mica between the glass fibers and forming or molding this into a desired thickness. A separator may also be obtained in which glass fibers or synthetic fibers having an average fiber diameter larger than the glass fibers are mixed with the glass fibers to contain swelling mica that swells when impregnated with liquid. Further, the separator may be formed by laminating separators each having a different content of swellable mica, or by laminating a sheet containing swellable mica and a sheet not containing swellable mica. (Example) The present invention will be explained below by referring to an example thereof and a conventional example. As an example, 5% by weight and 10% by weight of powdered swellable mica of 50 mesh which swells when impregnated with liquid are added to glass fibers having an average fiber diameter of 1 micron obtained by melt-spinning alkali glass with excellent acid resistance. , 20% by weight, 30% by weight, 40% by weight, 50% by weight, 60% by weight
The thickness of the paper is 1.0mm by the paper making method.
A porous sheet-like separator was obtained by paper-making.
The obtained separators were designated as Samples 1 to 7. Next, as a conventional example, glass fibers with an average fiber diameter of 1 micron obtained by melt-spinning alkali glass with excellent acid resistance were processed to a thickness of 1.0 microns by a papermaking method.
A porous sheet-like separator was obtained by forming a paper into a size of 2 mm. The obtained separator was designated as Sample 8. Thereafter, the electrical resistance value, recovery rate, and liquid content were measured for each of Samples 1 to 8 of the Example and the Conventional Example. The results are shown in Table-1.

【表】 表−1から明らかなように、本発明の実施例の
各セパレーター(サンプル1ないし7)は従来例
のセパレーター(サンプル8)に比して復元率並
びに含液量が優れ、含液時のセパレーターの収縮
が良好に防止され、且つ電解液の浸透も十分であ
り、しかも電気抵抗値を実用上問題とならないこ
とが確認された。 次に前記実施例のサンプル2、4、6の各セパ
レーターと、従来例のサンプル8のセパレーター
とを用い密閉型鉛蓄電池を組立てし、夫々につい
て初期容量、残存容量、寿命回数の電池試験を行
つた。その結果は表−2の通りである。
[Table] As is clear from Table 1, each of the separators of the examples of the present invention (Samples 1 to 7) has superior recovery rate and liquid content compared to the conventional separator (Sample 8). It was confirmed that the shrinkage of the separator was well prevented, the penetration of the electrolytic solution was sufficient, and the electrical resistance value did not pose a practical problem. Next, a sealed lead-acid battery was assembled using the separators of Samples 2, 4, and 6 of the above embodiment and the separator of Sample 8 of the conventional example, and battery tests were conducted for initial capacity, remaining capacity, and number of lifetimes for each. Ivy. The results are shown in Table-2.

【表】 試験方法 初期容量:JIS D 5301に準拠して得られた10時
間率容量[10時間率容量とは10時間率電流と放
電終止電圧になるまでの時間との積、または10
時間率電流で放電終止電圧まで放電した場合の
電気量(Ah)]値[例えば容量100Ah]を1C(A)
[公称容量の値に係数をかけて表す。例えば容
量100Ahの電池を100Aで放電する時を1C(A)=
1×100=100Aと表現する。]とした放電電流
で、25℃の充電後の容量を初期容量とする。 尚、表−2における初期容量(%)は本発明
実施例のサンプル2、4、6で得られた初期容
量値を従来例のサンプル8で得られた初期容量
値(基準値とする)で除して百分率で求めた値
であり、従つて、本発明実施例の場合は初期容
量が100%を越えることになる。 残存容量: 次式により求めた値とする。 残存容量=65℃で15日間放置後の
25℃、0.1C放電容量/25℃で完全充電後の0.1C放電容量
式中、0.1C放電容量とは容量(10時間率)を
10で除した10時間率電流[例えば容量100Ahの
場合0.1C=10(A)]で放電終止電圧まで放電した
場合の電気量(Ah)を示す。 尚、表−2における残存容量(%)は本発明
実施例のサンプル2、4、6で得られた残存容
量値を従来例のサンプル8で得られた残存容量
値(基準値とする)で除した百分率で求めた値
であり、従つて、本発明実施例の場合は残存容
量が100%を超えることになる。 寿命回数:JIS D 5301に準拠して得られた1回
の放電の深さが20%以上の重負荷領域での放電
と充電のサイクルを繰り返し行つたときの回数
とする。 具体的には40℃の恒温槽内で、0.6C×2.5時
間充電を1回とし、50回毎に放電容量を測定
し、初期容量の60%となつた時の回数を寿命回
数とする。また、0.6Cとは10時間率容量100Ah
のときの60Aの電流値である。 尚、表−2における寿命回数(%)は本発明
実施例のサンプル2、4、6で得られた寿命回
数値を従来例のサンプル8で得られた寿命回数
値(基準値とする)で除して百分率で求めた値
であり、従つて、本発明実施例の場合は寿命回
数が100%を超えることになる。 尚、表中の電池試験の評価は、実施例のセパ
レーターを組込んだ電池特性値を従来例のセパ
レーターを組込んだ電池特性値で除し、その率
(%)で表した。 表−2から明らかな様に実施例のセパレータ
ー(サンプル2、4、6)を組込んだ電池は従
来例のセパレーター(サンプル8)を組込んだ
電池に比して初期容量、残存容量、寿命回数の
電池特性に優れていることが確認された。 (発明の効果) このように本発明によるときは、ガラス繊維シ
ート内に含液時に膨潤する膨潤性雲母を少くとも
5重量%含有させて成るため、含液時にガラス繊
維シートが収縮することなく電極板にしつかりと
密着して電解液を均一にゆきわたらせることが出
来る等の効果を有する。
[Table] Test method Initial capacity: 10 hour rate capacity obtained in accordance with JIS D 5301 [10 hour rate capacity is the product of the 10 hour rate current and the time until the discharge end voltage is reached, or
The amount of electricity (Ah) when discharging to the discharge end voltage at a time rate current [for example, capacity 100Ah] is 1C (A)
[Represented by multiplying the nominal capacity value by a coefficient. For example, when discharging a battery with a capacity of 100Ah at 100A, 1C(A) =
Expressed as 1×100=100A. The initial capacity is the capacity after charging at 25°C with a discharge current of . Note that the initial capacity (%) in Table 2 is calculated by using the initial capacity values obtained for samples 2, 4, and 6 of the embodiment of the present invention as the initial capacity value obtained for sample 8 of the conventional example (used as a reference value). Therefore, in the case of the embodiment of the present invention, the initial capacity exceeds 100%. Residual capacity: Value calculated using the following formula. Residual capacity = after being left at 65℃ for 15 days
0.1C discharge capacity at 25℃/0.1C discharge capacity after full charge at 25℃ In the formula, 0.1C discharge capacity is the capacity (10 hour rate).
Shows the amount of electricity (Ah) when discharged to the discharge end voltage at a 10 hour rate current divided by 10 [for example, 0.1C = 10(A) for a capacity of 100Ah]. Note that the remaining capacity (%) in Table 2 is calculated by using the remaining capacity values obtained for samples 2, 4, and 6 of the embodiment of the present invention as the remaining capacity value obtained for sample 8 of the conventional example (which is used as a reference value). Therefore, in the case of the embodiment of the present invention, the remaining capacity exceeds 100%. Life cycle: The number of cycles of discharging and charging in a heavy load area where the depth of each discharge is 20% or more in accordance with JIS D 5301. Specifically, the battery is charged once at 0.6C for 2.5 hours in a constant temperature chamber at 40℃, and the discharge capacity is measured every 50 times.The number of times the battery reaches 60% of the initial capacity is defined as the number of lifetimes. Also, 0.6C means 10 hour rate capacity 100Ah
This is the current value of 60A when . In addition, for the life cycles (%) in Table 2, the life cycle values obtained for samples 2, 4, and 6 of the embodiment of the present invention are used as the life cycle values obtained for sample 8 of the conventional example (which is used as a reference value). Therefore, in the case of the embodiment of the present invention, the number of lifetimes exceeds 100%. In addition, the evaluation of the battery test in the table is expressed by dividing the characteristic value of the battery incorporating the separator of the example by the characteristic value of the battery incorporating the separator of the conventional example, and expressed as a percentage (%). As is clear from Table 2, the batteries incorporating the separators of the examples (Samples 2, 4, and 6) have a higher initial capacity, remaining capacity, and service life compared to the batteries incorporating the conventional separators (Sample 8). It was confirmed that the battery has excellent battery characteristics. (Effects of the Invention) According to the present invention, since the glass fiber sheet contains at least 5% by weight of swellable mica that swells when impregnated with liquid, the glass fiber sheet does not shrink when impregnated with liquid. It has the effect of firmly adhering to the electrode plate and allowing the electrolyte to spread uniformly.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス繊維をシート状に形成して成る密閉型
鉛蓄電池用セパレーターにおいて、該ガラス繊維
シート内に含液時に膨潤する膨潤性雲母を少なく
とも5重量%含有して成る密閉型鉛蓄電池用セパ
レーター。
1. A separator for a sealed lead-acid battery made of glass fiber formed into a sheet, the separator for a sealed lead-acid battery comprising at least 5% by weight of swellable mica that swells when impregnated with liquid in the glass fiber sheet.
JP59201847A 1984-09-28 1984-09-28 Separator for sealed type lead storage battery Granted JPS6180750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201847A JPS6180750A (en) 1984-09-28 1984-09-28 Separator for sealed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201847A JPS6180750A (en) 1984-09-28 1984-09-28 Separator for sealed type lead storage battery

Publications (2)

Publication Number Publication Date
JPS6180750A JPS6180750A (en) 1986-04-24
JPH0465495B2 true JPH0465495B2 (en) 1992-10-20

Family

ID=16447872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201847A Granted JPS6180750A (en) 1984-09-28 1984-09-28 Separator for sealed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS6180750A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918204B2 (en) * 1988-03-31 1999-07-12 新神戸電機株式会社 Sealed lead-acid battery
JP4298216B2 (en) * 2002-04-17 2009-07-15 日本板硝子株式会社 Seal for sealed lead-acid battery and sealed lead-acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152666A (en) * 1981-03-17 1982-09-21 Sanyo Electric Co Ltd Separator for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152666A (en) * 1981-03-17 1982-09-21 Sanyo Electric Co Ltd Separator for battery

Also Published As

Publication number Publication date
JPS6180750A (en) 1986-04-24

Similar Documents

Publication Publication Date Title
US20060269801A1 (en) Lead-acid battery electrode body, lead-acid batter, and manufacturing method of lead-acid battery
EP0092430B1 (en) Glass fibre paper separator for electrochemical cells
KR20130043308A (en) Secondary battery
JP3952483B2 (en) Sealed lead acid battery
JP2003077445A (en) Lead acid storage battery
KR20100056257A (en) Secondary zinc alkaline battery comprising negative electrodes and separators surface-modified with gel electrolyte for coating
JPH0465495B2 (en)
WO2004010526A1 (en) Control valve type lead battery
JPS5894770A (en) Leakage-less closed type lead battery
EP4038671A1 (en) Active material having oxidized fiber additive & electrode and battery having same
JPH0450707B2 (en)
JP2001102027A (en) Enclosed lead battery
JP2982630B2 (en) Lead storage battery
JP7212649B2 (en) Lead-acid battery and manufacturing method thereof
JPH0794206A (en) Sealed type lead-acid battery
JP3395464B2 (en) Sealed lead-acid battery
JP7256175B2 (en) Electrodes with multiple current collector arrays
JP6730406B2 (en) Lead acid battery
JP2982545B2 (en) Sealed storage battery
JP3221154B2 (en) Sealed lead-acid battery
Kirchev et al. Cyclic ageing of titanium-supported lead dioxide electrodes for bipolar battery applications
JP2001176481A (en) Separator for sealed lead acid battery
JP3035177B2 (en) Lead storage battery
JP2023046379A (en) Lead storage battery
JPH05283073A (en) Lithium secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term