JPH0465400A - Method for growing sic single crystal - Google Patents

Method for growing sic single crystal

Info

Publication number
JPH0465400A
JPH0465400A JP17340290A JP17340290A JPH0465400A JP H0465400 A JPH0465400 A JP H0465400A JP 17340290 A JP17340290 A JP 17340290A JP 17340290 A JP17340290 A JP 17340290A JP H0465400 A JPH0465400 A JP H0465400A
Authority
JP
Japan
Prior art keywords
sic
raw material
single crystal
crystal
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17340290A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishii
宏明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17340290A priority Critical patent/JPH0465400A/en
Publication of JPH0465400A publication Critical patent/JPH0465400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the scattering of starting material at the time of evacuation and to inhibit the occurrence of defects due to the scattering by using a press-molded body of SiC powder as the starting material to be sublimed when an SiC single crystal is grown by a sublimation method. CONSTITUTION:When starting material for SiC is sublimed by heating and an SiC single crystal is grown on an SiC seed crystal, solid SiC obtd. by press- molding powdery SiC or further sintering the press-molded body is used as the starting material for SiC.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、昇華法を用いたSiC単結晶の成長方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for growing SiC single crystals using a sublimation method.

(ロ)従来の技術 炭化ケイ素(S iC)は、p型、n型の導電型の制御
が可能であり、物理的、化学的に安定であることから、
耐環境用の半導体デバイスとして注目されている。また
、SiCには多くの結晶型が存在し、この結晶型に依存
した種々の禁制帯幅が存在する。例えば、6H型のSi
Cは室温で約3eVの禁制帯幅を有し、青色発光素子と
して用いられる。
(b) Conventional technology Silicon carbide (SiC) can control conductivity types of p-type and n-type, and is physically and chemically stable.
It is attracting attention as an environmentally resistant semiconductor device. Further, SiC has many crystal types, and there are various forbidden band widths depending on the crystal types. For example, 6H type Si
C has a forbidden band width of about 3 eV at room temperature and is used as a blue light emitting element.

SiC単結晶を成長する方法の一つにSiC原材料の分
解昇華過程を利用した昇華法がある。第2図は昇華法に
用いられる結晶成長装置を示し、例えば雑誌「真空」、
30巻、 52−58頁(1987)に記載されている
One of the methods for growing SiC single crystals is a sublimation method that utilizes the decomposition and sublimation process of SiC raw materials. Figure 2 shows a crystal growth apparatus used in the sublimation method, such as the magazine ``Shinku'',
30, pp. 52-58 (1987).

図ニオイテ、(11)は高純度カーボン製のルツボ、(
]2)は該ルツボ(11)に収容されたSiC粉末原料
、(13)は上記ルツボ(11)の開口部に支持用治具
(図示せず)にて設置されたSiC単結晶からなる種結
晶、(14)は石英とカーボン製フェルトの二層構造か
らなるし一トシールドで、ルツボ(l〕)の周囲に配さ
れ、当該ルツボ(11)を保温する。
Figure (11) is a crucible made of high-purity carbon, (
]2) is the SiC powder raw material contained in the crucible (11), and (13) is the seed made of SiC single crystal installed in the opening of the crucible (11) with a supporting jig (not shown). The crystal (14) is a shield made of two layers of quartz and carbon felt, and is placed around the crucible (l) to keep the crucible (11) warm.

(15)は上記ルツボ(11)等を収納する反応管で、
内外二重構造を有している。(16)は反応管(15)
の内側管と連通し、雰囲気ガスまたはドーパントガスを
導入する導入口、(17)(17)は反応管(15)の
外側管と連通する冷却水出入口で、一方から冷却水を注
入し、他方から排水することによって反応管(15)を
冷却する。(18)は反応管(15)を設置するベース
板、(19)はベース板(18)に設けられた排気管で
、図示していないロータリーポンプに接続され、反応管
(15)内を減圧する。
(15) is a reaction tube that houses the crucible (11) etc.,
It has a double structure inside and outside. (16) is the reaction tube (15)
(17) is a cooling water inlet/outlet communicating with the outer tube of the reaction tube (15), where cooling water is injected from one side and the other The reaction tube (15) is cooled by draining water from the reactor tube (15). (18) is a base plate on which the reaction tube (15) is installed, and (19) is an exhaust pipe provided on the base plate (18), which is connected to a rotary pump (not shown) to reduce the pressure inside the reaction tube (15). do.

(20)は反応管(15)の周りに設けられたワークコ
イルで、このワークコイル(20)に高周波電流を流す
ことによって、ルツボ(11)を誘導加熱する。また、
ワークコイル(20)の間隔に変化をつけることによっ
て、誘導加熱されるルツボ(11)に温度勾配を形成し
ている。
(20) is a work coil provided around the reaction tube (15), and by passing a high frequency current through this work coil (20), the crucible (11) is heated by induction. Also,
By varying the spacing between the work coils (20), a temperature gradient is created in the crucible (11) that is heated by induction.

斯る装置を用いた結晶成長は、1〜10torrの減圧
下で、SiC粉末原料(12)を2000℃以上に加熱
して蒸発させ、これを温度勾配によりSiC粉末原料(
12)の温度以下に保持された種結晶(13)上に再結
晶化させることにより行われる。
Crystal growth using such an apparatus involves heating and evaporating the SiC powder raw material (12) to 2000°C or higher under a reduced pressure of 1 to 10 torr, and then evaporating the SiC powder raw material (12) using a temperature gradient.
12) by recrystallization on a seed crystal (13) maintained at a temperature below 12).

(ハ)発明が解決しようとする課題 熱るに、斯る従来のSiC単結晶成長においては、反応
管内を減圧する真空排気の際に、圧力変化によって生じ
る反応管内の気流により、SiC粉末原材料が飛散し易
いといった欠点があった。
(c) Problems to be Solved by the Invention In the conventional SiC single crystal growth, when the reaction tube is evacuated to reduce the pressure inside the reaction tube, the SiC powder raw material is It had the disadvantage of being easily scattered.

SiC粉末原料が飛散し種結晶上に付着すると、これが
結晶成長時の異常成長の核となり、結晶欠陥を生じさせ
る原因となる。さらに、SiC粉末原料の飛散によりル
ツボ内における原料の表面位置が変化するため、原料の
加熱温度を一定にできず、再現性の良い結晶成長が行え
ない。
When the SiC powder raw material scatters and adheres to the seed crystal, this becomes a nucleus for abnormal growth during crystal growth and causes crystal defects. Furthermore, since the surface position of the raw material in the crucible changes due to scattering of the SiC powder raw material, the heating temperature of the raw material cannot be kept constant, and crystal growth with good reproducibility cannot be performed.

従って、本発明は、結晶欠陥の発生を防ぐと共に、成長
条件を一定にでき、再現性の良い結晶成長を行うことを
技術的課題とする。
Therefore, the technical object of the present invention is to prevent the occurrence of crystal defects, keep the growth conditions constant, and perform crystal growth with good reproducibility.

(ニ)課題を解決するための手段 本発明は、SiC原材料を加熱昇華させ、SiC単結晶
からなる種結晶上にSiC単結晶を成長させる方法であ
って、上記原材料として、粉末SICを加圧成形した固
形SiCを用いることを特徴とする。
(d) Means for Solving the Problems The present invention is a method of heating and sublimating a SiC raw material to grow a SiC single crystal on a seed crystal made of a SiC single crystal, in which powdered SIC is used as the raw material under pressure. It is characterized by using molded solid SiC.

また、本発明は、上記原材料として、粉末SiCを加圧
成形し、焼結処理した固形SjCを用いることを特徴と
する。
Further, the present invention is characterized in that solid SjC obtained by pressure molding powdered SiC and sintering is used as the raw material.

(ホ)作用 本発明方法によれば、原材料として、粉末SiCを加圧
成形した固形5iC1あるいはこれを焼結処理した固形
SiCを用いることによって、真空排気時の原料の飛散
がなくなる。
(E) Effect According to the method of the present invention, by using solid 5iC1 obtained by pressure molding powdered SiC or solid SiC obtained by sintering the same as the raw material, scattering of the raw material during evacuation is eliminated.

(へ)実施例 第1図に本発明方法に用いる結晶成長装置の一例を示す
(f) Example FIG. 1 shows an example of a crystal growth apparatus used in the method of the present invention.

図において、(1)はSiC粉末を加圧成形し、焼結し
て得た、多孔質からなる円柱状のSiC固形原料、(2
)は円筒状のカーボンパイプで、その上にSiC固形原
料が載置されている。(3)は上記SiC固形原料(1
)の上面に対向して設置されたSiC単結晶からなる種
結晶、(4)はSiC固形原料(1)及び種結晶(3)
の周囲に配された、カーボン製のヒートシールドである
In the figure, (1) is a porous cylindrical solid SiC raw material obtained by pressure-molding and sintering SiC powder, (2)
) is a cylindrical carbon pipe on which the SiC solid raw material is placed. (3) is the SiC solid raw material (1
) Seed crystal made of SiC single crystal placed opposite to the upper surface of (4), SiC solid raw material (1) and seed crystal (3)
It is a carbon heat shield placed around the .

(5)は上記SiC固形原料(1)等を収納する反応管
で、内外二重構造を有している。(6)は反応管(5)
の内側管と連通ずる排気管で、図示していないロータリ
ーポンプに接続され、反応管(5)内を減圧する。(7
)(7)は反応管(5)の外側管と連通する冷却水出入
口で、一方から冷却水を注入し、他方から排水すること
によって反応管(5)を冷却する。
(5) is a reaction tube for storing the SiC solid raw material (1), etc., and has a double structure inside and outside. (6) is the reaction tube (5)
An exhaust pipe that communicates with the inner pipe of the reaction tube (5) is connected to a rotary pump (not shown) to reduce the pressure inside the reaction tube (5). (7
)(7) is a cooling water inlet/outlet communicating with the outer tube of the reaction tube (5), and the reaction tube (5) is cooled by injecting cooling water from one side and draining water from the other side.

(8)は反応管(5)を設置するベース板、(9)はベ
ース板(8)に設けられた石英パイプで、カーボンパイ
プ(2)と連通する。ここで、斯る装置においてAr等
の雰囲気ガス及びN1等のドーパントガスは、SiC固
形原料が通常多孔質になることを利用し、カーボンパイ
プ(2)及び石英パイプ(9)を通して、反応管(5)
内に導入される。
(8) is a base plate on which the reaction tube (5) is installed, and (9) is a quartz pipe provided on the base plate (8), which communicates with the carbon pipe (2). Here, in such an apparatus, an atmospheric gas such as Ar and a dopant gas such as N1 are passed through a carbon pipe (2) and a quartz pipe (9) into a reaction tube ( 5)
be introduced within.

(10)は反応管(5)の周りに設けられたワークコイ
ルで、第2図の従来装置のワークコイル(20)と同じ
ものであるので説明を省略する。
A work coil (10) is provided around the reaction tube (5), and is the same as the work coil (20) of the conventional apparatus shown in FIG. 2, so its explanation will be omitted.

斯る結晶成長装置を用いたSiC単結晶の成長方法は、
例えば、反応管(5)内の圧力を7−10Torrに保
持し、SiC固形原料(1)上面の温度を2300〜2
400℃、種結晶(3)の温度をSiC固形原料(1)
より50〜100℃低い温度とすると共に、温度勾配を
10−20℃/cmに設定することによって行われる。
The method for growing a SiC single crystal using such a crystal growth apparatus is as follows:
For example, the pressure inside the reaction tube (5) is maintained at 7-10 Torr, and the temperature on the top surface of the SiC solid raw material (1) is maintained at 2300-2 Torr.
400℃, the temperature of the seed crystal (3) was changed to the temperature of the SiC solid raw material (1).
This is carried out by setting the temperature to 50 to 100° C. lower and setting the temperature gradient to 10 to 20° C./cm.

また、SiC固形原料(1)には、SiC粉末を加圧成
形する際に、炭素粉末を微量混入し、炭素(C)を過剰
に添加したものを用いるのが好ましい。これは、以下の
理由による。即ち、一般にSiC原材料を加熱すると、
5i=C,5iC−5Si、、Si等のガスとなって昇
華される。しかし、これらのガスのうち、蒸気圧の高い
のはSiガスで、昇華されたガスの大部分を占める。し
かし、SiガスはSiCの成長に寄与しないため、成長
の効率は低いものとなる。そこで、原料の中にCを過剰
に添加することによって、S1ガスをCと反応させ、こ
れから成長に寄与するSi、C,5iC=のガスを生成
させるものである。
Moreover, it is preferable to use a SiC solid raw material (1) in which a trace amount of carbon powder is mixed and an excessive amount of carbon (C) is added when press-molding the SiC powder. This is due to the following reasons. That is, generally when SiC raw material is heated,
It sublimates into gases such as 5i=C, 5iC-5Si, and Si. However, among these gases, Si gas has a high vapor pressure and accounts for most of the sublimated gas. However, since Si gas does not contribute to the growth of SiC, the growth efficiency is low. Therefore, by adding an excessive amount of C to the raw material, the S1 gas is reacted with C, thereby generating Si, C, and 5iC= gases that contribute to the growth.

而して、本発明方法においては、SiC原料が固形であ
るため、真空排気時に生じる反応管(5)内の気流によ
って原料が飛散することはない。
In the method of the present invention, since the SiC raw material is solid, the raw material will not be scattered by the airflow inside the reaction tube (5) that occurs during evacuation.

従って、飛散による原料の種結晶(3)への付着が生じ
ることがないので、成長するSiC単結晶中への欠陥の
発生が抑制される。さらに、原料の飛散がないことから
、成長初期の原料上面位置を一定に保つことができるた
め、所定の成長条件で成長を行うことができ、再現性の
良い結晶成長が行える。
Therefore, since the raw material does not adhere to the seed crystal (3) due to scattering, the generation of defects in the growing SiC single crystal is suppressed. Furthermore, since there is no scattering of the raw material, the upper surface position of the raw material at the initial stage of growth can be kept constant, so growth can be performed under predetermined growth conditions, and crystal growth with good reproducibility can be achieved.

また、本発明方法では、SiC固形原料(1)を通じて
、雰囲気ガスを成長系、即ち、SiC固形原料(1)と
種結晶(3)の間に直接導入できるため、成長系の圧力
を正確に制御することができる。さらに、斯る雰囲気ガ
スとともに、N!等のドーパントガスを供給することに
よって、効率良いドーピングが行える。またドーピング
は、SiC固形原料(1)を加圧成型する際に、SiC
粉末にS 1tN4等のドーパント固体を混入して行う
こともできる。
Furthermore, in the method of the present invention, atmospheric gas can be directly introduced into the growth system, that is, between the SiC solid raw material (1) and the seed crystal (3), through the SiC solid raw material (1), so the pressure in the growth system can be controlled accurately. can be controlled. Furthermore, along with such atmospheric gas, N! Efficient doping can be performed by supplying dopant gases such as the following. In addition, doping is carried out when pressure molding the SiC solid raw material (1).
It is also possible to mix a dopant solid such as S 1tN4 into the powder.

(ト)発明の効果 本発明方法によれば、原材料として、粉末SiCを加圧
成形し、焼結処理した固形SiCを用いることによって
、真空排気時の原料の飛散がなくなるため、原料の種結
晶への付着に起因する欠陥の発生を抑制することができ
る。さらに、SiC固形原料の表面を成長初期において
一定の位置に配置できるので、SiC固形原料を所定の
温度に加熱することができる。即ち、本発明方法におい
ては成長条件を一定に制御することができるので、再現
性の良い結晶成長を行える。
(G) Effects of the Invention According to the method of the present invention, by using solid SiC obtained by press-molding powdered SiC and sintering it as a raw material, the scattering of the raw material during evacuation is eliminated, so that the seed crystals of the raw material are eliminated. It is possible to suppress the occurrence of defects caused by adhesion to the surface. Furthermore, since the surface of the SiC solid raw material can be placed at a fixed position in the early stage of growth, the SiC solid raw material can be heated to a predetermined temperature. That is, in the method of the present invention, since the growth conditions can be controlled to a constant level, crystal growth can be performed with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いる結晶成長装置の一例を示す
模式的断面図、第2図は従来方法に用いられる結晶成長
装置を示す模式的断面図である。 (1)・・・SiC固体原料、(2)・・・カーボンパ
イプ、(3)・・・種結晶、(4)・・・ヒートシール
ド、(5)・・・反応管、(6)・・・排気管、(7)
・・・冷却水出入口、(8)・・・ベース板、(9)・
・・石英パイプ、(10)・・・ワークコイル。 第1図
FIG. 1 is a schematic sectional view showing an example of a crystal growth apparatus used in the method of the present invention, and FIG. 2 is a schematic sectional view showing a crystal growth apparatus used in the conventional method. (1)... SiC solid raw material, (2)... carbon pipe, (3)... seed crystal, (4)... heat shield, (5)... reaction tube, (6)...・・Exhaust pipe, (7)
... Cooling water inlet/outlet, (8)... Base plate, (9).
...Quartz pipe, (10)...Work coil. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)SiC原材料を加熱昇華させ、SiC単結晶から
なる種結晶上にSiC単結晶を成長させる方法において
、上記原材料として、粉末SiCを加圧成形した固形S
iCを用いることを特徴とするSiC単結晶の成長方法
(1) In a method in which a SiC raw material is sublimated by heating and a SiC single crystal is grown on a seed crystal made of a SiC single crystal, the raw material is a solid S obtained by pressure molding powdered SiC.
A method for growing a SiC single crystal, characterized by using iC.
(2)SiC原材料を加熱昇華させ、SiC単結晶から
なる種結晶上にSiC単結晶を成長させる方法において
、上記原材料として、粉末SiCを加圧成形し、焼結処
理した固形SiCを用いることを特徴とするSiC単結
晶の成長方法。
(2) In the method of heating and sublimating a SiC raw material to grow a SiC single crystal on a seed crystal made of a SiC single crystal, it is possible to use solid SiC obtained by press-molding and sintering powdered SiC as the raw material. Characteristic method for growing SiC single crystals.
JP17340290A 1990-06-29 1990-06-29 Method for growing sic single crystal Pending JPH0465400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17340290A JPH0465400A (en) 1990-06-29 1990-06-29 Method for growing sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17340290A JPH0465400A (en) 1990-06-29 1990-06-29 Method for growing sic single crystal

Publications (1)

Publication Number Publication Date
JPH0465400A true JPH0465400A (en) 1992-03-02

Family

ID=15959756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17340290A Pending JPH0465400A (en) 1990-06-29 1990-06-29 Method for growing sic single crystal

Country Status (1)

Country Link
JP (1) JPH0465400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118980A (en) * 1992-09-30 1994-04-28 Kawai Musical Instr Mfg Co Ltd Sound effect device
WO2010114008A1 (en) * 2009-04-03 2010-10-07 株式会社ブリヂストン Device for producing single crystal of silicon carbide
JP2016532629A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Method and apparatus for producing bulk silicon carbide from silicon carbide precursor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118980A (en) * 1992-09-30 1994-04-28 Kawai Musical Instr Mfg Co Ltd Sound effect device
WO2010114008A1 (en) * 2009-04-03 2010-10-07 株式会社ブリヂストン Device for producing single crystal of silicon carbide
JP2010241628A (en) * 2009-04-03 2010-10-28 Bridgestone Corp Apparatus for producing silicon carbide single crystal
CN102388170A (en) * 2009-04-03 2012-03-21 株式会社普利司通 Device for producing single crystal of silicon carbide
JP2016532629A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Method and apparatus for producing bulk silicon carbide from silicon carbide precursor
JP2019214511A (en) * 2013-09-06 2019-12-19 ジーティーエイティー コーポレーションGtat Corporation Production method and device of bulky silicon carbide from silicon carbide precursor
US10633762B2 (en) 2013-09-06 2020-04-28 GTAT Corporation. Method for producing bulk silicon carbide by sublimation of a silicon carbide precursor prepared from silicon and carbon particles or particulate silicon carbide
US11434582B2 (en) 2013-09-06 2022-09-06 Gtat Corporation Method for producing bulk silicon carbide by sublimation of a silicon carbide precursor prepared from silicon and carbon particles or particulate silicon carbide

Similar Documents

Publication Publication Date Title
US8512471B2 (en) Halosilane assisted PVT growth of SiC
JP4553489B2 (en) Formation of bulk single crystals of silicon carbide
JPH11508531A (en) Apparatus and method for growing an object epitaxially by CVD
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JPS6357400B2 (en)
JPH04193799A (en) Production of silicon carbide single crystal
JPH0465400A (en) Method for growing sic single crystal
JP2795574B2 (en) Method for producing silicon carbide body
US3804682A (en) Method for controlled doping of semiconductor crystals
US4239584A (en) Molecular-beam epitaxy system and method including hydrogen treatment
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP3823345B2 (en) Single crystal growth method and single crystal growth apparatus
JPH06298600A (en) Method of growing sic single crystal
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JPH0416597A (en) Production of silicon carbide single crystal
JPH06298514A (en) Production of highly pure silicon carbide
JP2000233993A (en) Production of semiconductor crystal
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor
JPH05105596A (en) Method for growing single crystal of silicon carbide
JPS6071596A (en) Vapor-phase growth apparatus
JPH031486Y2 (en)
JPH039077B2 (en)
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPS6131393A (en) Vapor phase growth device