JPH0465351A - Mgo sintered body and production thereof - Google Patents
Mgo sintered body and production thereofInfo
- Publication number
- JPH0465351A JPH0465351A JP2178402A JP17840290A JPH0465351A JP H0465351 A JPH0465351 A JP H0465351A JP 2178402 A JP2178402 A JP 2178402A JP 17840290 A JP17840290 A JP 17840290A JP H0465351 A JPH0465351 A JP H0465351A
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- sintered body
- fine powder
- powder
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 45
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000000465 moulding Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims description 27
- 238000010304 firing Methods 0.000 claims description 13
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 93
- 239000000395 magnesium oxide Substances 0.000 abstract description 46
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 28
- 239000002245 particle Substances 0.000 abstract description 20
- 238000005245 sintering Methods 0.000 abstract description 16
- 239000011230 binding agent Substances 0.000 abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052593 corundum Inorganic materials 0.000 abstract description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 7
- 230000035939 shock Effects 0.000 abstract description 4
- 238000011109 contamination Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract 4
- 239000000155 melt Substances 0.000 abstract 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- 150000004703 alkoxides Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- -1 magnesium titanate Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はMgO焼結体及びその製造方法に係り、詳しく
は、高純度金属の溶解用ルツボ、鉄や合金の真空溶解用
ルツボ、高周波炉による金属溶解用ルツボ、電子セラミ
ックス焼成用ルツボ又は耐火物サヤ等の基材として好適
な、MgO焼結体及びその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an MgO sintered body and a method for manufacturing the same, and specifically relates to a crucible for melting high-purity metals, a crucible for vacuum melting iron and alloys, and a high-frequency furnace. The present invention relates to an MgO sintered body suitable as a base material for metal melting crucibles, electronic ceramic firing crucibles, refractory sheaths, etc., and a method for manufacturing the same.
[従来の技術]
一般に、セラミックスの焼結とは、加熱により相接する
粒子が接近し、全体が収縮して焼き固まる現象をいう。[Prior Art] Generally, sintering of ceramics refers to a phenomenon in which adjoining particles are brought close to each other by heating, the whole shrinks, and is baked and hardened.
この焼結の駆動力は、粒子集合体の総表面積を小さくす
ることによって、系の表面自由エネルギーを最小にしよ
うとする力である。The driving force for this sintering is a force that attempts to minimize the surface free energy of the system by reducing the total surface area of the particle aggregate.
このように、焼結は固体の表面エネルギーを原動力とし
、固体内の物質の移動によっておこる現象であることか
ら、緻密、微細で均一な組織を有し、安定な性能を有す
る焼結体を得るためには、原料の調整方法が根本的で重
要な問題点とされ、まず、原料粉末を十分に細かく粉砕
すること、その他、焼結助剤、焼成条件を選定すること
などによって、粒子内における物質移動を助長する方策
が検討されている。In this way, sintering is a phenomenon that is driven by the surface energy of a solid and is caused by the movement of substances within the solid, so it is possible to obtain a sintered body that has a dense, fine, and uniform structure and has stable performance. In order to achieve this, the method of preparing the raw material is considered to be a fundamental and important issue. First, the raw material powder must be sufficiently finely ground, and the sintering aids and firing conditions must be selected to improve the internal structure of the particles. Measures to promote mass transfer are being considered.
例えば、高純度マグネシア(MgO)焼結体の製造にお
いて、原料を細かく粉砕する方法としては、鋼製ボール
ミル等を用いて粉砕する方法がある。しかるに、この方
法は不純物除去のため、後に酸処理、水洗い等の処理を
必要とするという問題があるため、最近ではジンターコ
ルンド質のボットミルで粉砕している。この場合、原料
は、その粉末の粒度が大部分は100μm以下で、その
うち相当の部分が10μm以下であるように粉砕される
。For example, in the production of high-purity magnesia (MgO) sintered bodies, there is a method of finely pulverizing the raw material using a steel ball mill or the like. However, this method has a problem in that it requires subsequent treatments such as acid treatment and water washing to remove impurities, so recently it has been pulverized using a Sinterkold type bot mill. In this case, the raw material is ground so that the particle size of the powder is mostly below 100 μm, of which a significant portion is below 10 μm.
このようにして調整されたMgO原料粉末を焼成するに
あたっては、焼結温度を低下させ、あるいは結晶の成長
を抑制するために微量ないし少量の焼結助剤が加えられ
る。MgO焼成にあたっては、5i02、ZrO2、C
aO等が焼結助剤として添加混合される。しかして、こ
の混合物は可塑性がないことから、通常、有機質バイン
ダーを1〜2重量重量%添加口、ラバープレス、押出成
形等の方法で成形し、1300〜2000℃で焼成し、
焼結体を得ている。When sintering the MgO raw material powder prepared in this way, a trace or small amount of sintering aid is added to lower the sintering temperature or to suppress crystal growth. For MgO firing, 5i02, ZrO2, C
AO etc. are added and mixed as a sintering aid. However, since this mixture has no plasticity, it is usually molded by adding 1 to 2% by weight of an organic binder, using a rubber press, extrusion molding, etc., and then baked at 1300 to 2000°C.
A sintered body is obtained.
[発明が解決しようとする諜!!!]
このように、焼結助剤として5iO2
Zr02、CaO等を添加混合して焼成する従来の方法
によれば、比較的容易にMgO焼結体を得ることが可能
となる。しかるに、このような従来法により得られたM
gO焼結体は、緻密性において十分満足し得るものとは
いえず、このため、ルツボやサヤの基材として用いた場
合、焼結助剤のSiO2,ZrO2,CaO等が、電子
セラミックス等の被焼成物にコンタミネーションを起こ
すという問題が生しる。更に、従来法によるMgO焼結
体はサーマルショックに対しては強くない等の欠点があ
った。[The invention tries to solve the problem! ! ! ] Thus, according to the conventional method of adding and mixing 5iO2 Zr02, CaO, etc. as a sintering aid and firing, it is possible to obtain a MgO sintered body relatively easily. However, M obtained by such a conventional method
The gO sintered body cannot be said to have sufficient density, and therefore, when used as a base material for crucibles or sheaths, sintering aids such as SiO2, ZrO2, CaO, etc. A problem arises in that the object to be fired is contaminated. Furthermore, the MgO sintered body produced by the conventional method has drawbacks such as not being strong against thermal shock.
本出願人は、上記従来法の問題点を解決するべく種々検
討を重ねた結果、アルコキシド法で生成されるAj!2
03を超微粒子焼結助剤として添加混合することによっ
て、低温でしかも短時間で極めて緻密なMgO焼結体を
製造することができることを見出し、高純度MgO原料
に焼結助剤として超微粒子アルコキシドAl1203を
添加混合し、更にバインダーを添加混合し、得られた混
合物を成形した後焼成する高純度MgO焼結体の製造方
法を先に特許8願した(特開昭62−83358号。As a result of various studies aimed at solving the problems of the above-mentioned conventional methods, the present applicant has found that Aj! 2
We discovered that by adding and mixing 03 as an ultrafine particle sintering aid, an extremely dense MgO sintered body could be produced at low temperatures and in a short time. Eight patent applications were previously filed for a method for producing a high-purity MgO sintered body by adding and mixing Al1203, further adding and mixing a binder, molding the resulting mixture, and then firing it (Japanese Patent Laid-Open No. 83358/1983).
以下「先願」という。)
上記先願の方法によれば、m密で高強度な高純度MgO
焼結体が提供される。Hereinafter referred to as "prior application". ) According to the method of the previous application, m-density, high-strength, high-purity MgO
A sintered body is provided.
本発明は上記先順を更に改良し、より一層m密で、耐熱
強度、機械的強度の高いMgO焼結体及びその製造方法
を提供することを目的とする。The object of the present invention is to further improve the above-mentioned method, and to provide an MgO sintered body with even higher m-density, higher heat resistance strength, and higher mechanical strength, and a method for manufacturing the same.
[課題を解決するための手段]
請求項(1)のMgO焼結体は、高純度MgO原料及び
AfL2oa微粉と、MgO原料及びAIL203微粉
との合計重量に対して0.1〜2重量%のT i 02
rIi、粉とを含む混合物を成形した後焼成して得ら
れることを特徴とする
請求項(2)のMgO焼結体の製造方法は、高純度Mg
O原料及びAIL20a微粉と、MgO原料及びAf2
0s微粉との合計重量に対して0.1〜21量%のTi
O2微粉とを含む混合物を成形した後焼成することを特
徴とする。[Means for Solving the Problems] The MgO sintered body of claim (1) contains 0.1 to 2% by weight of the high purity MgO raw material and AfL2oa fine powder, and the total weight of the MgO raw material and AIL203 fine powder. T i 02
The method for producing an MgO sintered body according to claim (2), wherein the MgO sintered body is obtained by molding and then firing a mixture containing high-purity Mg
O raw material and AIL20a fine powder, MgO raw material and Af2
0.1 to 21% Ti based on the total weight with 0s fine powder
The method is characterized in that a mixture containing O2 fine powder is molded and then fired.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
なお、以下において、r%ノは「重量%」を示す。In addition, in the following, r% indicates "wt%".
本発明において、MgO原料としては、高純度MgOを
用いる。高純度MgO原料としては、純度99.0%以
上の高純度品が好ましい。In the present invention, high purity MgO is used as the MgO raw material. As the high-purity MgO raw material, a high-purity product with a purity of 99.0% or more is preferable.
本発明において、MgO原料は、平均粒径が10μm0
μm以下程りわけ5μm以下程度の粉末が好ましい。M
gO原料の平均粒径が大き過ぎると、焼結による物質移
動が十分ではなく、m密な焼結体とならないばかりでな
く、機械的強度も小さいものとなる。なお、MgO原料
としては、軽焼又は重焼のMgOや、マグネシアクリン
カ−電融マグネシア等を使用することができる。In the present invention, the MgO raw material has an average particle size of 10 μm0.
Powder with a particle size of about 5 μm or less is preferable. M
If the average particle size of the gO raw material is too large, the mass transfer during sintering will not be sufficient, and not only will a dense sintered body not be obtained, but the mechanical strength will also be low. Incidentally, as the MgO raw material, light-fired or heavy-fired MgO, magnesia clinker-electrofused magnesia, etc. can be used.
Al1203微粉としては、アルコキシドを加水分解し
て得られたAj22 o3の微粉を用いるのが好ましい
。具体的にはAJ2のアルコキシドを加水分解して得ら
れた粉末を必要に応じて粉砕、仮焼したものが用いられ
る。このアルコキシド法によるAA2 os微粉の平均
粒径は0.1μm以下、特に0.01〜o、ootμm
であることが好ましい。As the Al1203 fine powder, it is preferable to use Aj22 o3 fine powder obtained by hydrolyzing an alkoxide. Specifically, a powder obtained by hydrolyzing the alkoxide of AJ2 is pulverized and calcined as necessary. The average particle size of the AA2 os fine powder obtained by this alkoxide method is 0.1 μm or less, especially 0.01 to 0.0 μm.
It is preferable that
Ti02t!粉としては、ルチル型、アナターゼ型のい
ずれも使用し得るが、通常はルチル型の微粒子を用いる
。TiO2微粉は平均粒径10μm以下、特に5μm以
下、とりわけ1μm以下のサブミクロン粒子が好ましい
。Ti02t! As the powder, either rutile type or anatase type can be used, but rutile type fine particles are usually used. The TiO2 fine powder is preferably submicron particles with an average particle diameter of 10 μm or less, particularly 5 μm or less, especially 1 μm or less.
本発明において、Al2O3微粉及びTiO2微粉は焼
結助剤として添加するが、その添加量は次のような範囲
とする。即ち、Al1203微粉の添加量はMgO原料
に対して0.005〜1.0%とするのが好ましい。A
l2203微粉が0.005%未満では、本発明による
十分な改善効果が得られず、1.0%を超えるとAl1
203が多過ぎてムライトの析出が過剰となり、逆に強
度の低下をひき起こす。また、TiO2微粉は、MgO
原料、Al2203微粉及びTiO2微粉の合計重量に
対して0.1〜2%とする。TiO2微粉の割合が0.
1%未満では本発明による十分な改善効果が得られず、
2%を超えるとMgOの物性に多少影響を与えることが
ある。In the present invention, Al2O3 fine powder and TiO2 fine powder are added as sintering aids, and the amount added is within the following range. That is, the amount of Al1203 fine powder added is preferably 0.005 to 1.0% based on the MgO raw material. A
If the l2203 fine powder is less than 0.005%, sufficient improvement effect by the present invention cannot be obtained, and if it exceeds 1.0%, Al1
Too much 203 causes excessive precipitation of mullite, which conversely causes a decrease in strength. In addition, TiO2 fine powder is MgO
The amount is 0.1 to 2% based on the total weight of the raw materials, Al2203 fine powder and TiO2 fine powder. The proportion of TiO2 fine powder is 0.
If it is less than 1%, sufficient improvement effect by the present invention cannot be obtained,
If it exceeds 2%, the physical properties of MgO may be affected to some extent.
MgO原料、A 1120 s微粉及びTiO2微粉の
原料混合物には、可塑性を付与するために必要に応じて
バインダーを添加する。バインダーとしては、通常用い
られる有機質バインダーが使用される。有機質バインダ
ーとしてはPEG、PVB等が挙げられる。バインダー
の添加量はMgO原料に対して0.5〜5.0%とする
のが好ましい。A binder is added to the raw material mixture of the MgO raw material, A 1120 s fine powder, and TiO2 fine powder as necessary in order to impart plasticity. As the binder, a commonly used organic binder is used. Examples of organic binders include PEG and PVB. The amount of binder added is preferably 0.5 to 5.0% based on the MgO raw material.
本発明においては、まずMgO原料に
Al1203微粉の所定量を湿式又は乾式で添加混合し
た後、又はAl203微粉と共に、必要量のバインダー
を添加混合する。そして、更にTi0pffa粉の所定
量を添加混合し、得られた混合物を加圧成形法等の成形
法により成形する。加圧成形法により成形する場合、成
形圧力は500〜2000 K g / c rn’程
度が好適である。なお、成形にあたっては、原料混合物
の成形性を向上させる目的でスプレードライによる造粒
等の前処理を施すのが好ましい。In the present invention, first, a predetermined amount of Al1203 fine powder is added to and mixed with the MgO raw material in a wet or dry manner, or a required amount of binder is added and mixed together with the Al203 fine powder. Then, a predetermined amount of Ti0pffa powder is further added and mixed, and the resulting mixture is molded by a molding method such as a pressure molding method. When molding is performed using a pressure molding method, the molding pressure is preferably about 500 to 2000 kg/crn'. Note that during molding, it is preferable to perform pretreatment such as granulation by spray drying in order to improve the moldability of the raw material mixture.
得られた成形体の焼成は、まず常温から、400〜60
0℃の間の所定温度(例えば500℃)までloo 〜
200’C/hrで昇温し、該所定温度から1500〜
1800’Cの間の最終焼成温&(例えば1600t)
まで1oo〜25゜’C/ h rで昇温した後、該最
終焼成温度に1〜2時間保持するものが好ましい。The obtained molded body is first fired at room temperature and then at a temperature of 400~600℃.
Loo to a predetermined temperature between 0℃ (e.g. 500℃)
Raise the temperature at 200'C/hr, and from the predetermined temperature to 1500~
Final firing temperature between 1800'C & (e.g. 1600t)
It is preferable that the final firing temperature be maintained at the final firing temperature for 1 to 2 hours after the temperature is raised to 10 to 25°C/hr.
[作用]
M g OA 12203系に第三成分としてTiO2
を添加したものは、MgOAl2203系におけるムラ
イトの結合に加えて、MgO−TiO2系によるチタン
酸マグネシウムが結晶粒界に生成し、このチタン酸マグ
ネシウムが粒界を埋めて結晶粒子間の結合強度を高める
と共に、MgO結晶の粒成長をコントロールする。この
ため、緻密で耐熱性のMgO焼結体が得られる。[Action] Adding TiO2 as a third component to M g OA 12203 system
In addition to the bonding of mullite in the MgOAl2203 system, magnesium titanate due to the MgO-TiO2 system is generated at the grain boundaries, and this magnesium titanate fills the grain boundaries and increases the bond strength between crystal grains. At the same time, grain growth of MgO crystals is controlled. Therefore, a dense and heat-resistant MgO sintered body can be obtained.
ところで、Mg0−Al2203系におイテ、A12o
3の添加量が多い場合、ムライト買の析出が過剰となっ
て強度の低下をひき起こすが、TiO2はMgOマトリ
ックスとなじみの良いチタン酸マグネシウムを生成する
ため、強度低下等、物性に与える悪影響は殆どない。こ
のため、TiO2は比較的多く添加した場合でも、Al
22 o3のような不具合を生じることはない。By the way, it is suitable for Mg0-Al2203 system, A12o
If the amount of 3 added is large, excessive precipitation of mullite will cause a decrease in strength, but since TiO2 produces magnesium titanate that is compatible with the MgO matrix, there will be no negative effects on physical properties such as a decrease in strength. There aren't many. Therefore, even when TiO2 is added in a relatively large amount, Al
22 No problems like o3 will occur.
なお、本発明において、Al1203としてアルコキシ
ド法によるAl120sを用いた場合には、更に次のよ
うな効果が奏される。In addition, in the present invention, when Al120s produced by the alkoxide method is used as Al1203, the following effects are further produced.
一般に、アルコキシド法により得られる粉末は、粒径が
小さく、表面が活性でしかも高純度である。Generally, powders obtained by the alkoxide method have small particle sizes, active surfaces, and high purity.
このため、高純度のMgO原料に、アルコキシド法によ
り得られた超微粒子AjZ203を添加混合することに
よって、MgO原料粉末の粒子間に超微粒子粉末のAl
2O3が均一に拡散分布されるようになるため、低い焼
成温度で均一かつ緻密な焼結体を得ることが可能となる
。Therefore, by adding and mixing ultrafine particles AjZ203 obtained by the alkoxide method to a high-purity MgO raw material, the ultrafine Al of the ultrafine powder is created between the particles of the MgO raw material powder.
Since 2O3 becomes uniformly diffused and distributed, it becomes possible to obtain a uniform and dense sintered body at a low firing temperature.
この超微粒子アルコキシドAjZ203は、1200″
’Ci度の温度でMgO粉末粒子間に拡散し始め、約1
500℃で完全に固溶する。従って、添加したアルコキ
シドAl2O3が残存することなく、MgO粒子はスピ
ネルボンドされて強固に結合し、得られる焼結体はより
一層緻密で高強度となり、また、耐コンタミネーション
性、耐サーマルショック性に優れたものとなる。This ultrafine alkoxide AjZ203 has a diameter of 1200″
'Ci degree begins to diffuse between MgO powder particles, approximately 1
Complete solid solution at 500°C. Therefore, the added alkoxide Al2O3 does not remain and the MgO particles are spinel-bonded and strongly combined, resulting in a sintered body that is denser and has higher strength, and also has excellent contamination resistance and thermal shock resistance. It will be excellent.
[実施例]
以下に実施例及び比較例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。[Examples] The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.
実施例1,2、比較例1
純度99.0%の高純度MgO(平均粒径10μm以下
)に、アルコキシド法により得られた、粒径10〜1o
oA、純度99,9%の高純度Al2O3微粉を0.4
%添加混合し、更に有機質バインダーとしてPE01%
を添加混合した。Examples 1 and 2, Comparative Example 1 High-purity MgO with a purity of 99.0% (average particle size of 10 μm or less) was added with a particle size of 10 to 1o obtained by an alkoxide method.
oA, 0.4% high purity Al2O3 fine powder with purity of 99.9%
% and then PE01% as an organic binder.
were added and mixed.
この混合物に、TiO2微粉(平均粒径1μm)を第1
表に示す割合で添加しくただし、比較例1では添加せず
)、更に混合して得られた混合物をラバープレス法によ
り、成形圧力1500K g / c m”で成形した
。次いで、成形体を常温より500℃まで150℃/
h rで昇温し、500から1700℃まで200℃/
h rで昇温し、更に1700℃でlhr保持するこ
とにより焼成し、MgO焼結体を得た。このMgO焼結
体の各種物性を測定し、結果を第1表に示した。Add TiO2 fine powder (average particle size 1 μm) to this mixture as a first
The mixture was added in the proportions shown in the table (but not added in Comparative Example 1), and the resulting mixture was molded by a rubber press method at a molding pressure of 1500 K g/cm.Then, the molded body was heated to room temperature. From 500℃ to 150℃/
Raise the temperature at 200℃/hr from 500 to 1700℃
The temperature was raised for hr, and the temperature was further maintained at 1700° C. for 1 hr to sinter, yielding an MgO sintered body. Various physical properties of this MgO sintered body were measured and the results are shown in Table 1.
第 1 表
*:理論値に対する割合
表1から、本発明により、著しくm密で高強度なMgO
焼結体が容易に得られることが明らかである。Table 1 *: Ratio to theoretical values From Table 1, it is clear that the present invention produces extremely dense and high-strength MgO.
It is clear that the sintered body is easily obtained.
[発明の効果]
以上詳述した通り、本発明によれば、極めて緻密で高純
度なMgO焼結体が提供される。従つて、本発明のMg
O焼結体は、サーマルショックに対して耐久性が高く、
しかも、ルツボ、サヤ等の基材とした場合の被焼成物、
溶融物に対する耐コンタミネーション性にも優れたもの
となる。[Effects of the Invention] As detailed above, according to the present invention, an extremely dense and highly pure MgO sintered body is provided. Therefore, Mg of the present invention
O sintered body has high durability against thermal shock,
Moreover, the material to be fired when used as a base material for crucibles, pods, etc.
It also has excellent contamination resistance against melted materials.
本発明により製造される高純度MgO焼結体は、高純度
金属の溶解用ルツボ、鉄や合金の真空溶解用ルツボ、高
周波炉による金属溶解用ルツボ、電子セラミックス焼成
用ルツボ又は耐火物サヤ等の基材として、工業的に極め
て有用である。The high-purity MgO sintered body produced by the present invention can be used in crucibles for melting high-purity metals, crucibles for vacuum melting iron and alloys, crucibles for melting metals in high-frequency furnaces, crucibles for firing electronic ceramics, refractory sheaths, etc. It is industrially extremely useful as a base material.
Claims (2)
MgO原料及びAl_2O_3微粉との合計重量に対し
て0.1〜2重量%のTiO_2微粉とを含む混合物を
成形した後焼成して得られることを特徴とするMgO焼
結体。(1) High purity MgO raw material and Al_2O_3 fine powder,
An MgO sintered body, characterized in that it is obtained by molding a mixture containing TiO_2 fine powder in an amount of 0.1 to 2% by weight based on the total weight of the MgO raw material and Al_2O_3 fine powder, and then firing the mixture.
MgO原料及びAl_2O_3微粉との合計重量に対し
て0.1〜2重量%のTiO_2微粉とを含む混合物を
成形した後焼成することを特徴とするMgO焼結体の製
造方法。(2) High purity MgO raw material and Al_2O_3 fine powder,
A method for producing an MgO sintered body, which comprises molding a mixture containing TiO_2 fine powder in an amount of 0.1 to 2% by weight based on the total weight of the MgO raw material and Al_2O_3 fine powder, and then firing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2178402A JPH0465351A (en) | 1990-07-05 | 1990-07-05 | Mgo sintered body and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2178402A JPH0465351A (en) | 1990-07-05 | 1990-07-05 | Mgo sintered body and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0465351A true JPH0465351A (en) | 1992-03-02 |
Family
ID=16047874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2178402A Pending JPH0465351A (en) | 1990-07-05 | 1990-07-05 | Mgo sintered body and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0465351A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142708A (en) * | 1976-05-22 | 1977-11-28 | Mino Yogyo Kk | Basic refractories |
JPH03159956A (en) * | 1989-11-17 | 1991-07-09 | Harima Ceramic Co Ltd | Production of porous refractory for gas blowing |
-
1990
- 1990-07-05 JP JP2178402A patent/JPH0465351A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142708A (en) * | 1976-05-22 | 1977-11-28 | Mino Yogyo Kk | Basic refractories |
JPH03159956A (en) * | 1989-11-17 | 1991-07-09 | Harima Ceramic Co Ltd | Production of porous refractory for gas blowing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20050071626A (en) | Method for producing aluminum magnesium titanate sintered product | |
JPH0218309B2 (en) | ||
JP3548438B2 (en) | Method for producing low thermal expansion ceramics | |
JPH0572341B2 (en) | ||
JPH0465351A (en) | Mgo sintered body and production thereof | |
US3979214A (en) | Sintered alumina body | |
JP3734540B2 (en) | Manufacturing method of indium oxide-zinc oxide based sintered compact target | |
JPH0465350A (en) | Mgo sintered body and production thereof | |
JP2004315293A (en) | Zirconia member for heat treatment and method for manufacturing the same | |
JPH02180747A (en) | Wear resistant alumina ceramics and production thereof | |
JPS6256356A (en) | Manufacture of mullite sintered body | |
JPS647030B2 (en) | ||
JP2586153B2 (en) | Alumina-silica based sintered body and method for producing the same | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JP2586151B2 (en) | Alumina-silica based sintered body and method for producing the same | |
JPH04159387A (en) | Production of alumina abrasive grain for polishing | |
JPS6283358A (en) | Manufacture of high purity mgo sintered body | |
JPH02116664A (en) | Preparation of sintered body of mullite | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPS60186462A (en) | Thermal impact-resistant refractories | |
JPH06100358A (en) | Production of mullite sintered compact | |
JPH07133149A (en) | Production of magnesia sintered body | |
JPH04104945A (en) | Mullite-sic composite sinter | |
JPS6272554A (en) | Manufacture of fine polycrystal al2o3 sintered body | |
JP2510251B2 (en) | Method for manufacturing silicon carbide sintered body |