JPH0465285B2 - - Google Patents

Info

Publication number
JPH0465285B2
JPH0465285B2 JP58171623A JP17162383A JPH0465285B2 JP H0465285 B2 JPH0465285 B2 JP H0465285B2 JP 58171623 A JP58171623 A JP 58171623A JP 17162383 A JP17162383 A JP 17162383A JP H0465285 B2 JPH0465285 B2 JP H0465285B2
Authority
JP
Japan
Prior art keywords
pressure
steam
valve
secondary side
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58171623A
Other languages
Japanese (ja)
Other versions
JPS6064108A (en
Inventor
Shinkichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO KAKOKI
Original Assignee
CHUO KAKOKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO KAKOKI filed Critical CHUO KAKOKI
Priority to JP17162383A priority Critical patent/JPS6064108A/en
Publication of JPS6064108A publication Critical patent/JPS6064108A/en
Publication of JPH0465285B2 publication Critical patent/JPH0465285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は減圧スチーム加熱装置に関する。 各種製造工場等においては、加熱処理が広く行
なわれている。一般にかかる加熱処理は、被加熱
物を100℃以上の比較的高温で加熱することが多
く、ボイラからのスチームを単純利用した、全体
として加圧系の加熱装置を用いて行なつている。 一方、化学工場等においては、作業の安全や製
品の品質の関係で、被加熱物を100℃以下の比較
的低温で加熱しなければならない場合がある。 本発明は、小型軽量にして安価な装置で常時安
定した減圧スチームを供給することにより、被加
熱物を100℃以下の比較的低温で安全且つ効率的
に加熱することができる減圧スチーム加熱装置に
関するものである。 <従来の技術、その問題点> 従来、被加熱物を100℃以下の比較的低温で加
熱する場合、前記したような加圧系の加熱装置を
応用して、高価な圧力制御機構(PIC)や温度制
御機構(TIC)を駆使し、実際には相当量のスチ
ームロスを甘受しつつ、減圧スチームを発生させ
て加熱することや、温水で加熱することが行なわ
れている。 しかし、PICやTICを駆使すればそれだけ高価
になり、相当量のスチームロスを甘受すれば熱エ
ネルギの面で非効率的になることは避けられない
という問題点がある。また温水は熱容量が小さ
く、境膜伝熱係数も低いため加熱効率が悪く、必
然に加熱装置も大型で重量に富むようになるとい
う問題点がある。 <発明が解決しようとする問題点、その解決手段
> 本発明は叙上の如き従来の問題点を解決する改
良された減圧スチーム加熱装置を提供するもので
ある。 しかして本発明は、間接加熱容器を介在して減
圧弁とスチームトラツプとが接続され、減圧弁の
一次側に供給されたスチームをスチームトラツプ
の二次側に接続された減圧ポンプで誘導すること
により、減圧弁の二次側及び間接加熱容器並びに
スチームトラツプの間に所望の減圧系を形成さ
せ、間接加熱容器を減圧スチームで加熱する装置
であつて、前記減圧弁の弁がその二次側と連通す
る圧力室の可動画壁に連結されており、該圧力室
は上部の固定画壁と該固定画壁に取付けられた伸
縮可能な筒状の周壁と該周壁に取付けられた下部
の前記可動画壁とで画成されていて、該可動画壁
に該弁の作動方向と逆方向の負荷がかけられ、前
記スチームトラツプがその一次側と二次側に絶え
ず連通するバイパスを備えて成るものであること
を特徴とする減圧スチーム加熱装置に係る。 本発明において肝要な点は、減圧弁、間接加熱
容器、スチームトラツプ及び減圧ポンプがこの順
序で接続された減圧スチーム加熱装置であつて、
前記減圧弁の弁がその二次側と連通する圧力室の
可動画壁に連結されていること、該圧力室は上部
の固定画壁と該固定画壁に取付けられた伸縮可能
な筒状の周壁と該周壁に取付けられた下部の前記
可動画壁とで画成されていること、該可動画壁に
該弁の作動方向と逆方向の負荷がかけられている
こと及び前記スチームトラツプがその一次側と二
次側に絶えず連通するバイパスを備えていること
にある。 <作用> 例えば減圧弁の二次側の減圧程度が所望値より
も絶対圧で低くなると、圧力室の減圧程度も同様
に絶対圧で低くなるため、可動画壁にかけられて
いる負荷に打ち勝つて該可動画壁が上昇する。そ
して該可動画壁と共に該減圧弁の弁も上昇し、そ
の開度が大きくなるため、それだけ大量のスチー
ムが減圧弁の一次側から二次側へと流れ、二次側
の減圧程度が絶対圧で高くなつて、二次側の減圧
程度が所望値に調整される。 以下、図面に基づいて本発明の構成を詳細に説
明する。 <実施例> 第1図は本発明の一実施例を示す系統図、第2
図は第1図の減圧弁を略示する拡大図である。減
圧弁11、間接加熱容器12、スチームトラツプ
13及び減圧ポンプ14がこの順序で接続されて
いる。減圧弁11の一次側P1に図中矢印Aの如
く供給されたスチームを、スチームトラツプ13
の二次側S2に接続されている減圧ポンプ14で誘
導し、減圧弁11の二次側P2及び間接加熱容器
12並びにスチームトラツプ13の一次側S1の間
に減圧系を形成させ、間接加熱容器12を減圧ス
チームで加熱する構成である。 本発明において、減圧弁11はその二次側P2
の減圧程度により作動する逆負荷をかけられた弁
21を有している。すなわち、弁21は減圧弁1
1の二次側P2と連通する圧力室22の可動画壁
23に連結されており、圧力室22は上部の固定
画壁24と固定画壁24に取付けられた伸縮可能
な筒状の周壁25と周壁25に取付けられた下部
の可動画壁23とで画成されていて、可動画壁2
3に弁21の作動方向と逆方向の負荷26がかけ
られているのである。 減圧弁11の二次側P2の減圧程度が所望値よ
りも絶対圧で低くなると(系を減圧にしすぎた場
合)、圧力室22の減圧程度も同様に絶対圧で低
くなるため、該減圧程度が負荷26に打ち勝つ
て、可動画壁23が上昇する。そして可動画壁2
3と共に弁21も上昇し、その開度が大きくなる
ため、それだけ大量のスチームが一次側P1から
二次側P2へと流れ、二次側P2の減圧程度が絶対
圧で高くなつて、二次側P2の減圧程度が所望値
に調整される。逆に、二次側P2の減圧程度が所
望値よりも絶対圧で高くなると(系をより減圧に
する必要のある場合)、上記とは逆に可動画壁2
3が下降し、これと共に弁21も下降して、その
開度が小さくなるため、それだけ小量のスチーム
が一次側P1から二次側P2へと流れ、二次側P2
減圧程度が絶対圧で低くなつて、二次側P2の減
圧程度が所望値に調整される。 第3図は本来加圧系で使用される従来の減圧弁
を略示する拡大図である。図示した減圧弁はその
二次側P4の圧力により作動する正負荷をかけら
れた弁31を有している。すなわち、弁31は減
圧弁の二次側P4と連通する圧力室32の可動画
壁33に連結されており、圧力室32は上部の固
定画壁34と固定画壁34に取付けられた伸縮可
能な筒状の周壁35と周壁35に取付けられた下
部の可動画壁33とで画成されていて、可動画壁
33に弁31の作動方向と正方向の基礎36に支
持されたスプリング37の押圧力(負荷)がかけ
られているのである。したがつてその作用の一例
を挙げると、減圧弁の二次側P4の圧力が所望値
よりも低くなると(系の圧力が足らない場合)、
該圧力がスプリング37の押圧力に打ち負け、可
動画壁33と共に弁31が上昇し、この結果それ
だけ大量のスチームが減圧弁の一次側P3から二
次側P4へと流れ、二次側P4の圧力が高くなつて、
二次側P4の圧力が所望値に調整されるという構
成であるが、二次側P4の圧力が大気圧以下の場
合は、作動しない。 要するに、本発明における減圧弁は、系の減圧
状態(絶対圧で大気圧より低い圧力状態)を制御
するため、第3図の如き従来の減圧弁とは作用機
構が全く逆になつており、その二次側の減圧程度
により作動する逆負荷をかけられた弁を有してい
るのである。 また本発明において、スチームトラツプ13
は、その一次側S1から二次側S2に絶えず連通する
バイパス15を備えている。従来のように、本来
加圧系で使用されるスチームトラツプにも、バイ
パスが設けられているが、かかる従来品のバイパ
スは、スチームの通過開始時やトラツプされるス
チーム量等により、その一次側と二次側とを断続
して連通するものである。この種の従来品による
と、本発明のように、スチームトラツプ13の二
次側S2に接続されている減圧ポンプ14でスチー
ムを誘導して系の減圧状態を制御する場合、その
安定制御が著しく困難である。すなわち、本発明
の如き系の減圧制御をする場合、従来のスチーム
トラツプを使用すると、所謂脈動が発生し、これ
が系の減圧制御に著しい障害となるのである。 本発明において、系の減圧制御を確実に行な
い、したがつて間接加熱容器12に安定して減圧
スチームを供給するには、前述の如く、系の減圧
制御に好適改良された減圧弁及びスチームトラツ
プを組み込むことが肝要なのである。 次の第1表は、第1図に例示したような本発明
に係る減圧スチーム加熱装置を用いて減圧スチー
ムを発生させ、該減圧スチームの通過ジヤケツト
を備える間接加熱容器に22℃の水を連続流入させ
た場合の試験結果の一例である。この第1表よ
り、減圧弁の二次側の温度及び圧力は、水の流入
量の変動にかかわらず、一定に近い値を示してい
ることが判る。
<Industrial Application Field> The present invention relates to a reduced pressure steam heating device. Heat treatment is widely performed in various manufacturing plants. In general, such heat treatment often involves heating the object to a relatively high temperature of 100° C. or higher, and is carried out using a pressurized heating device that simply utilizes steam from a boiler. On the other hand, in chemical factories and the like, objects to be heated may have to be heated at a relatively low temperature of 100°C or less for reasons of work safety and product quality. The present invention relates to a reduced-pressure steam heating device that can safely and efficiently heat an object at a relatively low temperature of 100°C or less by constantly supplying stable reduced-pressure steam with a small, lightweight, and inexpensive device. It is something. <Conventional technology and its problems> Conventionally, when heating an object to be heated at a relatively low temperature of 100°C or less, an expensive pressure control mechanism (PIC) was used to apply a pressure-based heating device such as the one described above. In reality, heating is performed by generating reduced pressure steam or heating with hot water, making full use of temperature control mechanisms (TICs) and accepting a considerable amount of steam loss. However, the problem is that the more PIC or TIC is used, the more expensive it becomes, and if a considerable amount of steam loss is accepted, it will inevitably become inefficient in terms of heat energy. In addition, hot water has a small heat capacity and a low membrane heat transfer coefficient, resulting in poor heating efficiency, which inevitably results in a large and heavy heating device. <Problems to be Solved by the Invention and Means for Solving the Problems> The present invention provides an improved reduced pressure steam heating device that solves the conventional problems as described above. Therefore, in the present invention, a pressure reducing valve and a steam trap are connected through an indirect heating container, and the steam supplied to the primary side of the pressure reducing valve is guided by a pressure reducing pump connected to the secondary side of the steam trap. By doing so, a desired pressure reduction system is formed between the secondary side of the pressure reduction valve, the indirect heating container, and the steam trap, and the indirect heating container is heated with reduced pressure steam. The pressure chamber is connected to a movable wall of a pressure chamber that communicates with the secondary side, and the pressure chamber has an upper fixed partition wall, an expandable and contractible cylindrical peripheral wall attached to the fixed partition wall, and a movable wall attached to the peripheral wall. a bypass defined by said movable wall at a lower portion, said movable wall being loaded in a direction opposite to the direction of actuation of said valve, and said steam trap being in constant communication with its primary and secondary sides; The present invention relates to a reduced pressure steam heating device comprising: The important point in the present invention is a reduced pressure steam heating device in which a pressure reducing valve, an indirect heating container, a steam trap, and a pressure reducing pump are connected in this order,
The valve of the pressure reducing valve is connected to a movable wall of a pressure chamber that communicates with its secondary side, and the pressure chamber has an upper fixed partition wall and a retractable cylindrical wall attached to the fixed partition wall. The steam trap is defined by a peripheral wall and the lower movable wall attached to the peripheral wall, a load is applied to the movable wall in a direction opposite to the operating direction of the valve, and the steam trap is The primary and secondary sides are equipped with a bypass that constantly communicates with them. <Function> For example, if the degree of pressure reduction on the secondary side of the pressure reducing valve is lower in absolute pressure than the desired value, the degree of pressure reduction in the pressure chamber will also be lower in absolute pressure, so it will be difficult to overcome the load applied to the movable wall. The movable wall rises. Then, the valve of the pressure reducing valve also rises together with the movable wall, and its opening becomes larger, so a large amount of steam flows from the primary side of the pressure reducing valve to the secondary side, and the degree of pressure reduction on the secondary side is reduced to absolute pressure. The degree of pressure reduction on the secondary side is adjusted to a desired value. Hereinafter, the configuration of the present invention will be explained in detail based on the drawings. <Example> Figure 1 is a system diagram showing an example of the present invention, and Figure 2 is a system diagram showing an example of the present invention.
The figure is an enlarged view schematically showing the pressure reducing valve of FIG. 1. A pressure reducing valve 11, an indirect heating vessel 12, a steam trap 13 and a pressure reducing pump 14 are connected in this order. The steam supplied to the primary side P1 of the pressure reducing valve 11 as shown by arrow A in the figure is transferred to the steam trap 13.
A pressure reducing system is formed between the secondary side P2 of the pressure reducing valve 11 , the indirect heating vessel 12, and the primary side S1 of the steam trap 13. , the indirect heating container 12 is heated with reduced pressure steam. In the present invention, the pressure reducing valve 11 has its secondary side P 2
The valve 21 has a reverse load applied thereto and operates depending on the degree of pressure reduction. That is, the valve 21 is the pressure reducing valve 1
The pressure chamber 22 is connected to a movable wall 23 of a pressure chamber 22 that communicates with the secondary side P 2 of the pressure chamber 22, and the pressure chamber 22 includes an upper fixed partition wall 24 and an expandable cylindrical peripheral wall attached to the fixed partition wall 24. 25 and a lower movable moving wall 23 attached to the peripheral wall 25, the movable moving wall 2
3 is applied with a load 26 in the opposite direction to the operating direction of the valve 21. When the degree of pressure reduction on the secondary side P 2 of the pressure reducing valve 11 becomes lower in absolute pressure than the desired value (if the system is depressurized too much), the degree of pressure reduction in the pressure chamber 22 also becomes lower in absolute pressure, so that the pressure reduction When the load 26 is overcome, the movable wall 23 rises. And movable wall 2
3, the valve 21 also rises and its opening becomes larger, so a large amount of steam flows from the primary side P1 to the secondary side P2 , and the degree of pressure reduction on the secondary side P2 becomes higher in absolute pressure. , the degree of pressure reduction on the secondary side P2 is adjusted to a desired value. Conversely, if the degree of pressure reduction on the secondary side P 2 becomes higher in absolute pressure than the desired value (if the system needs to be further reduced in pressure), then, contrary to the above, the movable wall 2
3 descends, and along with this, the valve 21 also descends, and its opening becomes smaller, so a small amount of steam flows from the primary side P 1 to the secondary side P 2 , and the pressure on the secondary side P 2 is reduced. becomes lower in absolute pressure, and the degree of pressure reduction on the secondary side P2 is adjusted to a desired value. FIG. 3 is an enlarged view schematically showing a conventional pressure reducing valve originally used in a pressurized system. The illustrated pressure reducing valve has a positively loaded valve 31 which is actuated by the pressure on its downstream side P4 . That is, the valve 31 is connected to a movable wall 33 of a pressure chamber 32 that communicates with the secondary side P 4 of the pressure reducing valve, and the pressure chamber 32 is connected to a movable wall 33 of a pressure chamber 32 that communicates with the secondary side P 4 of the pressure reducing valve. The spring 37 is defined by a cylindrical circumferential wall 35 and a lower movable wall 33 attached to the circumferential wall 35, and is supported on the movable movable wall 33 by a base 36 in the operating direction of the valve 31 and in the forward direction. A pressing force (load) of Therefore, to give an example of its action, if the pressure on the secondary side P4 of the pressure reducing valve is lower than the desired value (when the system pressure is insufficient),
This pressure is overcome by the pressing force of the spring 37, and the valve 31 rises together with the movable moving wall 33. As a result, a large amount of steam flows from the primary side P3 of the pressure reducing valve to the secondary side P4 , and the secondary side As the pressure of P 4 increases,
Although the configuration is such that the pressure on the secondary side P 4 is adjusted to a desired value, it does not operate if the pressure on the secondary side P 4 is below atmospheric pressure. In short, the pressure reducing valve of the present invention controls the reduced pressure state of the system (absolute pressure lower than atmospheric pressure), so its operating mechanism is completely reversed from that of the conventional pressure reducing valve as shown in FIG. It has a reverse-loaded valve that operates depending on the degree of pressure reduction on the secondary side. Further, in the present invention, the steam trap 13
is equipped with a bypass 15 that constantly communicates from its primary side S 1 to its secondary side S 2 . Conventionally, steam traps originally used in pressurized systems are also provided with a bypass, but the bypass of such conventional products depends on the timing of the passage of steam, the amount of steam trapped, etc. The side and the secondary side are connected intermittently. According to this type of conventional product, when controlling the reduced pressure state of the system by guiding steam with the reduced pressure pump 14 connected to the secondary side S2 of the steam trap 13 as in the present invention, the stable control is extremely difficult. That is, when controlling the pressure reduction of a system as in the present invention, if a conventional steam trap is used, so-called pulsation will occur, which will seriously impede the pressure reduction control of the system. In the present invention, in order to reliably control the pressure reduction of the system and thus stably supply reduced pressure steam to the indirect heating vessel 12, as described above, a pressure reducing valve and a steam truck are preferably improved to control the pressure reduction of the system. It is important to incorporate the The following Table 1 shows how to generate reduced pressure steam using the reduced pressure steam heating device according to the present invention as exemplified in FIG. This is an example of the test results when the water was allowed to flow in. From Table 1, it can be seen that the temperature and pressure on the secondary side of the pressure reducing valve exhibit nearly constant values regardless of fluctuations in the amount of water flowing in.

【表】 <発明の効果> 既に明らかなように、以上説明した本発明に
は、小型軽量にして安価な装置で常時安定した減
圧スチームを供給することができ、したがつて被
加熱物を100℃以下の比較的低温で安全且つ効率
的に加熱処理することができるという効果があ
る。
[Table] <Effects of the Invention> As is already clear, the present invention described above is capable of constantly supplying stable reduced pressure steam with a small, lightweight, and inexpensive device, and therefore, the object to be heated can be heated up to 100%. There is an effect that heat treatment can be performed safely and efficiently at a relatively low temperature of ℃ or lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2
図は第1図の減圧弁を略示する拡大図、第3図は
従来の減圧弁を略示する拡大図である。 11……減圧弁、12……間接加熱容器、13
……スチームトラツプ、14……減圧ポンプ、1
5……バイパス、21,31……弁、22,32
……圧力室、23,33……可動画壁、24,3
4……固定画壁、25,35……周壁、26……
負荷、37……スプリング。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure is an enlarged view schematically showing the pressure reducing valve of Fig. 1, and Fig. 3 is an enlarged view schematically showing the conventional pressure reducing valve. 11...Pressure reducing valve, 12...Indirect heating container, 13
...Steam trap, 14...Reducing pressure pump, 1
5... Bypass, 21, 31... Valve, 22, 32
...Pressure chamber, 23,33...Movable wall, 24,3
4... Fixed picture wall, 25, 35... Surrounding wall, 26...
Load, 37...spring.

Claims (1)

【特許請求の範囲】[Claims] 1 間接加熱容器を介在して減圧弁とスチームト
ラツプとが接続され、減圧弁の一次側に供給され
たスチームをスチームトラツプの二次側に接続さ
れた減圧ポンプで誘導することにより、減圧弁の
二次側及び間接加熱容器並びにスチームトラツプ
の間に所望の減圧系を形成させ、間接加熱容器を
減圧スチームで加熱する装置であつて、前記減圧
弁の弁がその二次側と連通する圧力室の可動画壁
に連結されており、該圧力室は上部の固定画壁と
該固定画壁に取付けられた伸縮可能な筒状の周壁
と該周壁に取付けられた下部の前記可動画壁とで
画成されていて、該可動画壁に該弁の作動方向と
逆方向の負荷がかけられ、前記スチームトラツプ
がその一次側と二次側に絶えず連通するバイパス
を備えて成るものであることを特徴とする減圧ス
チーム加熱装置。
1 A pressure reducing valve and a steam trap are connected via an indirect heating container, and the steam supplied to the primary side of the pressure reducing valve is guided by a pressure reducing pump connected to the secondary side of the steam trap, thereby reducing the pressure. A device for forming a desired pressure reduction system between a secondary side of a valve, an indirect heating container, and a steam trap, and heating the indirect heating container with reduced pressure steam, wherein the valve of the pressure reduction valve communicates with the secondary side. The pressure chamber is connected to a movable wall of a pressure chamber, and the pressure chamber has an upper fixed partition wall, an expandable cylindrical peripheral wall attached to the fixed partition wall, and a lower movable wall attached to the peripheral wall. a wall, the movable wall is loaded in a direction opposite to the direction of operation of the valve, and the steam trap is provided with a bypass that constantly communicates with its primary and secondary sides. A reduced pressure steam heating device characterized by:
JP17162383A 1983-09-16 1983-09-16 Decompression steam heater Granted JPS6064108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17162383A JPS6064108A (en) 1983-09-16 1983-09-16 Decompression steam heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17162383A JPS6064108A (en) 1983-09-16 1983-09-16 Decompression steam heater

Publications (2)

Publication Number Publication Date
JPS6064108A JPS6064108A (en) 1985-04-12
JPH0465285B2 true JPH0465285B2 (en) 1992-10-19

Family

ID=15926605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17162383A Granted JPS6064108A (en) 1983-09-16 1983-09-16 Decompression steam heater

Country Status (1)

Country Link
JP (1) JPS6064108A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788933B2 (en) * 1987-03-30 1995-09-27 株式会社テイエルブイ Vacuum steam generator
JPH02191501A (en) * 1989-01-20 1990-07-27 Fuji Photo Film Co Ltd Vacuum concentrating and drying method
AU601118B1 (en) * 1989-11-14 1990-08-30 Tlv Co., Ltd. Reduced pressure steam heat treating device
KR101261090B1 (en) * 2009-03-12 2013-05-06 (주)엘지하우시스 Decoration Sheet Setting Printing Pattern With The Embo Pattern and Manufacturing Method Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816660U (en) * 1971-03-17 1973-02-24
JPS4949232A (en) * 1972-09-14 1974-05-13
JPS5454330A (en) * 1977-10-11 1979-04-28 Tokico Ltd Pilot valve
JPS575717B2 (en) * 1973-08-24 1982-02-01

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318973Y2 (en) * 1980-06-10 1991-04-22

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816660U (en) * 1971-03-17 1973-02-24
JPS4949232A (en) * 1972-09-14 1974-05-13
JPS575717B2 (en) * 1973-08-24 1982-02-01
JPS5454330A (en) * 1977-10-11 1979-04-28 Tokico Ltd Pilot valve

Also Published As

Publication number Publication date
JPS6064108A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
JPH0465285B2 (en)
JPH0788934B2 (en) Vacuum steam generator
JPS5654982A (en) Controller for variable capacity pump
AU8252587A (en) Device for controlling overheating and scaling in an apparatus for heating a fluid and apparatus equipped with such a device
ATE101899T1 (en) HYDRAULIC CONTROL DEVICE.
SE8903923D0 (en) REDUCED PRESSURE
FR2428195A1 (en) Remote controlled fluid valve for heating systems - has sprung bellows contg. material which expands by application of heat from electric element
JPS5493778A (en) Fluid controller
JPS5716798A (en) Temperature controller for heat plant
JPS57936A (en) Deceleration sensing type hydraulic controller
JPS5341602A (en) Controlling device for one-through boiler
JPS57120785A (en) Pressure control valve
JPS58137684A (en) Electromagnetic sequence valve
JPS57110880A (en) Mixing valve
JPS5578875A (en) Pressure controller
JPH059524Y2 (en)
RU93044530A (en) METHOD FOR REGULATING THE OPERATION OF A STEAM CONTACT DEVICE
JPS55115664A (en) Double check valve
JPS54162072A (en) Pressure control valve
JPH0784951B2 (en) Steam supply system
FR2443640A1 (en) Liquid gas evaporator construction - has mixer and super-heater to feed evaporator with hot gas
JPH03281500A (en) Thermal switch
JPS5779372A (en) Fluid on-off solenoid valve
JPS5514361A (en) Proportional control type remote directional control valve device
JPS57120783A (en) Control of flow rate