JPH046495A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPH046495A
JPH046495A JP2107448A JP10744890A JPH046495A JP H046495 A JPH046495 A JP H046495A JP 2107448 A JP2107448 A JP 2107448A JP 10744890 A JP10744890 A JP 10744890A JP H046495 A JPH046495 A JP H046495A
Authority
JP
Japan
Prior art keywords
temperature
core
plenum
flowing out
coolant flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107448A
Other languages
Japanese (ja)
Inventor
Mitsuo Wakamatsu
若松 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2107448A priority Critical patent/JPH046495A/en
Publication of JPH046495A publication Critical patent/JPH046495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce temperature fluctuation in a welded part fixing a support pipe plate in the lower end part of a core upper mechanism and a straightening tube by a method wherein a low-temperature coolant flowing out between support pipes from a control rod is made to gush out into an upper plenum. CONSTITUTION:A high-temperature coolant flowing out of a fuel assembly 7 in a core and a low-temperature coolant flowing out of a control rod 10 are separated into main channel paths by support pipe plates 30 and 53. In other words, the high- temperature coolant flowing out of the fuel assembly 7 passes inside a straightening tube 31, gushes out into a pipe-plate upper plenum 56 and runs out into an upper plenum 12. Part of the high-temperature coolant not flowing into the straightening tube 31 passes through a pipe-plate lower plenum 55 and runs out into the upper plenum 12. Meanwhile, the low-temperature coolant flowing out of the control rod 10 flows mostly into an upper guide pipe 51, flows out into a pipe-plate intermediate plenum 54 between the support pipe plates 30 and 53, flows in the radial direction and runs to the upper plenum 12 around a core upper mechanism 29. According to this constitution, the high-temperature and low-temperature coolants are mixed in a fluid field which is located outside the core upper mechanism 29 and wherein no structural material of the upper plenum 12 exists.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は液体金属(金属す) IJウム)を冷却材とし
て使用する高速増殖炉における炉心上部機構の温度ゆら
ぎを低減した高速増殖炉に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention reduces temperature fluctuations in the upper core mechanism of a fast breeder reactor that uses liquid metal (metal) as a coolant. Regarding fast breeder reactors.

(従来の技術) 第4図は従来のループ型高速増殖炉の概略構成を示すも
のである。すなわち、原子炉容器1の内部には炉心2か
設けられ、かつ冷却材(液体ナリトウム)3か収容され
ている。原子炉容器1は底部に冷却材入口ノズル4、周
壁部に冷却材出口ノズル5を有し、上部開口は遮蔽プラ
グ6で閉塞されている。
(Prior Art) FIG. 4 shows a schematic configuration of a conventional loop type fast breeder reactor. That is, a reactor core 2 is provided inside the reactor vessel 1, and a coolant (liquid sodium) 3 is accommodated therein. The reactor vessel 1 has a coolant inlet nozzle 4 at the bottom, a coolant outlet nozzle 5 at the peripheral wall, and the upper opening is closed with a shielding plug 6.

炉心2は炉心燃料集合体(以下、単に燃料集合体と記す
)7、ブランケット燃料集合体8、反射体9および制御
棒10から構成され、炉心支持体11上に支持されてい
る。原子炉容器1内はこの炉心支持体11により上部プ
レナム12と下部プレナム13とに区画されている。な
お、符号■4は炉心2の下部に設けられた高圧プレナム
15は遮蔽プラグ6の下面に設けられたデイツプドブレ
ート、16は原子炉容器1内に内周壁との間に所要の間
隙17を有して配設された内筒で、この内筒14には複
数のフローホールI8か形成されている。
The core 2 includes a core fuel assembly (hereinafter simply referred to as a fuel assembly) 7, a blanket fuel assembly 8, a reflector 9, and a control rod 10, and is supported on a core support 11. The inside of the reactor vessel 1 is divided into an upper plenum 12 and a lower plenum 13 by the core support 11 . The high pressure plenum 15 provided at the lower part of the reactor core 2 is a deep plate provided on the lower surface of the shielding plug 6, and 16 is a required gap 17 between the inner peripheral wall and the inside wall of the reactor vessel 1. A plurality of flow holes I8 are formed in this inner cylinder 14.

第5図は第4図中の燃料集合体7を縦断面て示Jもので
ある。すなわち、六角筒状のラッパ管1gの上、端に(
、tハ〉ドリツプへ・・5・ド20か、ラッパ管19の
1端には小径のJ〕・トランスノズル21が取着されて
いる。ラッパ管19の内部には多数の燃料ビニ/2:)
が収容されでいる1、なお、符号23はこれらの燃料ビ
ン22をラッパ管19内に固定する固定板Cあり、24
は燃料ビン22同志の間に所定の間隙を形成するだめの
ワイヤズペーザである。
FIG. 5 shows a longitudinal section of the fuel assembly 7 in FIG. 4. That is, at the top and end of the hexagonal trumpet tube 1g (
To one end of the trumpet tube 19, a small diameter transformer nozzle 21 is attached. There are many fuel vinyls inside the trumpet tube 19/2:)
1, in which reference numeral 23 indicates a fixing plate C for fixing these fuel bottles 22 inside the trumpet tube 19, and 24
is a wire spacer that forms a predetermined gap between the fuel bottles 22.

ハンドリングへ・ソド20には冷却材流出口25が形成
されでいる。丁、ントランスノズル21は下端が閉塞さ
れ、周壁に複数の冷却材流入オリフィス26を有l、て
いる。このように構成された燃料集合体7はエントラン
スノズル21を高圧ブレナム14の連結管27Jご挿入
1.で、所定の位置に装荷されでいる。
A coolant outlet 25 is formed in the handling outlet 20. The transformer nozzle 21 is closed at its lower end and has a plurality of coolant inlet orifices 26 on its peripheral wall. The fuel assembly 7 configured in this way is constructed by inserting the entrance nozzle 21 into the connecting pipe 27J of the high pressure blenum 14. It is loaded in a predetermined position.

連結管27にはエントランスノズル21の冷却材流入オ
リフィス26に連通1−るオリフィス28が形成さねで
いる、。
An orifice 28 is formed in the connecting pipe 27 and communicates with the coolant inflow orifice 26 of the entrance nozzle 21 .

遮蔽体プラグには炉心」一部機構29が取付けられてい
る。これは炉心2の構成要素である燃料重合体7の交換
等を行なうためのもので、F端部(4第6図の如く構j
戊、されている。符号30は炉心−1一部機構29の1
端1.設(すら第1た支持着板て1、−の支持管板30
には各々の燃t1集合体7ごとに列前する複数の整流筒
31か溶接(、より固着されで”いる1、符号3:!は
溶接部を小している。こ才1らの整流筒31は支持管板
30から下方・・、突出し5、各々の燃料集合体′iの
冷却+Δ流出L12.5に、V方から対向するように構
成されCいる0、支持管板30には各々の整流筒31取
付部の中間位置に冷却材流通D33が形成され、名整流
筒31内には計装つ〕−ル34の下部が導入さ第1Cい
る1、なお、図中T11は燃料集合体を、′]′Cは制
御棒を示し、でいる。
A core mechanism 29 is attached to the shield plug. This is for replacing the fuel polymer 7, which is a component of the reactor core 2.
戊 has been. The code 30 is part 1 of the core-1 mechanism 29.
Edge 1. Installation (even the first support plate 1, - support tube plate 30
For each fuel t1 assembly 7, a plurality of rectifier tubes 31 are welded in front of the row (1, which is more firmly fixed, and the symbol 3:! has a smaller welded part. The cylinder 31 is configured to face downward from the support tube plate 30, the protrusion 5, and the cooling +Δ outflow L12.5 of each fuel assembly 'i from the V direction. A coolant flow D33 is formed at the intermediate position of the mounting portion of each rectifying tube 31, and the lower part of the instrumentation tube 34 is introduced into the rectifying tube 31. In the figure, T11 is the fuel The assembly is represented by ']'C represents the control rod.

以」−の如く構成された高速増殖・いにおいで、冷却1
入Y」ノズル4から流入し、た冷却材3は丁部プ1ノー
チム13から高圧−fレナム14を経で流入オリフィス
28.26を通過I2、エントランスノズル21に流入
jる。(lして、ラッパ管19内をf:方へ流通し、多
数の燃艷゛1ピン22の間を通過“する際に核反応熱が
与えらtrで冷却+A流出l]25から流出する。ここ
ζ゛、炉心2に装荷されノ、各々の燃#E+集合体7は
その装荷位置によって発熱量が異っているので、炉心2
上部における冷却材3の温度性4」を均一化し、で熱効
率を高めるように各々の燃料集合体゛7ごとの流量配分
が定めらねでいる。
Cooling 1 with fast growth and odor configured as follows.
The coolant 3 flows from the entrance nozzle 4 through the high pressure lennum 14, passes through the inlet orifice 28, 26, and enters the entrance nozzle 21. (l) flows in the trumpet tube 19 in the f direction, and as it passes between the many combustion pins 22, it is given nuclear reaction heat and is cooled by tr + A flows out from the outflow l] 25. .Here ζ゛, each fuel #E+ assembly 7 loaded in the core 2 has a different calorific value depending on its loading position.
The flow rate distribution for each fuel assembly 7 is determined so as to equalize the temperature property 4 of the coolant 3 in the upper part and increase thermal efficiency.

冷却材流出口25から流出1.た高温の冷却材3は冷却
打出[lノズル5を通I1.で原子炉容器1外へ流出し
、原子炉容器1の外部に設けられた熱交換器、循環ポ〉
ブ(いずれも図示せず)等を紅で再び冷却打入[」ノズ
ル4に環流する。
Outflow from the coolant outlet 25 1. The high temperature coolant 3 is passed through the cooling nozzle 5 to I1. It flows out of the reactor vessel 1, and the heat exchanger and circulation port installed outside the reactor vessel 1.
(none of which are shown), etc. are cooled and refluxed to the nozzle 4 again.

(発明が解決しようとする課題) 以十の如く構成された高速増殖炉にあ−)では、各々の
燃料集合体7から流出する冷却材;3の温度は一定でな
い。また、燃料集合体7とこれに隣接する制御棒10の
案内管との間にも温度差が生(、゛ているため、炉心上
部機構2gの下端部ζ、二設けられCいる整流筒31は
それらの温度差の影響を受けて、へT/゛丁、−T、て
表わされるところの温度ゆらぎ△φを生ずることになる
。この温度ゆらぎΔφは温度差の約60%で、1H2程
度のものである3、なお、T、、T2は隣接する2つの
燃料集合体7と制御棒IOから流出4”−る冷却材温度
、ΔTはa。
(Problems to be Solved by the Invention) In the fast breeder reactor configured as described above, the temperature of the coolant flowing out from each fuel assembly 7 is not constant. In addition, since there is also a temperature difference between the fuel assembly 7 and the guide tube of the control rod 10 adjacent thereto, the lower end ζ of the core upper mechanism 2g, the straightening tube 31 is affected by the temperature difference between them, resulting in a temperature fluctuation △φ expressed as T/゛d, -T.This temperature fluctuation Δφ is about 60% of the temperature difference, and is about 1H2. 3, where T, T2 is the temperature of the coolant flowing from two adjacent fuel assemblies 7 and control rods IO, and ΔT is a.

10間の各位置におする温度振幅を示4゛ものである。It shows the temperature amplitude at each position between 10 and 10 degrees.

。 第6図中、符号C:は隣接4゛る2つの燃ネ・1集合体
7と制御棒10から流出する温度の異なる冷却材同志か
混合1.はじめる点を示す。この0点は隣接する2一つ
の整流筒31.31の間にある。また、符号l)は支持
管板30の下面1位置における0点上方の点を示(5、
aL!燃料集合体7の上面位置における0点)方の点を
示Aもので、これらのa、b、c点を結ぶ線上の温度ゆ
らぎ分布は第7図に示I1、たよう1、なる。4゛なわ
ち、0点から上方で温度ゆらぎか発生(7,5点ではや
や減衰するが、その減衰量は僅かである。3図中に網目
状に囲った部分は最も温度;ゆらぎか大きい1、 −F−12、”こ、このよ・うな温度ゆらぎにより炉心
−1一部機構29のト”端部は構造材にリーマルストラ
イビングかie過度の熱疲労を受(づる。、特に支持管
板30と整流筒31 、!l:を固定する溶接部32は
熱岐労に弱い部分であり、クラックが牛(3,易いとい
一2課題かあっ ]’l。
. In FIG. 6, symbol C: indicates a mixture of coolants having different temperatures flowing out from two adjacent fuel fuel assembly 7 and control rod 10. Shows you where to start. This zero point is located between two adjacent rectifier cylinders 31,31. Further, the symbol l) indicates a point above the 0 point at the 1 position on the lower surface of the support tube sheet 30 (5,
aL! Point A on the upper surface position of the fuel assembly 7 is shown as point A, and the temperature fluctuation distribution on the line connecting these points a, b, and c is shown in FIG. 4. In other words, temperature fluctuations occur above the 0 point (at points 7 and 5, there is some attenuation, but the amount of attenuation is small. The area surrounded by a mesh in Figure 3 is the highest temperature; the fluctuation is the largest. 1. -F-12, Due to temperature fluctuations like this, the ends of some of the mechanisms 29 in the core 1 may suffer from excessive thermal fatigue, especially due to thermal striping of the structural members. The welded part 32 that fixes the support tube plate 30 and the rectifier tube 31, !l: is a part that is vulnerable to heat damage, and cracks can occur easily.

本発明は上記課題を解決するためになされたもので、炉
心上部機構の下端部の支持管板と整流筒とを固定する溶
接部における温度ゆらぎΔφを減少させ、溶接部にクラ
ック等が発生することを防止して安全性の高い高速増殖
炉を提供することにある。
The present invention has been made to solve the above problems, and reduces the temperature fluctuation Δφ in the welded part that fixes the support tube plate and the rectifier tube at the lower end of the upper core structure, thereby preventing cracks etc. from occurring in the welded part. The purpose of this invention is to provide a highly safe fast breeder reactor that prevents this from occurring.

[発明の構成] (課題を解決するための手段) 本発明は炉心に装荷された燃料集合体の上端部のハンド
リングヘッドに炉心上部機構の下端部に設けた整流筒を
上方から対向させて配置し、制御棒から流出す冷却材が
流入する案内管および前記整流筒をサポートする支持管
板を備えた高速増殖炉において、前記支持管板の下方に
間隔をもたせて第2の支持管板を取り付け、これらの支
持管の間から前記制御棒から流出した低温冷却材が上部
プレナムに流出するように構成したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, a rectifier cylinder provided at the lower end of the core upper mechanism is arranged so as to face the handling head at the upper end of the fuel assembly loaded in the reactor core from above. In a fast breeder reactor equipped with a guide tube into which coolant flowing out from a control rod flows and a support tube sheet that supports the straightening tube, a second support tube sheet is provided with a space below the support tube sheet. The present invention is characterized in that the low-temperature coolant flowing out from the control rods flows out from between these support tubes into the upper plenum.

(作 用) 炉心に装荷された各々の燃料集合体のハンドリングヘッ
ドの冷却材出口温度と制御棒集合体の出口温度差(ΔT
)をできるだけ小さくするために制御棒から流8する低
温冷却材を上部案内管内に導き管板中間プレナムに噴出
させる。そして、炉心燃料集合体から整流筒を通過して
流出する冷却材、整流筒外から管板下部プレナムを通り
上部プレナムに噴出させられる温度冷却材を炉心上部機
構外側の上部プレナム内でミキシングさせる。これによ
り下部支持管板の下面、また整流筒の側面に発生する温
度ゆらぎΔφを小さくし、熱疲労によるクラック等の発
生を防止でき、高速増殖炉の長期に恒る健全性を高める
ことができる。
(Function) The difference between the coolant outlet temperature of the handling head of each fuel assembly loaded in the core and the outlet temperature of the control rod assembly (ΔT
), the low temperature coolant flowing from the control rods is directed into the upper guide tube and jetted into the tube plate intermediate plenum. Then, the coolant flowing out from the core fuel assembly through the straightening tube and the temperature coolant jetted from outside the straightening tube through the tube plate lower plenum into the upper plenum are mixed in the upper plenum outside the core upper mechanism. This reduces the temperature fluctuation Δφ that occurs on the lower surface of the lower support tube plate and the side surface of the rectifier tube, prevents the occurrence of cracks due to thermal fatigue, and improves the long-term integrity of the fast breeder reactor. .

(実施例) 第1図を参照しながら本発明に係る高速増殖炉の一実施
例を説明する。
(Example) An example of a fast breeder reactor according to the present invention will be described with reference to FIG.

第1図においては本発明の要部のみ示しており、第6図
と同一部分には同一符号を付して重複する部分の説明は
省略する。
In FIG. 1, only the main parts of the present invention are shown, and the same parts as in FIG. 6 are given the same reference numerals, and the explanation of the overlapping parts is omitted.

すなわち、第1図において、第1の支持管板30の下方
に第2の支持管板53を設け、整流筒31は支持管板3
0、第2の支持管板53を貫通するように構成する。上
部案内管は第1の支持管板30の上部と第2の支持管板
53の下方に植列配置される。
That is, in FIG. 1, the second support tube sheet 53 is provided below the first support tube sheet 30, and the rectifying tube 31 is connected to the support tube sheet 3.
0, configured to penetrate through the second support tube sheet 53. The upper guide tubes are arranged in rows above the first support tube sheet 30 and below the second support tube sheet 53.

制御棒10には制御棒連結棒52が挿入されており、図
示しない制御素子を上下駆動させることによって炉心の
発熱量をコントロールしている。また、炉心の燃料集合
体7には燃料ピン22とその上部に中性子遮蔽体35を
備えている。
A control rod connecting rod 52 is inserted into the control rod 10, and the amount of heat generated in the core is controlled by vertically driving a control element (not shown). Further, the core fuel assembly 7 is provided with a fuel pin 22 and a neutron shield 35 above the fuel pin 22.

上記実施例の高速増殖炉において、炉心の燃料集合体7
から流出する高温冷却材と制御棒10から流出する低温
冷却材を第1の支持管板30ならびに第2の支持管板5
3によって主な流路パスを分離する。つまり、炉心の燃
料集合体7から流出する高温冷却材は整流筒31の内側
を通って管板上部プレナム56に噴出し、上部プレナム
12に流出する。また、整流筒31に流入しない一部の
高温冷却材は管板下部プレナム55を通過して上部プレ
ナム12に流出する。一方、制御棒10から流出する低
温冷却材は上部案内管51内に大部分が流入し、支持管
板30と第2の支持管53の間の管板中間プレナム54
に流出し径方向に流れて炉心上部機構29まわりの上部
プレナム12へと流れる。このように炉心の燃料集合体
7から流出する高温の冷却材と制御棒10から流出する
低温の冷却材を炉心上部機構29、下部では支持管板3
0と第2の支持管板53によって分離して流し、炉心上
部機構29の外側にある上部プレナム12の構造材がな
い流体基で高温低温冷却材をミキシングさせる。これに
より炉心上部機構29、整流筒31、支持管板30等の
構造物をサーマルストライビングに起因する熱疲労から
保護することができ、高速増殖炉の健全性を向上できる
。この第1の実施例では図中に網目で示した高温冷却材
と低温冷却材がミキシングする部分が最も温度ゆらぎが
大きくなる。しかしながら、構造材が存在する場所では
ないのでサーマルストライビングによる熱疲労は発生し
ない。
In the fast breeder reactor of the above embodiment, the fuel assembly 7 of the core
The high temperature coolant flowing out from the control rods 10 and the low temperature coolant flowing out from the control rods 10 are transferred to the first support tube sheet 30 and the second support tube sheet 5.
3 separates the main flow paths. That is, the high-temperature coolant flowing out from the fuel assembly 7 of the reactor core passes through the inside of the straightening tube 31, is ejected into the tube plate upper plenum 56, and flows out into the upper plenum 12. Further, a portion of the high-temperature coolant that does not flow into the straightening tube 31 passes through the tube plate lower plenum 55 and flows out into the upper plenum 12. On the other hand, most of the low-temperature coolant flowing out from the control rod 10 flows into the upper guide tube 51, and the tube sheet intermediate plenum 54 between the support tube sheet 30 and the second support tube 53
and flows radially into the upper plenum 12 around the upper core mechanism 29. In this way, the high temperature coolant flowing out from the fuel assembly 7 of the reactor core and the low temperature coolant flowing out from the control rods 10 are transferred to the core upper mechanism 29 and the support tube plate 3 at the lower part.
0 and the second support tube plate 53 to mix the high temperature and low temperature coolant in a fluid base free of the structural members of the upper plenum 12 outside the upper core structure 29. As a result, structures such as the core upper mechanism 29, the rectifier cylinder 31, and the support tube plate 30 can be protected from thermal fatigue caused by thermal striping, and the integrity of the fast breeder reactor can be improved. In this first embodiment, the temperature fluctuation is greatest in the area where the high-temperature coolant and the low-temperature coolant are mixed, which is indicated by the mesh in the figure. However, since this is not a location where structural materials exist, thermal fatigue due to thermal striping does not occur.

つぎに第2図および第3図を参照して本発明の他の実施
例を説明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 2 and 3.

なお、第1図と同一部分には同一符号で説明する。すな
わち、第2図において、制御棒10の上部案内管51を
支持管板30と第2の支持管板53によ、って2・つに
分離し2ないで]一部案内管51は1本のまま、制御棒
10を流出L2、上部案内管51内・\流入j、た低温
冷却1を低温フI:2−ホール57から管板中間ゾレナ
t1に流出させる1、流路を高温側、低温側C分離する
のは第1の実施例と同様であるが、1部案内管51を支
持管板30と第2の支持青板53によっ゛ζ6分割し6
ないため、熱変形等による分割したL部案内管の芯ずれ
のおそれがなく制御棒10の挿入性を損うことはない。
Note that the same parts as in FIG. 1 will be described using the same reference numerals. That is, in FIG. 2, the upper guide tube 51 of the control rod 10 is separated into two parts by the support tube plate 30 and the second support tube plate 53. As in the book, the control rod 10 is flown out L2, the upper guide tube 51 is inflow j, the low temperature cooling 1 is flowed out from the low temperature pipe I: 2-hole 57 to the tube plate intermediate Solena t1, and the flow path is set to the high temperature side. , the low-temperature side C is separated in the same manner as in the first embodiment, but one part of the guide tube 51 is divided into 6 pieces by the support tube plate 30 and the second support plate 53.
Therefore, there is no risk of misalignment of the divided L-portion guide tubes due to thermal deformation, etc., and the insertability of the control rod 10 is not impaired.

温度ゆらぎにJるザーマルスト°フイビング防止につい
では構造材から離れた上部ブレナム12間で温度ミ」〜
ソングを起こすのC゛、第1゜の実施例と同様に温度ゆ
らぎ)ごよる++−マルスドライビングを小ざくできる
Thermalst that responds to temperature fluctuations.To prevent fibbing, the temperature is adjusted between the upper bream 12 and away from the structural members.
As with the first embodiment, the ++-Mars driving caused by the temperature fluctuations that cause song can be reduced.

[発明の効果] 本発明によれば燃料集合体の制御棒の高低温冷却材の出
1−]部に位置する炉心に部機構の下部に第2の支持管
板を設けることによって炉心の燃11隼合体と制御棒の
冷却材を上部ブレナムの構造材のない部分(半径方向外
側)でミキシングさセる。。
[Effects of the Invention] According to the present invention, a second support tube plate is provided at the lower part of the section mechanism in the core located at the outlet 1-] of the high-temperature coolant of the control rod of the fuel assembly. 11. Mix the coolant for the Hayabusa combination and the control rods in the part of the upper brenum that does not have structural members (radially outward). .

、゛のため、サーマル:・ζトライじングの熱疲労を炉
心上部機構のF部に起−ン\11ないよう(,7”(き
、構造材(、熱疲労によるクラック等の発生か牛ILな
い安全性の高い高速増殖炉を折伏4るこ、1−が“(″
きる1、また、温度ゆらぎ1、二j、る熱疲労を小さく
てきれば整流筒、支持管板等ダ・高価“こ耐疲労性のイ
ン′Iネル等の材料を使用AζIll t、となく溶接
性、加」][性にもインコオ、ルよりは優れtJステ−
ン・1ンス鋼を使・)ごとができるので制作時のコスト
タウンを図ることもできる。7
, To prevent thermal fatigue due to thermal fatigue from occurring in the F part of the upper core mechanism (, 7"), to prevent the occurrence of cracks due to thermal fatigue in structural materials 4 Ruko, 1- is "("
In addition, if the thermal fatigue due to temperature fluctuations can be reduced, the rectifier tube, support tube plate, etc. can be made using expensive materials such as fatigue-resistant insulation panels. The weldability and weldability are also better than the tJ stage.
Since it can be made using steel, it is also possible to reduce costs during production. 7

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係る高速増殖炉の各実施
例における要部をそれぞ才し・部断面C示す側面図、第
3図は第2図における1・部案内管と整流筒との関係を
示4″横断面図、第4図は従来θ)高速増殖炉をボす概
略的縦断面図、第5図は第4図における燃料集合体を示
す縦断面図、第6図は第4図1.お1fる炉心1一部機
構の下部を−・部断面で示す側面図、第7図は従来の高
速増殖炉におijる温度ゆらぎ量の軸方向特性を示4〜
特性図である。 1・・・原子炉容器 2・・・炉心 3・・・冷却材 4・・・入[1ノズル 5・・・出I−1ノズル 6・・・遮蔽プラグ 7・・・炉心燃1集合体 8・・・ブランウッド燃料集合体 9・・・反射体 0・・・制御棒 1・・・炉心支持体 2・・・上部ブレナム 3・・・下部ブレナム 4・・・高圧ブL/ナム 5・・・ディップドブレ・−ト ロ・・・内筒 7・・・隙間 訃・・フローホール 9・・・ラッパ管 20・・・ハンドリングヘッド 21・・・Lン)・ラン・スノズル 22・・・燃木+1ビン 23・・・固定板 24・・・ワイヤスペーザ 25・・・冷却1出[1 26・・・冷却材流入オリ゛ノイス 27・・・連結管 28・・オリフィス 29・・・炉心上部機構 30・・・支持管板 31・・・整流筒 32・・・溶接部 33・・・冷却材流通[J 34・・・計装ウェル 35・・・中性イ遮蔽体 51・・・1一部案内管 52・・・制御棒連結棒 53・・・第2の支持管板 54・・・管板中間ブIノナノ、 55・・・管板下部プレナム 56・・・管板上部プレナム 57・・・低温フローホール
FIGS. 1 and 2 are side views showing the main parts of each embodiment of the fast breeder reactor according to the present invention, respectively. Figure 4 is a schematic vertical cross-sectional view showing the conventional θ) fast breeder reactor; Figure 5 is a vertical cross-sectional view showing the fuel assembly in Figure 4; Figure 4 is a side view showing the lower part of a part of the reactor core 1 in cross section, and Figure 7 shows the axial characteristics of temperature fluctuations in a conventional fast breeder reactor. ~
It is a characteristic diagram. 1... Reactor vessel 2... Core 3... Coolant 4... Input 1 nozzle 5... Output I-1 nozzle 6... Shielding plug 7... Core fuel 1 assembly 8... Branwood fuel assembly 9... Reflector 0... Control rod 1... Core support 2... Upper blennium 3... Lower blennium 4... High pressure beam L/Num 5 ...Dip doble - Toro...Inner cylinder 7...Gap...Flow hole 9...Trumpet tube 20...Handling head 21...Ln) Run snorzzle 22... Combustion wood + 1 bottle 23... Fixed plate 24... Wire spacer 25... Cooling 1 output [1 26... Coolant inflow orifice 27... Connecting pipe 28... Orifice 29... Core Upper mechanism 30... Support tube plate 31... Rectifier tube 32... Welding section 33... Coolant distribution [J 34... Instrumentation well 35... Neutral shielding body 51... 1 Part guide tube 52...Control rod connecting rod 53...Second support tube plate 54...Tube plate intermediate section 55...Tube plate lower plenum 56...Tube plate upper plenum 57...Low temperature flow hole

Claims (1)

【特許請求の範囲】[Claims] 炉心に装荷された燃料集合体の上端部のハンドリングヘ
ッドに炉心上部機構の下端部に設けた整流筒を上方から
対向させて配置し、制御棒から流出する冷却材が流入す
る案内管および前記整流筒をサポートする支持管板を備
えた高速増殖炉において、前記支持管板の下方に間隔を
もたせて第2の支持管板を取り付け、これらの支持管板
の間から前記制御棒から流出した低温冷却材が上部プレ
ナムに流出するように構成したことを特徴とする高速増
殖炉。
A rectifier tube provided at the lower end of the core upper mechanism is arranged to face the handling head at the upper end of the fuel assembly loaded in the reactor core from above, and a guide tube into which the coolant flowing out from the control rods flows and the rectifier tube are arranged to face each other from above. In a fast breeder reactor equipped with a support tube sheet that supports a cylinder, a second support tube sheet is installed below the support tube sheet with a space therebetween, and the low-temperature coolant flowing out from the control rod is collected between these support tube sheets. A fast breeder reactor characterized in that the reactor is configured such that it flows out into an upper plenum.
JP2107448A 1990-04-25 1990-04-25 Fast breeder reactor Pending JPH046495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107448A JPH046495A (en) 1990-04-25 1990-04-25 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107448A JPH046495A (en) 1990-04-25 1990-04-25 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH046495A true JPH046495A (en) 1992-01-10

Family

ID=14459412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107448A Pending JPH046495A (en) 1990-04-25 1990-04-25 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH046495A (en)

Similar Documents

Publication Publication Date Title
US8064564B2 (en) Neutron shielding panels for reactor pressure vessels
US9305668B2 (en) Pressurized water reactor flow skirt apparatus
US8483347B2 (en) Upper internals arrangement for a pressurized water reactor
US4069102A (en) Nuclear core region fastener arrangement
KR101060871B1 (en) Cooling duct for reactor emergency core coolant injection
JPS5829879B2 (en) Reactor
JPH0797147B2 (en) Pressurized water reactor
KR100346126B1 (en) Core internals of pressurized water reactor vessel
JPH046495A (en) Fast breeder reactor
CA1091827A (en) Pressurized water reactor flow arrangement
US20140241486A1 (en) Fuel assembly
US6888909B2 (en) Reactor pressure vessel
US5920603A (en) Forged core plate for a boiling water reactor
JP2809700B2 (en) Core structure for fast breeder reactor
JP5959043B2 (en) Rectifier in the upper plenum in the fast breeder reactor vessel
JPH0972985A (en) To-be-heated fluid mixing acceleration structure of vertical heat exchanger
JPH0348795A (en) Device for decreasing temperature fluctuation of fast breeder
JPH0746156B2 (en) Reactor with low core coolant intake
JPH07159570A (en) Fuel assembly
JPS63279198A (en) Nuclear reactor
JPH0413678B2 (en)
JPS59164892A (en) Shell and tube type heat exchanger
JPS60233591A (en) Nuclear reactor structure
JPH021591A (en) Piping structure for controlling reactivity of nuclear reactor
JPH1114781A (en) Reactor vessel wall cooling mechanism