JPH0464623A - Body structure of underground facility - Google Patents

Body structure of underground facility

Info

Publication number
JPH0464623A
JPH0464623A JP2175790A JP17579090A JPH0464623A JP H0464623 A JPH0464623 A JP H0464623A JP 2175790 A JP2175790 A JP 2175790A JP 17579090 A JP17579090 A JP 17579090A JP H0464623 A JPH0464623 A JP H0464623A
Authority
JP
Japan
Prior art keywords
ground
concrete
water
expansive
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2175790A
Other languages
Japanese (ja)
Other versions
JP2810970B2 (en
Inventor
Taku Ishii
卓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2175790A priority Critical patent/JP2810970B2/en
Publication of JPH0464623A publication Critical patent/JPH0464623A/en
Application granted granted Critical
Publication of JP2810970B2 publication Critical patent/JP2810970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PURPOSE:To improve water-stop ability by filling an expansive material which expands corresponding to the underground water, and which is constructed in a shell form, in the gap between a shell-formed body constructed in the space excavated in the ground, and the ground outside thereof. CONSTITUTION:A concrete body 2 of cylindrical body such as rotational ellipsoid or spherical body, is constructed in a cave, and an expansive material 3 is filled in the gap between the outside of the body wall 2 and a ground 1. The expansive pressure of the expansive material 3 is worked on the entire surface of the outer periphery of the concrete body wall 2 as well as on the entire surface of the inside of the ground 1. The expansive pressure worked on the ground 1 is worked on the entire surface of the outer periphery of the body wall 2 as well as on the ground 1, receiving the reaction of the ground 1, and the compressive force is gradually generated as the expansion is proceeded farther on the shell structure of the body wall 2. A clay material such as bentonite or an expansive resin is used for the expansive material 3. A cracked surface 5 or a gap that serves as a water pass of a concrete jointing surface 4 is pressed by the compressive reaction, and stop-water ability can thus be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地下室、トンネル等の地中構造物のように地
下水の漏水が問題となる構造物、あるいはタイムカプセ
ルや放射性廃棄物格納施設のように長期間の埋設期間中
に漏水を抑制する必要のある構造物等に適用される地中
施設の躯体構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to structures where underground water leakage is a problem, such as underground structures such as basements and tunnels, or to time capsules and radioactive waste storage facilities. This paper relates to the framework structure of underground facilities, which is applied to structures that need to suppress water leakage during long-term burial.

〔従来の技術〕[Conventional technology]

コンクリート材料そのものは、透水係数が1×10”c
m/s以下という非常に水を透水させにくい材料である
が、躯体としてI X 10−” am/Sの透水性能
を確保することは無理であった。そのため、従来の地中
構造物やその他の構造物を構成するコンクリート壁では
、完全な止水性能を期待することができなかった。それ
は以下の理由による。
The concrete material itself has a permeability coefficient of 1×10”c
Although it is a material that is extremely difficult to permeate water (less than m/s), it has been impossible to secure a water permeability of I x 10-” am/s as a frame.For this reason, conventional underground structures and other The concrete walls that make up the structure could not be expected to have complete water-stopping performance for the following reasons.

一般に地中構造物や建物等のコンクリート壁の施工では
、規模が大きくなると、施工技術上コンクリート打設を
一度で行うことができないため、数回に分けて行うのが
普通である。そのため、地下室、トンネル等の地中構造
物のように地下水の漏水が問題となる構造物や、一般の
建物のように雨水等の漏水が問題となる構造物を構成す
るコンクリート壁では、数回に分けて行ったコンクIJ
 −トの打ち継ぎ面に沿って浸水が発生しやすい。
In general, when constructing concrete walls for underground structures, buildings, etc., when the scale becomes large, concrete pouring cannot be done in one go due to construction technology, so it is common to do it in several parts. Therefore, concrete walls that make up structures such as underground structures such as basements and tunnels where leakage of groundwater is a problem, or structures where water leakage such as rainwater is a problem such as general buildings, can be used several times. Conch IJ was divided into
- Water is likely to infiltrate along the joint surface of the concrete.

そこで、このような浸水の一般的な対策とじては、打ち
継ぎ面を横断する場所にゴム等の止水性材料からなる止
水板を設置して打ち継ぎ面を堰き止める工法が採用され
ている。
Therefore, as a general countermeasure against such flooding, a method of damming the joint surface is adopted by installing a water stop plate made of water-stopping material such as rubber at the location that crosses the joint surface. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、長期耐久性を保証することが求められる躯体の
場合には、上記のような止水板を設置しても耐久性に不
安が残る。
However, in the case of a building frame that is required to guarantee long-term durability, even if a water stop plate like the one described above is installed, durability remains unsatisfactory.

その他、躯体としての止水性能を損なう原因を考察する
と、コンクリートには、硬化時の収縮に伴うひび割れや
外力による構造ひび割れが発生することがある。そのた
めにひび割れ面に沿った浸水が発生しやすい。
In addition, considering the causes of deterioration of the water-stopping performance of concrete as a building block, cracks may occur in concrete due to shrinkage during hardening or structural cracks may occur due to external forces. Therefore, water tends to infiltrate along the cracked surface.

また、地中構造物はできるだけ長期間にわたり耐久性の
大きい構造物であることが望ましいが、地中施設には土
圧が働くので、その上圧を受けて躯体壁のコンクリート
には引張応力が発生するために鉄筋あるいは鉄骨による
補強を必要としていた。このため、鉄筋や鉄骨による補
強を必要としないコンクリートに比べて建設費が高くな
るという欠点があった。
In addition, it is desirable for underground structures to be highly durable for as long as possible, but since earth pressure acts on underground facilities, the concrete of the frame walls receives tensile stress due to the upper pressure. This required reinforcement with reinforcing bars or steel frames. For this reason, it has the disadvantage of being more expensive to construct than concrete, which does not require reinforcement with reinforcing bars or steel frames.

さらに、地中施設の躯体壁を構成するコンクリートには
、鉄筋や鉄骨による補強を必要とするが、コンクリート
の中性化や鉄筋の腐食といった耐久性劣化要因が存在す
るたt、構造物の長期耐久性の性能は、あまり長期間に
わたって期待することはできないという欠点があった。
Furthermore, the concrete that makes up the framework walls of underground facilities requires reinforcement with reinforcing bars and steel frames, but there are factors that degrade durability such as concrete neutralization and corrosion of reinforcing bars, The drawback was that the durability performance could not be expected for a very long period of time.

本発明は、上記の課題を解決するものであって、確率的
に発生する透水性ひび割れ面や、施工技術上避けられな
い打ち継ぎ面の開口幅が大きくなることを防止すること
により、透水経路となるひび割れ面や打ち継ぎ面の透水
性を低減させ、結果として躯体壁の止水性を向上させる
ことを目的とするものである。
The present invention solves the above-mentioned problems, and prevents water permeable cracks from occurring stochastically and the opening width of the pouring joint surface from increasing, which is unavoidable due to construction technology, and thereby prevents water permeable paths. The purpose of this is to reduce the water permeability of cracked surfaces and joint surfaces, resulting in improved water-stopping properties of the building frame wall.

本発明の他の目的は、これまで鉄筋あるいは鉄骨による
補強を必要としていた地中構造物の躯体壁において鉄筋
や鉄骨の使用量の低減あるいは全く使用しないコンクリ
ート壁の採用を可能にすることである。
Another object of the present invention is to enable the adoption of concrete walls that use less or no reinforcing bars or steel frames in the frame walls of underground structures that have hitherto required reinforcement with reinforcing bars or steel frames. .

本発明のさらに他の目的は、鉄筋や鉄骨による補強を必
要としないコンクリート構造物を使用することによって
、コンクリートの中性化や鉄筋の腐食といった耐久性劣
化要因をなくすことである。
Still another object of the present invention is to eliminate durability deterioration factors such as concrete neutralization and corrosion of reinforcing bars by using a concrete structure that does not require reinforcement with reinforcing bars or steel frames.

〔課題を解決するだめの手段〕[Failure to solve the problem]

そのために本発明の地中施設の躯体構造は、地中に堀削
される空間と、該空間の中に構築されるシェル構造の躯
体と、該躯体の外側と地盤との間隙にシェル状に構築さ
れる膨張性材料とからなることを特徴とする。また、シ
ェル構造が軸対称シェル構造であり、膨張性材料に地下
水との反応によって膨張する材料を使用することを特徴
とするものである。
For this purpose, the framework structure of the underground facility of the present invention includes a space excavated underground, a shell structure framework built in the space, and a shell-shaped structure in the gap between the outside of the framework and the ground. characterized in that it is constructed of an expandable material. Further, the shell structure is an axially symmetrical shell structure, and the expandable material is a material that expands upon reaction with groundwater.

〔作用〕[Effect]

本発明の地中施設の躯体構造では、膨張性材料の膨張圧
力と地盤の反力とによって、躯体の全域に圧縮応力を発
生させることができる。また、軸対称シェル構造で、膨
張性材料に地下水との反応によって膨張する材料を使用
するので、コンクリート躯体壁の外周全面及び地盤の内
側全面に膨張圧を作用させることができる。
In the framework structure of an underground facility according to the present invention, compressive stress can be generated throughout the framework by the expansion pressure of the expandable material and the reaction force of the ground. In addition, since it has an axially symmetrical shell structure and uses a material that expands by reaction with groundwater as the expandable material, expansion pressure can be applied to the entire outer periphery of the concrete frame wall and the entire inner surface of the ground.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る地中施設の躯体構造の一実施例を
示す図であり、1は地盤、2はコンクリート躯体壁、3
は膨張性材料、4は打ち継ぎ面、5はひび割れを示す。
FIG. 1 is a diagram showing an embodiment of the framework structure of an underground facility according to the present invention, where 1 is the ground, 2 is a concrete framework wall, and 3 is a diagram showing an embodiment of the framework structure of an underground facility according to the present invention.
4 indicates an expansible material, 4 indicates a pouring surface, and 5 indicates a crack.

地盤が花崗岩のような堅固な岩盤である場合、第1図に
示すような楕円断面のトンネルあるいは回転楕円体くラ
フビーポール型)の空洞は、比較的軽微な支保構造を施
すことにより安定な空間を維持することができる。
When the ground is solid rock such as granite, a tunnel with an elliptical cross section or a cavity with a spheroid or rough pole shape as shown in Figure 1 can be made stable by providing a relatively light support structure. can be maintained.

そこで、本発明は、この空洞の中に図に示すようなシェ
ル構造の、例えば回転楕円体や球体あるいは楕円型断面
や円形断面の筒状体のコンクリート躯体壁2を構築する
。このコンクリート躯体壁2は、シェル構造特有の構造
力学的特徴を有する。
Therefore, in the present invention, a concrete frame wall 2 having a shell structure as shown in the drawings, for example, a spheroid, a sphere, or a cylindrical body having an elliptical or circular cross section, is constructed in this cavity. This concrete frame wall 2 has structural mechanical characteristics unique to a shell structure.

そして、このコンクリートg体壁2の外側と地盤〈地下
空洞の岩盤壁面〉 lとの間隙に膨張性材料3を充填し
ておく。ここで、膨張性材料3の膨張圧は、コンクリー
ト躯体壁2の外周全面及び地盤1の内側全面に対して働
き、地盤1に働く膨張圧は地盤1の反力を受けるので、
コンクリート躯体壁2の外周全面に膨張圧が働く。その
結果コンクIJ −ト躯体壁2のシェル構造には、膨張
が進むにつれて次第に圧縮力が発生する。
Then, the gap between the outside of the concrete g body wall 2 and the ground (rock wall surface of the underground cavity) l is filled with an expandable material 3. Here, the expansion pressure of the expandable material 3 acts on the entire outer circumference of the concrete frame wall 2 and the entire inside of the ground 1, and the expansion pressure acting on the ground 1 is subject to the reaction force of the ground 1.
Expansion pressure acts on the entire outer periphery of the concrete frame wall 2. As a result, compressive force is gradually generated in the shell structure of the concrete IJ-to frame wall 2 as the expansion progresses.

上記に示した膨張性材料3には、膨張性コンクリートあ
るいは地下水が浸透してくることによって膨潤するベン
トナイト等の粘土材料や膨潤性樹脂等を使用すればよし
)。
As the expandable material 3 shown above, expandable concrete, a clay material such as bentonite that swells when underground water permeates, a swelling resin, etc. may be used.

上言己の構造とすることにより、コンクリート躯体壁2
に発生したひび割れ面5あるいは施工時に発生したコン
クリート打ち継ぎ面4の水みちとなる間隙は、次第に増
大する圧縮応力によって押さえつけられるので、開口す
ることがなくむしろ閉口する。
By using the above structure, concrete frame wall 2
The cracked surface 5 that occurs during construction or the gap that becomes a water path in the concrete pouring surface 4 that occurs during construction is suppressed by the gradually increasing compressive stress, so it does not open but rather closes.

第2図は割れ目を有する材料の透水係数と拘束力との関
係を説明するための図である。
FIG. 2 is a diagram for explaining the relationship between the permeability coefficient and restraining force of a material having cracks.

ひび割れ面の透水係数は、第2図(a)に示すように拘
束力の増大に伴ってより小さくなる。これは、同図ら)
に示すような割れ目を有する岩石で測定したものであり
、流量測定結果から透水係数を測定し、横軸に有効拘束
力、縦軸に透水係数を表したものであるが、これより透
水係数は拘束力が増大することによって1〜2桁も減少
することがわかる。したがって、コンクIJ  )の割
れ目の透水係数も岩石の場合と同様に拘束力の増大に伴
って小さくなることは明らかである。
The hydraulic conductivity of the cracked surface becomes smaller as the restraining force increases, as shown in FIG. 2(a). This is the same figure)
The hydraulic conductivity coefficient is measured from the flow rate measurement results, and the horizontal axis represents the effective restraining force and the vertical axis represents the hydraulic conductivity coefficient.From this, the hydraulic conductivity coefficient is It can be seen that as the restraint force increases, it decreases by one to two orders of magnitude. Therefore, it is clear that the hydraulic conductivity of cracks in conch IJ) also decreases as the restraining force increases, as in the case of rocks.

ところで、コンクリートの強度は、圧縮力に対して強く
、引っ張り力に対して弱いことが知られてし)る。その
ため、地中施設のように外側からの土圧により圧縮力が
作用したり、内側からの水圧により引っ張り力が作用す
る構造物の場合には、引っ張り応力を分担し一定の強度
を持たせるために鉄筋コンクリートや鉄骨コンクリート
を使用する必要があった。しかし、第1図に示す本発明
に係る実施例の地中構造物では、コンクリート躯体のあ
らゆる部分において圧縮応力が発生するので、引っ張り
応力を分担する鉄筋は原則として不要になる。
By the way, it is known that the strength of concrete is strong against compressive force and weak against tensile force. Therefore, in the case of structures such as underground facilities where compressive force acts due to earth pressure from the outside or tensile force acts due to water pressure from the inside, it is necessary to share the tensile stress and maintain a certain level of strength. necessitated the use of reinforced concrete or steel-framed concrete. However, in the underground structure according to the embodiment of the present invention shown in FIG. 1, compressive stress is generated in all parts of the concrete frame, so reinforcing bars that share tensile stress are not required in principle.

この圧縮力は、膨張性材料の膨張圧をその配合によって
コントロールし、随意に設計することも可能であり、コ
ンクリート材料の設計強度も膨張性材料の配合によって
コントロールできる。つまり、膨張性材料の配合によっ
て膨張圧や強度を自由に設計することができるので、応
力が増大しすぎて躯体が破壊することを防ぐことができ
る。
This compressive force can be designed as desired by controlling the expansion pressure of the expandable material by its composition, and the design strength of the concrete material can also be controlled by controlling the composition of the expandable material. In other words, since the expansion pressure and strength can be freely designed by mixing the expandable materials, it is possible to prevent the structure from breaking due to an excessive increase in stress.

なお、本発明は、上記の実施例に限定されるものではな
く、種々の変形が可能である。例えば圧縮力を発生させ
るシェル構造の形状は、第1図に示した形状以外にもい
ろいろな形状設計が可能である。また、コンクリート壁
の厚さも適宜に選択し設計することが可能である。
Note that the present invention is not limited to the above embodiments, and various modifications are possible. For example, the shape of the shell structure that generates the compressive force can be designed in various shapes other than the shape shown in FIG. Furthermore, the thickness of the concrete wall can be appropriately selected and designed.

地中のコンクリートは中性化速度が遅いと考えられるが
、現時点では気中コンクリートの中性化予測データしか
ないので、それに基づいて中性化による鉄筋コンクリー
トの耐久性予測を実施せざるをえない。しかし、本発明
による地中構造物ではコンクリートに鉄筋や鉄骨を原則
として必要としない構造設計が可能であるため、コンク
リート躯体の構造耐久性や難透水性の長期保証について
は通常の鉄筋コンクリートに比べて非常に有利になるこ
とは胡らかである。
Concrete underground is thought to have a slow carbonation rate, but at present we only have carbonation prediction data for concrete in the air, so we have no choice but to predict the durability of reinforced concrete through carbonation based on that data. . However, since the underground structure according to the present invention can be designed without the need for reinforcing bars or steel frames in concrete in principle, the long-term guarantee of the structural durability and impermeability of the concrete frame is better than that of ordinary reinforced concrete. It is obvious that it will be very advantageous.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、確率
的に発生する透水性ひび割れ面や施工技術上避:すられ
ない打ち継ぎ面の開口幅が太き(なることを防止し、透
水経路となるひび割れ面や打ち継ぎ面の透水性を低減さ
せ、結果として躯体壁の止水性を向上させることができ
る。
As is clear from the above explanation, according to the present invention, the opening width of the pour joint surface is wide (to prevent water permeable cracks that occur stochastically and due to construction technology), and It is possible to reduce the water permeability of cracked surfaces and joint surfaces that serve as routes, and as a result, improve the water-stopping properties of the building frame wall.

また、これまで鉄筋あるいは鉄骨による補強を必要とし
ていた地中構造物の躯体壁に対して、本発明は、鉄筋や
鉄骨の使用量を低減あるいは全く使用しないコンクリー
ト壁を採用することを可能にするので、より低価格のコ
ンクリート壁を提供できる。
Furthermore, for the frame walls of underground structures that have hitherto required reinforcement with reinforcing bars or steel frames, the present invention makes it possible to use concrete walls that reduce or do not use reinforcing bars or steel frames at all. Therefore, we can provide concrete walls at a lower price.

さらに、本発明は、鉄筋や鉄骨による補強を必要としな
いコンクリート構造物を使用するので、コンクリートの
中性化や鉄筋の腐食といった耐久性劣化要図をなくすこ
とができ、結果として地中構造物の構造耐久性や難透水
性の長期保証を改善することができる。
Furthermore, since the present invention uses concrete structures that do not require reinforcement with reinforcing bars or steel frames, it is possible to eliminate durability deterioration issues such as concrete neutralization and corrosion of reinforcing bars, and as a result, underground structures It can improve the structural durability and long-term guarantee of low water permeability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る地中施設の躯体構造の1実施例を
示す図、第2図は割れ目を有する材料の透水係数と拘束
力との関係を説明するための図である。 ■・・・地盤、2・・・コンクリート躯体壁、3・・・
膨張性材料、4・・・打ち継ぎ面、5・・・ひび割れ。 第1図 出  願  人  清水建設株式会社 復代理人 弁理士 阿 部 龍 吉(外7名)十十++
十+十+十十++十十今+呼+十十→士士十啼十十十十
十++士十++++++十++十÷十士十++十+十十
士寸→÷十++÷十十十+十+十−15乏
FIG. 1 is a diagram showing one embodiment of the framework structure of an underground facility according to the present invention, and FIG. 2 is a diagram for explaining the relationship between the permeability coefficient and restraining force of a material having cracks. ■...Ground, 2...Concrete frame wall, 3...
Expandable material, 4... Pour joint surface, 5... Cracks. Figure 1 Applicant Sub-agent of Shimizu Corporation Patent attorney Ryukichi Abe (7 others) 10++
10 + 10 + 10 + + 10 now + call + 10 → samurai 11 11 10 + + 10 + + + + + + 10 + + 10 ÷ 10 + 10 + 10 + 10 + 10 + 10 + 10 ten + ten + ten - 15 scarcity

Claims (3)

【特許請求の範囲】[Claims] (1)地中に堀削される空間と、該空間の中に構築され
るシェル構造の躯体と、該躯体の外側と地盤との間隙に
シェル状に構築される膨張性材料とからなることを特徴
とする地中施設の躯体構造。
(1) Consisting of a space excavated underground, a shell-structured framework constructed within the space, and an expandable material constructed in a shell shape in the gap between the outside of the framework and the ground. The framework structure of an underground facility characterized by:
(2)シェル構造が軸対称シェル構造であることを特徴
とする請求項1記載の地中施設の躯体構造。
(2) The framework structure of an underground facility according to claim 1, wherein the shell structure is an axially symmetrical shell structure.
(3)膨張性材料に地下水との反応によって膨張する材
料を使用することを特徴とする請求項1記載の地中施設
の躯体構造。
(3) The framework structure of an underground facility according to claim 1, characterized in that the expandable material is a material that expands upon reaction with groundwater.
JP2175790A 1990-07-03 1990-07-03 Underground facility frame structure Expired - Fee Related JP2810970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175790A JP2810970B2 (en) 1990-07-03 1990-07-03 Underground facility frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175790A JP2810970B2 (en) 1990-07-03 1990-07-03 Underground facility frame structure

Publications (2)

Publication Number Publication Date
JPH0464623A true JPH0464623A (en) 1992-02-28
JP2810970B2 JP2810970B2 (en) 1998-10-15

Family

ID=16002298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175790A Expired - Fee Related JP2810970B2 (en) 1990-07-03 1990-07-03 Underground facility frame structure

Country Status (1)

Country Link
JP (1) JP2810970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788343B1 (en) * 2002-03-26 2007-12-27 한라공조주식회사 Structure connecting lead wire of filed coil assembly
CN105156120A (en) * 2015-09-11 2015-12-16 中铁九局集团第二工程有限公司 Inclined-shaft reverse excavation construction method for hillside cave depot
US9360057B2 (en) 2012-02-23 2016-06-07 Sanden Corporation Electromagnetic clutch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788343B1 (en) * 2002-03-26 2007-12-27 한라공조주식회사 Structure connecting lead wire of filed coil assembly
US9360057B2 (en) 2012-02-23 2016-06-07 Sanden Corporation Electromagnetic clutch
CN105156120A (en) * 2015-09-11 2015-12-16 中铁九局集团第二工程有限公司 Inclined-shaft reverse excavation construction method for hillside cave depot

Also Published As

Publication number Publication date
JP2810970B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
Meguid et al. The effect of erosion voids on existing tunnel linings
Kasper et al. Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments
Fernández Behavior of pressure tunnels and guidelines for liner design
Safan et al. Evaluation of polyurethane resin injection for concrete leak repair
Fu et al. Response of the ground and adjacent buildings due to tunnelling in completely weathered granitic soil
JP2007308995A (en) Under path and construction method for the same
JP5038281B2 (en) Water-stop structure, construction method thereof, and method of water-stopping anchor penetration part of water-impervious member
JPH0464623A (en) Body structure of underground facility
CN206090547U (en) Strength nature composite pile of dysmorphism
JP4611123B2 (en) Waste disposal site
Yang et al. Closed cavity thin-wall components design for prefabricated underground subway structures
Auld Design of underground plugs
CN214272102U (en) Waterproof construction of underground foundation ditch precipitation well
CN108625384A (en) A kind of construction method of deep strong permeable layer base pit dewatering structure
Kurukulasuriya Flat arch masonry retaining wall
Brierley et al. Tunnel Lining Design, Part 1: Design Considerations.
RU2277147C1 (en) Method for tunnel lining forming
Jia et al. Semi-empirical method for estimating stiffness and deformation of cylindrical retaining diaphragm wall
Puller The Waterproofness of Structural Diaphragm Walls.
JP7362447B2 (en) How to build buildings
Safana et al. Case Studies in Construction Materials
JP3014267B2 (en) Steel pipe sheet pile wall construction method and steel pipe sheet pile
JPH1181341A (en) Earthquake resistant pile construction method
Ma et al. Back analysis on a deep excavation in Stockholm with finite element method
JP2007162264A (en) Tunnel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees