JPH0464536B2 - - Google Patents

Info

Publication number
JPH0464536B2
JPH0464536B2 JP59265874A JP26587484A JPH0464536B2 JP H0464536 B2 JPH0464536 B2 JP H0464536B2 JP 59265874 A JP59265874 A JP 59265874A JP 26587484 A JP26587484 A JP 26587484A JP H0464536 B2 JPH0464536 B2 JP H0464536B2
Authority
JP
Japan
Prior art keywords
foam
polypropylene resin
weight
extrusion
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59265874A
Other languages
Japanese (ja)
Other versions
JPS61143449A (en
Inventor
Yutaka Ozaki
Masahiko Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP59265874A priority Critical patent/JPS61143449A/en
Publication of JPS61143449A publication Critical patent/JPS61143449A/en
Publication of JPH0464536B2 publication Critical patent/JPH0464536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は独立気泡性に優れたポリプロピレン系
樹脂発泡体を押出発泡成形により製造する方法に
関する。 (従来の技術) ポリプロピレン系樹脂は単独で用いると低密度
ポリエチレンなどの他のポリオレフイン系樹脂と
較べてその押出発泡性に著しく劣り、独立気泡率
の高い発泡体が得られない。その理由は、ポリプ
ロピレン系樹脂はその結晶化特性のゆえに適正な
発泡温度領域が極めて狭く発泡成形しにくいうえ
に、結晶化の際の多量の発熱や溶融強度の不足か
ら発泡直後に気泡が破壊されてしまうからであ
る。 そのため、ポリプロピレン系樹脂にエラストマ
ーを混合したり、架橋構造を導入したりして溶融
弾性を与えることにより押出発泡性の改善が図ら
れている。このような、エラストマーを混合する
例として、ポリブタジエンを用いた特開昭55−
40739号公報および特開昭56−60233号公報やエチ
レン−プロピレンゴムの混合物を開示した特開昭
57−1603号公報、および特開昭54−161671号公報
あるいはアイオノマー樹脂を混合した特開昭49−
74264号公報などがある。しかし、押出発泡性を
はじめ、得られた発泡体の耐熱性、熱安定性や生
産コストの面でこれら従来の方法はいずれも充分
であるといえない。また、架橋構造を導入する例
として、特開昭57−24221号公報には、発泡体に
架橋構造をもたせて溶融弾性を付与する方法が開
示されている。しかし、この方法は一段架橋発泡
であるため、安定性や連続成形性に問題があり、
しかも、酸化防止剤の使用により得られた樹脂の
長期耐熱性に欠ける。特開昭58−17127号公報お
よび特開昭58−49730号公報に開示されている方
法は、連続気泡性の押出発泡体を製品化したもの
であり、しかも単一グレード品しか提供しえな
い。 (発明が解決しようとする問題点) 本発明は上記従来技術の問題点を解決するもの
であり、その目的とするところは、独立気泡性に
優れた高発泡倍率のポリプロピレン系樹脂発泡体
の製造方法を提供することにある。本発明の他の
目的は、ポリプロピレン系樹脂発泡体を押出発泡
成形にて安価でかつ安定して得る方法を提供する
ことにある。 (問題点を解決するための手段) 本発明は、部分架橋したポリプロピレン系樹脂
を含むポリプロピレン系樹脂組成物が極めて良好
な発泡性と発泡体品質とを提供しうるという発明
者らの知見に基づいて完成された。 本発明の部分架橋ポリプロピレン系樹脂は、ポ
リプロピレン系樹脂と有機過酸化物などの架橋開
始剤とオキシム系化合物などの架橋助剤とを押出
などで溶融混練して得られる。ポリプロピレン系
樹脂は有機過酸化物のみでは分解反応が優先する
ため、架橋助剤を必要とする。 ポリプロピレン系樹脂としては、特に限定され
るものではなく、例えば、プロピレン単独重合体
あるいはプロピレンを主成分とするエチレンや他
のα−オレフインのランダム共重合体もしくはブ
ロツク共重合体などが適宜選択される。架橋性や
発泡性については、共重合体組成の方がやや優れ
ている。 架橋開始剤としては、各種の有機過酸化物が用
いられる。その中でも架橋効率の点から、使用す
るポリプロピレン系樹脂の融点よりも高い温度で
半減期が1分以上であるものが好ましい。これ
は、押出発泡法の場合、ポリプロピレン系樹脂が
溶融する前に有機過酸化物の分解されるのを防ぐ
ためである。有機過酸化物の添加方法は、押出機
を使う場合、有機過酸化物を直接ポリプロピレ
ン系樹脂にまぶす;有機過酸化物単体あるいは
これを架橋助剤や他の溶剤に溶融したものを押出
機の途中から供給する;あるいはあらかじめ有
機過酸化物の分解温度以下で混練して得られたマ
スターバツチを使用するなどの方法が適宜選択さ
れる。このような有機過酸化物としては、例え
ば、ジクミルパーオキシド;t−ブチルパーオキ
シド;ジ−t−ブチルパーオキシド;α・α′−ビ
ス(t−ブチルパーオキシイソプロピル)ベンゼ
ン;2・5−ジメチル−2・5−ジ(t−ブチル
パーオキシ)ヘキサン;2・5−ジメチル−2・
5−ジ(t−ブチルパーオキシ)ヘキサン−3;
ジ−t−ブチルジパーオキシイソフタレート;
2・5−ジメチル−2・5−ジ(ベンゾイルパー
オキシ)ヘキサンなどがある。これらの有機過酸
化物の添加部数は、樹脂およびその他の組成物に
より異なるが、通常、樹脂100重量部に対して1
重量部以下で充分な効果を有する。 架橋助剤としては、一般的に多官能のアリレー
ト化合物やアクリレート化合物あるいはビニル化
合物が挙げられるが、本発明ではオキシム系化合
物が用いられる。これは、オキシム系化合物が多
の架橋助剤に比べて少量でポリプロピレン系樹脂
の有機過酸化物による分解反応を抑制する効果を
有するからである。しかも、押出成形の場合、成
形安定性に優れているからである。このような例
として、p−キノンジオキシムあるいはp・p′−
ジベンゾイルキノンジオキシムなどがあり、中で
も後者が好ましく使用される。また、架橋助剤と
して、オキシム系化合物と上記多官能化合物とを
併用してもよく、押出成形の場合、併用した方が
成形安定性に優れることもある。これら架橋助剤
は上記有機過酸化物の添加方法と同様にして供給
される。その添加部数は樹脂100重量部に対して
1重量部以下で充分な効果を有する。 樹脂の架橋方法としては押出機による溶融混練
法のほかに、アジド架橋や放射線架橋あるいはシ
ラン架橋などがあるが、いずれもコストが高いな
どの欠点を有している。押出による溶融混練法が
最も経済的である。溶融混練法としては、押出機
以外にも、バンバリーミキサーなどの混練機など
の使用も可能である。押出機により部分架橋樹脂
を得る場合、樹脂のゲル分率(110℃キシレン不
溶分率)は50%以下が好ましい。ゲル分率が50%
を越えると押出成形が困難になる。ゲル分率は0
%であつても差しつかえなく、メルトインデツク
ス(MI)の大幅な低下、すなわち溶融粘度の著
しい増加があれば、押出反応成形は可能である。 次いで、得られた部分架橋ポリプロピレン系樹
脂を5重量%以上、50重量%未満の割合で含むポ
リプロピレン系樹脂混合組成物と揮発性発泡剤と
を押出機に供給して均一な溶融混合物を得る。そ
して、この溶融混合物を押出機により押出発泡さ
せる。この際、発泡成形時の熱安定性や得られる
発泡体の耐熱性から酸化防止剤が適宜添加されう
る。 部分架橋ポリプロピレン系樹脂と非架橋ポリプ
ロピレン系樹脂との混合組成物は、部分架橋ポリ
プロピレン系樹脂が全体の5重量%以上50重量%
未満の範囲で含まれていることが必要である。5
重量%未満であれば発泡に必要な溶融時の粘弾性
が不充分であり、独立気泡性に富んだ発泡体が得
られない。好ましくは10重量%以上含まれている
方がよい。また、部分架橋ポリプロピレン系樹脂
と非架橋ポリプロピレン系樹脂との融点差は10℃
以内であることが望ましい。融点差が10℃を越え
ると押出発泡時の粘度調整が困難となり、独立気
泡性に富む発泡体が得られない。好ましくは、5
℃以内がよい。部分架橋ポリプロピレン系樹脂を
50重量%以上用いると、得られる発泡体の表面が
わずかに平滑性を欠く。 揮発性発泡剤としては、通常の低密度ポリエチ
レン系樹脂やポリスチレン系樹脂の発泡成形に用
いられるものが適宜使用される。例えば、プロパ
ン、ブタン、ペンタンあるいはヘキサンなどの炭
化水素類;塩化メチル、塩化メチレン、塩化エチ
ル、塩化エチレン、トリクロロフルオロメタン、
ジクロロジフルオロメタン、ジフルオロクロロメ
タン、1・1・2・2−テトラフルオロジクロロ
エタン、1・1・2−トリフルオロトリクロロエ
タンなどのハロゲン化炭化水素類;あるいはCO2
やN2などの不活性ガスがある。これら揮発性発
泡剤は1種のみあるいは2種以上混合して用いら
れる。 押出発泡成形は、通常の低密度ポリプロピレン
系樹脂もしくはポリスチレン系樹脂と同様な方法
で行われる。押出機としては、単軸押出機、二軸
押出機あるいはこれらを複数個つなぎ合わせた押
出機などから適宜選択して使用される。まず、押
出機に上記部分架橋ポリプロピレン系樹脂混合組
成物、あるいはそれらに必要に応じて発泡核剤な
どを添加した混合組成物を供給して溶融する。次
いで、押出機途中に設けられた圧入孔より揮発性
発泡剤を圧入し上記組成物と充分に溶融混合して
均一な溶融混合物を調製する。次いで、この溶融
混合物を押出機出口に設けられた任意の金型から
押出しつつ発泡させて発泡体を得る。この押出発
泡成形には化学反応を伴わないため任意の添加剤
が適宜使用される。例えば、ヒンダードフエノー
ル系、チオエーテル系、有機リン酸系あるいはア
ミン系などの酸化防止剤や金属劣化防止剤もしく
は紫外線吸収剤などがある。このようにして得ら
れた発泡体は独立気泡率に富み、その発泡倍率が
約35倍という良好な値を示した。 (実施例) 以下に本発明を実施例について述べる。 実施例 1 メルトインデツクス(MI)が10.0g/10min.
およびDSCで測定した結晶温度が163℃のプロピ
レン−エチレンブロツク共重合体100重量部に、
アセトンに溶融したジクミルパーオキシド
(DCP)0.1重量部とp・p′−ジベンゾイルキノン
ジオキシム(DGM)0.3重量部とを均一にまぶし
た後、常温に放置してアセトンを揮発させた。次
いで、この混合物を口径65mmおよびL/D=25の
二軸押出機に供給し押出機内のシリンダーの温度
を200℃として溶融混練を行つた。そして、溶融
混練物を径が3mmの小孔を10個有するストランド
金型から押出して部分架橋されたプロピレン−エ
チレンブロツク共重合体を得た。得られた部分架
橋プロピレン−エチレンブロツク共重合体はMI
が1.5g/10min.、ゲル分率が20%および融点が
163℃であつた。 次いで、部分架橋プロピレン−エチレンブロツ
ク共重合体30重量部、MIが1.8g/min.および融
点164℃のプロピレン単独重合体70重量部、ヒン
ダードフエノール系酸化防止剤(チバガイギー社
製;Irganox・1010)0.1重量部、チオエーテル系
酸化防止剤(大内新興社製;ノフラツク 400)
0.1重量部および発泡核剤としてタルク0.1重量部
を均一に混合し口径65mmおよびL/D=32の単軸
押出機に供給した。そして、押出機の途中から発
泡剤として1・1・2・2−テトラフルオロジク
ロロエタンを22重量部圧入した。金型は径が5mm
のノズル状のものを用い、その温度を155℃とし
て押出発泡成形を行つた。得られた発泡体の表面
性は良好でありボイドなどの異常気泡は認められ
なかつた。発泡体の密度および独立気泡性を測定
したところ、いずれも良好な値を示した。結果を
下表に示す。 実施例 2 押出発泡成形時の金型温度を150℃とした以外
は実施例1と同様にして良好な発泡性を有する発
泡体を得た。得られた発泡体の独立気泡率は実施
例1よりも高かつた。結果を下表に示す。 実施例 3 押出発泡成形時の金型温度を145℃とした以外
は実施例1と同様にして良好な発泡性を有する発
泡体を得た。得られた発泡体の独立気泡率は実施
例1および実施例2よりも高かつた。結果を下表
に示す。 比較例 1 部分架橋されたプロピレン−エチレンブロツク
共重合体を用いないで、プロピレン単独重合体を
100重量部とした以外は実施例1と同様にして押
出発泡成形を行つた。得られた発泡体はガス抜け
を発生して細く、しかも、大きな巣が認められ
た。独立気泡率は極めて低かつた。結果を下表に
示す。 比較例 2 部分架橋されたプロピレン−エチレンブロツク
共重合体を用いないで、プロピレン単独重合体を
100重量部とした以外は実施例2と同様にして押
出発泡成形を行つた。得られた発泡体には所々異
常気泡が認められ、独立気泡性も極めて低かつ
た。結果を下表に示す。 比較列 3 部分架橋されたプロピレン−エチレンブロツク
共重合体を用いないで、プロピレン単独重合体を
100重量部とし、金型温度を147℃とした以外は実
施例1と同様にして押出発泡成形を行つた。得ら
れた発泡体の外観はほぼ良好であつたが独立気泡
率は低水準であつた。結果を下表に示す。 比較例 4 部分架橋されたプロピレン−エチレンブロツク
共重合体を用いないで、プロピレン単独重合体を
100重量部とした以外は実施例3と同様にして押
出発泡成形を行つた。得られた発泡体の表面は平
滑性に欠けており、独立気泡率も実施例3よりか
なり劣つていた。結果を下表に示す。 実施例 4 DCP0.06重量部とした以外は実施例1と同様に
してMIが1.3g/10min.およびゲル分率0%の部
分架橋プロピレン−エチレンブロツク共重合体を
得、次いで、実施例1と同様にして押出発泡成形
を行い良好な発泡性を有する発泡体を得た。結果
を下表に示す。 実施例 5 DGM0.6重量部とした以外は実施例1と同様に
してMIが0.3g/10min.およびゲル分率35%の部
分架橋プロピレン−エチレンブロツク共重合体を
得、次いで、実施例1と同様にして押出発泡成形
を行い良好な発泡性を有する発泡体を得た。結果
を下表に示す。 実施例 6 部分架橋プロピレン−エチレンブロツク共重合
体を10重量部およびプロピレン単独重合体90重量
部とした以外は実施例1と同様にして押出発泡成
形を行い良好な発泡性を有する発泡体を得た。結
果を下表に示す。 実施例 7 部分架橋プロピレン−エチレンブロツク共重合
体を50重量部およびプロピレン単独重合体50重量
部とした以外は実施例1と同様にして押出発泡成
形を行い良好な発泡性を有する発泡体を得た。結
果を下表に示す。 実施例 8 プロピレン単独重合体として、MIが1.5g/
min.および融点が158℃のものを使用する以外は
全て実施例1と同様にして押出発泡成形を行い良
好な発泡性を有する発泡体を得た。結果を下表に
示す。 なお、実施例4〜実施例8においては、押出発
泡成形時の金型温度は最も外観がよく独立気泡率
が高くなる温度で適宜行つた。
(Industrial Application Field) The present invention relates to a method for producing a polypropylene resin foam with excellent closed cell properties by extrusion foam molding. (Prior Art) When polypropylene resin is used alone, its extrudability is significantly inferior to other polyolefin resins such as low density polyethylene, and a foam with a high closed cell ratio cannot be obtained. The reason for this is that due to the crystallization properties of polypropylene resin, the appropriate foaming temperature range is extremely narrow and it is difficult to perform foam molding.In addition, the large amount of heat generated during crystallization and the lack of melt strength cause the bubbles to collapse immediately after foaming. This is because Therefore, attempts have been made to improve the extrusion foamability by adding melt elasticity to the polypropylene resin by mixing an elastomer or introducing a crosslinked structure. As an example of mixing such elastomers, JP-A-55-1999 uses polybutadiene.
40739 and JP-A-56-60233, as well as JP-A-Sho which disclosed a mixture of ethylene-propylene rubber.
No. 57-1603, and JP-A No. 161671-1989, or JP-A No. 49-1989 mixed with ionomer resin.
Publication No. 74264, etc. However, none of these conventional methods can be said to be sufficient in terms of extrusion foamability, heat resistance and thermal stability of the obtained foam, and production cost. Further, as an example of introducing a crosslinked structure, Japanese Patent Application Laid-Open No. 57-24221 discloses a method of imparting melt elasticity to a foam by providing a crosslinked structure to the foam. However, since this method involves single-stage crosslinking and foaming, there are problems with stability and continuous moldability.
Moreover, due to the use of antioxidants, the resulting resins lack long-term heat resistance. The methods disclosed in JP-A-58-17127 and JP-A-58-49730 commercialize open-celled extruded foam, and can only provide a single grade product. . (Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the prior art, and its purpose is to produce a polypropylene resin foam with excellent closed cell properties and a high expansion ratio. The purpose is to provide a method. Another object of the present invention is to provide a method for obtaining a polypropylene resin foam inexpensively and stably by extrusion foam molding. (Means for Solving the Problems) The present invention is based on the inventors' knowledge that a polypropylene resin composition containing a partially crosslinked polypropylene resin can provide extremely good foamability and foam quality. It was completed. The partially crosslinked polypropylene resin of the present invention is obtained by melt-kneading a polypropylene resin, a crosslinking initiator such as an organic peroxide, and a crosslinking aid such as an oxime compound by extrusion or the like. Polypropylene resin requires a crosslinking aid because the decomposition reaction takes precedence when organic peroxide alone is used. The polypropylene resin is not particularly limited, and for example, a propylene homopolymer, a random copolymer or block copolymer of ethylene or other α-olefin containing propylene as a main component, etc. are appropriately selected. . Regarding crosslinkability and foamability, the copolymer composition is slightly better. Various organic peroxides are used as the crosslinking initiator. Among these, from the viewpoint of crosslinking efficiency, those having a half-life of 1 minute or more at a temperature higher than the melting point of the polypropylene resin used are preferred. This is to prevent the organic peroxide from being decomposed before the polypropylene resin is melted in the extrusion foaming method. When using an extruder, the organic peroxide is added directly to the polypropylene resin; organic peroxide alone or dissolved in a crosslinking agent or other solvent is added to the extruder. A method such as supplying the mixture from the middle of the process; or using a masterbatch obtained by kneading in advance at a temperature below the decomposition temperature of the organic peroxide is appropriately selected. Examples of such organic peroxides include dicumyl peroxide; t-butyl peroxide; di-t-butyl peroxide; α・α′-bis(t-butylperoxyisopropyl)benzene; -dimethyl-2,5-di(t-butylperoxy)hexane; 2,5-dimethyl-2.
5-di(t-butylperoxy)hexane-3;
Di-t-butyl diperoxyisophthalate;
Examples include 2,5-dimethyl-2,5-di(benzoylperoxy)hexane. The number of parts of these organic peroxides added varies depending on the resin and other compositions, but is usually 1 part by weight per 100 parts by weight of the resin.
It has a sufficient effect even if the amount is less than 1 part by weight. As the crosslinking aid, polyfunctional arylate compounds, acrylate compounds, or vinyl compounds are generally used, but in the present invention, oxime compounds are used. This is because the oxime compound has the effect of suppressing the decomposition reaction of the polypropylene resin caused by the organic peroxide in a small amount compared to other crosslinking aids. Moreover, in the case of extrusion molding, molding stability is excellent. Examples of this include p-quinonedioxime or p・p′-
Examples include dibenzoylquinone dioxime, among which the latter is preferably used. Further, as a crosslinking aid, an oxime compound and the above-mentioned polyfunctional compound may be used in combination, and in the case of extrusion molding, the molding stability may be better when used in combination. These crosslinking aids are supplied in the same manner as the method for adding the organic peroxide described above. A sufficient effect can be obtained when the amount of addition is 1 part by weight or less per 100 parts by weight of the resin. In addition to the melt-kneading method using an extruder, resin crosslinking methods include azide crosslinking, radiation crosslinking, and silane crosslinking, but all of them have drawbacks such as high cost. Melt kneading by extrusion is the most economical method. As the melt-kneading method, in addition to an extruder, it is also possible to use a kneader such as a Banbury mixer. When a partially crosslinked resin is obtained using an extruder, the gel fraction (xylene insoluble fraction at 110° C.) of the resin is preferably 50% or less. Gel fraction is 50%
Extrusion molding becomes difficult when the temperature exceeds . Gel fraction is 0
%, extrusion reaction molding is possible as long as there is a significant decrease in melt index (MI), that is, a significant increase in melt viscosity. Next, the obtained polypropylene resin mixed composition containing the partially crosslinked polypropylene resin in a proportion of 5% by weight or more and less than 50% by weight and a volatile foaming agent are supplied to an extruder to obtain a uniform molten mixture. Then, this molten mixture is extruded and foamed using an extruder. At this time, an antioxidant may be added as appropriate in view of the thermal stability during foam molding and the heat resistance of the resulting foam. In the mixed composition of a partially crosslinked polypropylene resin and a non-crosslinked polypropylene resin, the partially crosslinked polypropylene resin accounts for 5% by weight or more and 50% by weight of the whole.
It is necessary that it be included within the range below. 5
If it is less than % by weight, the viscoelasticity required for foaming during melting will be insufficient, and a foam with excellent closed cell properties will not be obtained. Preferably, the content is 10% by weight or more. Additionally, the melting point difference between partially cross-linked polypropylene resin and non-cross-linked polypropylene resin is 10°C.
It is desirable that it be within If the melting point difference exceeds 10°C, it becomes difficult to adjust the viscosity during extrusion foaming, and a foam with excellent closed-cell properties cannot be obtained. Preferably 5
It is best to keep it within ℃. Partially crosslinked polypropylene resin
If more than 50% by weight is used, the surface of the resulting foam will slightly lack smoothness. As the volatile foaming agent, those used in ordinary foam molding of low-density polyethylene resins and polystyrene resins are appropriately used. For example, hydrocarbons such as propane, butane, pentane or hexane; methyl chloride, methylene chloride, ethyl chloride, ethylene chloride, trichlorofluoromethane,
Halogenated hydrocarbons such as dichlorodifluoromethane, difluorochloromethane, 1,1,2,2-tetrafluorodichloroethane, 1,1,2-trifluorotrichloroethane; or CO 2
and inert gases such as N2 . These volatile blowing agents may be used alone or in combination of two or more. Extrusion foam molding is carried out in the same manner as for ordinary low-density polypropylene resins or polystyrene resins. The extruder used is appropriately selected from a single-screw extruder, a twin-screw extruder, or an extruder made by connecting a plurality of these extruders. First, the above-mentioned partially crosslinked polypropylene resin mixed composition, or a mixed composition obtained by adding a foaming nucleating agent or the like as necessary, is supplied to an extruder and melted. Next, a volatile foaming agent is press-injected through a press-in hole provided in the middle of the extruder and sufficiently melted and mixed with the above composition to prepare a uniform molten mixture. Next, this molten mixture is extruded from an arbitrary mold provided at the outlet of the extruder and foamed to obtain a foam. Since this extrusion foam molding does not involve any chemical reaction, arbitrary additives may be used as appropriate. Examples include hindered phenol-based, thioether-based, organic phosphoric acid-based or amine-based antioxidants, metal deterioration inhibitors, and ultraviolet absorbers. The foam thus obtained had a high closed cell ratio and exhibited a good expansion ratio of about 35 times. (Example) The present invention will be described below with reference to Examples. Example 1 Melt index (MI) is 10.0g/10min.
and 100 parts by weight of a propylene-ethylene block copolymer with a crystallization temperature of 163°C as measured by DSC,
After uniformly sprinkling 0.1 part by weight of dicumyl peroxide (DCP) and 0.3 part by weight of p.p'-dibenzoylquinone dioxime (DGM) dissolved in acetone, the mixture was left at room temperature to volatilize the acetone. Next, this mixture was supplied to a twin-screw extruder having a diameter of 65 mm and L/D=25, and the temperature of the cylinder in the extruder was set to 200° C. for melt-kneading. Then, the melt-kneaded product was extruded from a strand mold having 10 small holes with a diameter of 3 mm to obtain a partially crosslinked propylene-ethylene block copolymer. The partially crosslinked propylene-ethylene block copolymer obtained was
is 1.5g/10min., gel fraction is 20% and melting point is
It was 163℃. Next, 30 parts by weight of a partially crosslinked propylene-ethylene block copolymer, 70 parts by weight of a propylene homopolymer having an MI of 1.8 g/min. and a melting point of 164°C, and a hindered phenol antioxidant (manufactured by Ciba Geigy; Irganox 1010) were added. ) 0.1 part by weight, thioether antioxidant (manufactured by Ouchi Shinko Co., Ltd.; Nofrac 400)
0.1 part by weight and 0.1 part by weight of talc as a foaming nucleating agent were uniformly mixed and supplied to a single screw extruder having a diameter of 65 mm and L/D=32. Then, 22 parts by weight of 1,1,2,2-tetrafluorodichloroethane was injected as a blowing agent into the extruder. The diameter of the mold is 5mm
Extrusion foam molding was carried out using a nozzle-shaped device at a temperature of 155°C. The obtained foam had good surface properties, and no abnormal cells such as voids were observed. When the density and closed cell properties of the foam were measured, both showed good values. The results are shown in the table below. Example 2 A foam having good foamability was obtained in the same manner as in Example 1, except that the mold temperature during extrusion foam molding was 150°C. The closed cell ratio of the obtained foam was higher than that of Example 1. The results are shown in the table below. Example 3 A foam having good foamability was obtained in the same manner as in Example 1, except that the mold temperature during extrusion foam molding was 145°C. The closed cell ratio of the obtained foam was higher than that of Examples 1 and 2. The results are shown in the table below. Comparative Example 1 Propylene homopolymer was used without using a partially crosslinked propylene-ethylene block copolymer.
Extrusion foam molding was carried out in the same manner as in Example 1 except that the amount was 100 parts by weight. The obtained foam was thin due to gas leakage, and large cavities were observed. The closed cell ratio was extremely low. The results are shown in the table below. Comparative Example 2 A propylene homopolymer was produced without using a partially crosslinked propylene-ethylene block copolymer.
Extrusion foam molding was carried out in the same manner as in Example 2 except that the amount was 100 parts by weight. In the obtained foam, abnormal cells were observed in some places, and the closed cell property was also extremely low. The results are shown in the table below. Comparison row 3 Propylene homopolymer without partially crosslinked propylene-ethylene block copolymer
Extrusion foam molding was carried out in the same manner as in Example 1 except that the amount was 100 parts by weight and the mold temperature was 147°C. The appearance of the obtained foam was almost good, but the closed cell ratio was at a low level. The results are shown in the table below. Comparative Example 4 Using propylene homopolymer without using partially crosslinked propylene-ethylene block copolymer
Extrusion foam molding was carried out in the same manner as in Example 3 except that the amount was 100 parts by weight. The surface of the obtained foam lacked smoothness, and the closed cell ratio was considerably inferior to that of Example 3. The results are shown in the table below. Example 4 A partially crosslinked propylene-ethylene block copolymer having an MI of 1.3 g/10 min. and a gel fraction of 0% was obtained in the same manner as in Example 1 except that DCP was 0.06 parts by weight, and then Example 1 Extrusion foam molding was carried out in the same manner as above to obtain a foam having good foamability. The results are shown in the table below. Example 5 A partially crosslinked propylene-ethylene block copolymer having an MI of 0.3 g/10 min. and a gel fraction of 35% was obtained in the same manner as in Example 1 except that DGM was 0.6 parts by weight, and then Example 1 Extrusion foam molding was carried out in the same manner as above to obtain a foam having good foamability. The results are shown in the table below. Example 6 Extrusion foam molding was carried out in the same manner as in Example 1 except that 10 parts by weight of the partially crosslinked propylene-ethylene block copolymer and 90 parts by weight of the propylene homopolymer were used to obtain a foam having good foamability. Ta. The results are shown in the table below. Example 7 Extrusion foam molding was carried out in the same manner as in Example 1 except that 50 parts by weight of the partially crosslinked propylene-ethylene block copolymer and 50 parts by weight of the propylene homopolymer were used to obtain a foam having good foamability. Ta. The results are shown in the table below. Example 8 As a propylene homopolymer, MI is 1.5g/
Extrusion foam molding was carried out in the same manner as in Example 1 except that a foam having a min. The results are shown in the table below. In Examples 4 to 8, the mold temperature during extrusion foam molding was appropriately set at a temperature that gave the best appearance and increased the closed cell ratio.

【表】 (発明の効果) 本発明の製造方法によれば、このように、広い
押出温度範囲で安定して独立気泡性に富むポリプ
ロピレン系樹脂発泡体を得ることができる。した
がつて、従来のように厳密な温度管理を必要とし
ない。得られた発泡体は優れた耐熱性、熱安定
性、非吸水性および弾力性を有しており、しかも
これらの発泡体は極めて安価に得られる。
[Table] (Effects of the Invention) According to the production method of the present invention, a polypropylene resin foam that is stable and rich in closed-cell properties can be obtained in a wide extrusion temperature range. Therefore, there is no need for strict temperature control as in the conventional case. The resulting foams have excellent heat resistance, thermal stability, non-water absorption and elasticity, and these foams can be obtained at extremely low cost.

Claims (1)

【特許請求の範囲】 1 (1) ポリプロピレン系樹脂と有機過酸化物と
オキシム化合物とを含有する組成物を溶融混合
して部分架橋ポリプロピレン系樹脂を得る工
程、 (2) 該部分架橋ポリプロピレン系樹脂を5重量%
以上50重量%未満の割合で含むポリプロピレン
系樹脂混合組成物と揮発性発泡材とを押出機に
供給して均一な溶融混合物を得る工程、そして (3) 該溶融混合物を該押出機から低圧帯域に押出
しつつ発泡させる工程 を包含するポリプロピレン系樹脂発泡体の製造方
法。
[Claims] 1 (1) A step of melt-mixing a composition containing a polypropylene resin, an organic peroxide, and an oxime compound to obtain a partially crosslinked polypropylene resin; (2) the partially crosslinked polypropylene resin. 5% by weight
a step of supplying a polypropylene resin mixed composition containing at least 50% by weight and a volatile foaming agent to an extruder to obtain a uniform molten mixture, and (3) transferring the molten mixture from the extruder to a low pressure zone. A method for producing a polypropylene resin foam, which includes a step of foaming while extruding the foam.
JP59265874A 1984-12-17 1984-12-17 Production of polypropylene resin foam Granted JPS61143449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265874A JPS61143449A (en) 1984-12-17 1984-12-17 Production of polypropylene resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265874A JPS61143449A (en) 1984-12-17 1984-12-17 Production of polypropylene resin foam

Publications (2)

Publication Number Publication Date
JPS61143449A JPS61143449A (en) 1986-07-01
JPH0464536B2 true JPH0464536B2 (en) 1992-10-15

Family

ID=17423292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265874A Granted JPS61143449A (en) 1984-12-17 1984-12-17 Production of polypropylene resin foam

Country Status (1)

Country Link
JP (1) JPS61143449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686087B2 (en) * 1986-02-28 1994-11-02 積水化成品工業株式会社 Manufacturing method of polypropylene foam
JP5043252B2 (en) * 2000-08-23 2012-10-10 株式会社プライムポリマー Modified polypropylene composition and foam obtained therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133032A (en) * 1981-02-10 1982-08-17 Asahi Chem Ind Co Ltd Manufacture of highly expanded polyolefinic resin
JPS59223740A (en) * 1983-06-02 1984-12-15 Mitsui Petrochem Ind Ltd Production of polypropylene composition

Also Published As

Publication number Publication date
JPS61143449A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US20080255261A1 (en) Insulating foam composition
US20070249743A1 (en) Expandable polyolefin compositions and insulated vehicle parts containing expanded polyolefin compositions
US20070149630A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
KR20170017611A (en) Foamable master batch and Polyolefin resin compositions with excellent expandability and direct metallizing property
JP2001348452A (en) Polyolefinic resin foam and manufacturing method therefor
JP2008274155A (en) Polypropylenic resin foam and production method thereof
JPH0464536B2 (en)
JP2001001384A (en) Production of polypropylene resin extruded foamed fine stripe bundle
EP1054033A1 (en) Extrusion-foamed board of resin blend comprising modified polypropylene resin and polystyrene resin
JPH0464537B2 (en)
JP2505543B2 (en) Method for producing foam containing crystalline propylene resin
JPH0347849A (en) Partially crosslinked thermoplastic elastomer foam and production thereof
JP3588545B2 (en) Method for producing polyolefin resin foam
JPH02255738A (en) Partially crosslinked thermoplastic elastomer foamed product and its production
JP3758116B2 (en) Open cell foam and method for producing the same
JP3306189B2 (en) Olefin resin composition for foaming
JPH06107840A (en) Production of elastomer foam
JPH03139535A (en) Composition for crosslinked polyolefin foam
JP3784226B2 (en) Expandable olefinic thermoplastic elastomer composition and foamed product thereof
JPH058279A (en) Preparation of polyethylene foam
JPH059326A (en) Production of crosslinked foam of olefinic elastomer composition
JP2006316241A (en) Polyolefinic resin composition and method for producing polyolefinic resin foam
JPS5998112A (en) Polypropylene for expansion molding
JPH04363338A (en) Production of polyolefin-crosslinked foamed product
JP2013241540A (en) Thermoplastic elastomer composition for extrusion foaming molding, and extrusion foaming molding comprising the resin composition