JPH0464342A - Mri apparatus - Google Patents

Mri apparatus

Info

Publication number
JPH0464342A
JPH0464342A JP2176403A JP17640390A JPH0464342A JP H0464342 A JPH0464342 A JP H0464342A JP 2176403 A JP2176403 A JP 2176403A JP 17640390 A JP17640390 A JP 17640390A JP H0464342 A JPH0464342 A JP H0464342A
Authority
JP
Japan
Prior art keywords
data
maximum value
processing
section
value information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2176403A
Other languages
Japanese (ja)
Inventor
Takeki Suzuki
武城 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2176403A priority Critical patent/JPH0464342A/en
Publication of JPH0464342A publication Critical patent/JPH0464342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To achieve a shorter photographing time eliminating possible overflow by arranging a maximum value detection means which picks up a plurality of MR data digitized sequentially to determine a maximum value and a normalization means which normalizes a plurality of MR data values to optimize a reproduction processing within a sampling capacity having a processing circuit based on the maximum value information. CONSTITUTION:When a system controller 13 applies an RF pulse to an organism with a transmitting/receiving coil 9, a magnetic resonance phenomenon occurs in the organism to generate an MR signal. The MR signal is converted into a digital MR data M with an A/D converter within a circuit 20 and the MR data M is taken into a conversion processing section 21 and subjected to a Fourier transform in a reading direction R to be transmitted to a detecting section 22. With the detecting section 22, maximum value information and phase correction information of all MR data are determined to be transmitted and stored into a waveform memory 23, an image reconstruction section 24 performs a normalization processing of the MR data based on the maximum value information of the MR data. Then a reconstruction processing by Fourier transform is performed in a phase encode direction E and a display section 25 shows an MR image subjected to the image reconstruction processing. This achieves a shorter photographing time eliminating possible overflow.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は磁気共鳴現象を用いて生体のMR(Magne
tic Re5onanceの略)信号を収集して磁気
共鳴断層像(以下rMR像」という。)を得るMRr装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Field of Application) The present invention uses magnetic resonance phenomena to perform MR (Magnetic Resonance) of living organisms.
The present invention relates to an MRr apparatus that obtains magnetic resonance tomographic images (hereinafter referred to as "rMR images") by collecting RMR (abbreviation for tic resonance) signals.

(従来の技術) MRI装置は、位相エンコード化法により生体からMR
倍信号収集しこのMR倍信号基づいて断層像を得るもの
である。すなわち静磁場中に生体を配置し、異なる複数
の位相エンコード磁場条件下で、静磁場に傾斜磁場を重
畳すると共にRFパルスを送信して生体から発生するM
R倍信号複数受信する。次にこの複数のMR倍信号ディ
ジタルのMRデータに変換する。このようにして変換さ
れたMRデータを読み出し方向と位相エンコード方向に
2次元フーリエ変換による再構成処理を行い生体の断層
像を得ている。
(Prior art) An MRI apparatus uses a phase encoding method to obtain MR information from a living body.
This method collects a double signal and obtains a tomographic image based on the MR double signal. That is, a living body is placed in a static magnetic field, and a gradient magnetic field is superimposed on the static magnetic field under a plurality of different phase encode magnetic field conditions, and an RF pulse is transmitted to generate M from the living body.
Receive multiple R times signals. Next, the plurality of MR multiplied signals are converted into digital MR data. The MR data thus converted is subjected to reconstruction processing by two-dimensional Fourier transformation in the readout direction and the phase encoding direction to obtain a tomographic image of the living body.

また上記各処理を行う処理回路における演算方法として
は、浮動小数点演算方式、固定小数点演算方式又は両者
の併用式があるが、一般に固定小数点演算方式がオーバ
ーフローの危険はあるが廉価ということで採用されてい
る。
Furthermore, the calculation methods used in the processing circuits that perform each of the above processes include a floating point calculation method, a fixed point calculation method, or a combination of both, but the fixed point calculation method is generally adopted because it is inexpensive, although there is a risk of overflow. ing.

そこで各処理回路は、例えば16ビツト等の所定処理能
力を有するものであり、この処理能力を越えるオーバー
フロー発生を防ぐため、試し撮影(以下「プレスキャン
」という。)を行い、プレスキャンで収集した全MRデ
ータ中の最大値を求めてから正規化率を決定し、画像化
するための本撮影(以下「本スキャン」という。)を行
い、この本撮影で収集したMRデータを先に求めた正規
化率に基づき、MRデータの正規化処理を行い、処理回
路の所定能力が十分に発揮できるようにしていた。
Therefore, each processing circuit has a predetermined processing capacity, such as 16 bits, and in order to prevent the occurrence of an overflow exceeding this processing capacity, trial shooting (hereinafter referred to as "prescan") was performed, and the data collected by prescan. After finding the maximum value among all MR data, the normalization rate was determined, and the main imaging for image formation (hereinafter referred to as "main scan") was performed, and the MR data collected in this main imaging was obtained first. The MR data is normalized based on the normalization rate so that the predetermined ability of the processing circuit can be fully utilized.

または、多少のオーバーフローは覚悟で全てのMRデー
タを収集せず、部分的なプレスキャンが行われていた。
Alternatively, a partial pre-scan was performed without collecting all the MR data in anticipation of some overflow.

(発明か解決しようとする課題) しかしながら、オーバーフローを完全に防止しようとす
ると、全MRデータを収集するプレスキャンを行わなけ
ればならず、撮影時間の無駄を生じていた。
(Problems to be Solved by the Invention) However, in order to completely prevent overflow, a pre-scan to collect all MR data must be performed, resulting in wasted imaging time.

また、部分的なプレスキャンでは、本スキャン時にオー
バーフローすることがあり再度本スキャンを行うことと
なり撮影時間の無駄を生じていた。
Furthermore, in partial pre-scanning, overflow may occur during the main scan, resulting in the need to perform the main scan again, resulting in wasted imaging time.

そこで本発明は、上記事情に鑑みてなされたものであり
、オーバーフローの危険がなく、撮影時間の短縮化を図
ったMRr装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an MRr device that is free from the risk of overflow and that shortens the imaging time.

[発明の構成コ (課題を解決するための手段) 上記目的を達成するために本発明は、位相エンコード化
法により収集した複数のMR倍信号ディジタル化した後
、処理回路により再構成処理を行い断層像を得るMRI
装置において、ディジタル化された前記複数のMRデー
タを順次取り込んでMRデータの最大値を求める最大値
検出手段と、この最大値検出手段が求めた最大値情報に
基づき前記処理回路の有する標本化能力内で前記再構成
処理が最適に行えるように前記複数のMRデータ値を正
規化する正規化手段とを有することを特徴とするもので
ある。
[Structure of the Invention (Means for Solving the Problems)] In order to achieve the above object, the present invention digitizes a plurality of MR multiplied signals collected by a phase encoding method, and then performs reconstruction processing by a processing circuit. MRI to obtain tomographic images
In the apparatus, a maximum value detection means for sequentially capturing the plurality of digitized MR data to obtain a maximum value of the MR data, and a sampling capability of the processing circuit based on the maximum value information obtained by the maximum value detection means. and normalizing means for normalizing the plurality of MR data values so that the reconstruction processing can be performed optimally.

(作 用) 上記構成の装置の作用を説明する。(for production) The operation of the device having the above configuration will be explained.

最大値検出手段は、複数のMRデータを順次取り込んで
MRデータの最大値を求める。
The maximum value detection means sequentially takes in a plurality of MR data and determines the maximum value of the MR data.

処理回路は、例えば16ビツトの如く標本化能力を有す
るものであり、正規化手段により正規化されたMRデー
タの値に基づいて再構成処理を行うと、オーバーフロー
せずにこの16ビツトの標本化能力を十分に発揮できる
The processing circuit has a sampling capability of, for example, 16 bits, and when reconstruction processing is performed based on the values of the MR data normalized by the normalization means, this 16 bit sampling can be performed without overflow. Able to fully demonstrate their abilities.

(実施例) 以下に本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図は本発明の一実施例装置1のブロック図を示すも
のである。
FIG. 1 shows a block diagram of a device 1 according to an embodiment of the present invention.

本装置1は、内部に一定強度の主磁場を形成する静磁場
コイル7、  X方向、Y方向及びX方向に傾斜磁場を
形成する傾斜磁場コイル8及び生体の原子核のスピンを
励゛起するための高周波パルス(RFパルス)を与え、
また生体内からのMR倍信号受信するための送受信コイ
ル9とを備えた磁石装置6と、傾斜磁場コイル8への電
流を制御することにより傾斜磁場を制御する傾斜磁場制
御回路14と、静磁場コイル7への供給電流を制御する
ことにより静磁場を制御する静磁場制御回路15と、高
周波信号を発振する高周波発振器16と、MR倍信号収
集するタイミング信号を発生し、本装置1各部の動作制
御及び傾斜磁場、高周波パルス制御を行い位相エンコー
ド化法による所定パルスシーケンス等を実行するシステ
ムコントローラ13と、システムコントローラ13から
のタイミング信号により高周波発振器16から発振され
た高周波信号を変調し、高周波パルスを生成するゲート
回路17と、ゲート回路17より出力された高周波パル
スを電力増幅し、デイプレクサ回路5を介して送受信コ
イル9に供給する電力増幅器18と、デュプレクサ回路
5を経由して送受信コイル9より取り込まれたMR倍信
号増幅するプリアンプ19と、増幅されたMR倍信号位
相検波しディジタル信号に変換する図示しないAD変換
器を備えた位相検波回路20と、この回路20より出力
されるMRデータを読み出し方向に1次元フーリエ変換
する変換処理部21と、この変換処理部21の後段に接
続され読み出し方向に読み出されたMRデータを順次取
込んで、全てのMRデー夕の最大値情報と位相補正情報
を求める検出部22と、検出部22で各情報を求めた後
1スキャン分の全MRデータを記憶する波形メモリ23
と、波形メモリ23の後段に接続され取り込まれたMR
データに基づいてMR像を再構成する例えば16ビツト
の標本化能力を有する画像再構成部24と、画像再構成
部24により再構成されたMR像を可視化表示する表示
部25とを有している。
This device 1 includes a static magnetic field coil 7 that forms a main magnetic field with a constant strength inside, a gradient magnetic field coil 8 that forms gradient magnetic fields in the X direction, the Y direction, and the Give a high frequency pulse (RF pulse) of
The magnet device 6 includes a transmitting/receiving coil 9 for receiving MR multiplied signals from within the body, a gradient magnetic field control circuit 14 that controls the gradient magnetic field by controlling current to the gradient magnetic field coil 8, and a static magnetic field. A static magnetic field control circuit 15 that controls the static magnetic field by controlling the current supplied to the coil 7, a high frequency oscillator 16 that oscillates a high frequency signal, and a timing signal for collecting the MR multiplied signal, which controls the operation of each part of the device 1. A system controller 13 that performs control, gradient magnetic field, and high-frequency pulse control to execute a predetermined pulse sequence based on a phase encoding method, and a system controller 13 that modulates a high-frequency signal oscillated from a high-frequency oscillator 16 using a timing signal from the system controller 13 to generate high-frequency pulses. a power amplifier 18 that amplifies the power of the high-frequency pulse outputted from the gate circuit 17 and supplies it to the transmitting/receiving coil 9 via the duplexer circuit 5; A preamplifier 19 that amplifies the captured MR multiplied signal, a phase detection circuit 20 equipped with an AD converter (not shown) that detects the phase of the amplified MR multiplied signal and converts it into a digital signal, and the MR data output from this circuit 20. A conversion processing unit 21 that performs one-dimensional Fourier transform in the readout direction and a conversion processing unit 21 that is connected to the subsequent stage of this conversion processing unit 21 and sequentially captures the MR data read out in the readout direction and converts maximum value information and phase of all MR data. A detection unit 22 that obtains correction information, and a waveform memory 23 that stores all MR data for one scan after each information is obtained by the detection unit 22.
and the MR connected to the subsequent stage of the waveform memory 23 and captured.
It has an image reconstruction unit 24 having a sampling capacity of, for example, 16 bits, which reconstructs an MR image based on the data, and a display unit 25 which visually displays the MR image reconstructed by the image reconstruction unit 24. There is.

前記画像再構成部24は、検出部22により求められた
MRデータの最大値情報より正規化率を求め、この正規
化率でMRデータの正規化処理を行い、オーバースロー
せずに16ビツトの標本化能力を十分に発揮できるよう
にしている。また画像再構成部24は、検出部22によ
り求められた位相補正情報に基づきMRデータの位相補
正を行い、MRデータを位相エンコード方向にフーリエ
変換することにより最終的に2DFT処理を行ないMR
像を再構成するものである。
The image reconstruction unit 24 obtains a normalization rate from the maximum value information of the MR data obtained by the detection unit 22, performs normalization processing on the MR data using this normalization rate, and converts the data into 16-bit data without overthrowing. We are making sure that our sampling ability is fully demonstrated. The image reconstruction unit 24 also performs phase correction on the MR data based on the phase correction information obtained by the detection unit 22, and finally performs 2DFT processing by Fourier transforming the MR data in the phase encoding direction.
It reconstructs the image.

次に本装置1の作用を第2図をも参照して説明する。Next, the operation of the present device 1 will be explained with reference to FIG. 2 as well.

先ず、静磁場制御回路15の制御の下で静磁場コイル7
に電流を流してZ方向に均一な静磁場を形成する。生体
は、磁石装置6の中心に配置される。
First, under the control of the static magnetic field control circuit 15, the static magnetic field coil 7
A uniform static magnetic field is created in the Z direction by passing a current through. The living body is placed at the center of the magnet device 6.

次に、所定のパルスシーケンスに従い、所望スライス面
について選択励起を行い、第2図に示すように、このス
ライス面から例えば256のMRデータM (M□乃至
M n )の収集を開始する。傾斜磁場制御回路14は
、システムコントローラ13の制御の下に、傾斜磁場コ
イル8へ供給する電流を制御して所定傾斜磁場(X、Y
又はZ方向)を出力させる。システムコントローラ13
は、送受信コイル9より生体にRFパルスを印加する。
Next, selective excitation is performed on a desired slice plane according to a predetermined pulse sequence, and as shown in FIG. 2, collection of, for example, 256 MR data M (M□ to M n ) is started from this slice plane. The gradient magnetic field control circuit 14 controls the current supplied to the gradient magnetic field coil 8 under the control of the system controller 13 to generate a predetermined gradient magnetic field (X, Y
or Z direction). System controller 13
applies an RF pulse to the living body from the transmitting/receiving coil 9.

生体に磁気共鳴現象が起こりMR倍信号発生する。A magnetic resonance phenomenon occurs in a living body and an MR multiplied signal is generated.

このMR倍信号、送受信コイル9により検出されプリア
ンプ19を介して位相検波回路20に取り込まれて位相
検波され、この回路20内のAD変換器によりディジタ
ルのMRデータMに変換される。次にこのMRデータM
は、変換処理部21に取り込まれ、読み出し方向Rにフ
ーリエ変換され検出部22に送出される。検出部22で
は、全てのMRデータの最大値情報と位相補正情報を求
め、波形メモリ23に送出する。
This MR multiplied signal is detected by the transmitting/receiving coil 9, taken into the phase detection circuit 20 via the preamplifier 19, phase detected, and converted into digital MR data M by the AD converter in this circuit 20. Next, this MR data M
is taken into the conversion processing section 21, subjected to Fourier transform in the readout direction R, and sent to the detection section 22. The detection unit 22 obtains maximum value information and phase correction information of all MR data and sends them to the waveform memory 23.

このようにして256全てのMRデータMが波形メモリ
23に記憶されると、画像再構成部24は、MRデータ
の最大値情報に基づいてMRデータの正規化処理を行い
位相エンコード方向Eにフーリエ変換による再構成処理
をして、表示部25はこの画像再構成処理されたMR像
を表示する。
When all 256 MR data M are stored in the waveform memory 23 in this way, the image reconstruction unit 24 performs normalization processing on the MR data based on the maximum value information of the MR data, and performs Fourier processing in the phase encoding direction E. After performing reconstruction processing through conversion, the display unit 25 displays the MR image that has been subjected to image reconstruction processing.

以上、一実施例について説明したが、本発明はこれに限
定されるものでなく、その要旨を変更しない範囲で種々
に変形実施か可能である。
Although one embodiment has been described above, the present invention is not limited thereto, and various modifications can be made without changing the gist thereof.

[発明の効果] 以上詳述した本発明によれば、オーバーフローの危険が
なく、撮影時間の短縮化を図ったMHI装置を提供する
ことができる。
[Effects of the Invention] According to the present invention described in detail above, it is possible to provide an MHI device which is free from the risk of overflow and which aims to shorten the imaging time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の概略構成図、第2図は
この装置の作用を示す図である。 ・・・MRI装置、13・・・システムコントローラ、
1・・・変換処理部、22・・・最大値検出部、3・・
・波形メモリ、 4・・・画像再構成部(正規化手段)。 代理人 弁理士 則  近  憲  佑同     近
   藤      猛第 図
FIG. 1 is a schematic diagram of a device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the operation of this device. ...MRI device, 13...system controller,
1... Conversion processing unit, 22... Maximum value detection unit, 3...
- Waveform memory, 4... Image reconstruction unit (normalization means). Agent Patent Attorney Nori Ken Yudo Konfuji Takeshi

Claims (1)

【特許請求の範囲】[Claims] 位相エンコード化法により収集した複数のMR信号をデ
ィジタル化した後、処理回路により再構成処理を行い断
層像を得るMRI装置において、ディジタル化された前
記複数のMRデータを順次取り込んでMRデータの最大
値を求める最大値検出手段と、この最大値検出手段が求
めた最大値情報に基づき前記処理回路の有する標本化能
力内で前記再構成処理が最適に行えるように前記複数の
MRデータ値を正規化する正規化手段とを有することを
特徴とするMRI装置。
After digitizing a plurality of MR signals collected using the phase encoding method, an MRI apparatus that performs reconstruction processing to obtain a tomographic image uses a processing circuit. a maximum value detection means for determining a value, and normalizing the plurality of MR data values so that the reconstruction processing can be performed optimally within the sampling capacity of the processing circuit based on the maximum value information obtained by the maximum value detection means. An MRI apparatus characterized by comprising: normalization means for normalizing.
JP2176403A 1990-07-05 1990-07-05 Mri apparatus Pending JPH0464342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176403A JPH0464342A (en) 1990-07-05 1990-07-05 Mri apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176403A JPH0464342A (en) 1990-07-05 1990-07-05 Mri apparatus

Publications (1)

Publication Number Publication Date
JPH0464342A true JPH0464342A (en) 1992-02-28

Family

ID=16013067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176403A Pending JPH0464342A (en) 1990-07-05 1990-07-05 Mri apparatus

Country Status (1)

Country Link
JP (1) JPH0464342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079220A1 (en) * 2003-03-08 2004-09-16 Ina-Schaeffler Kg Free engine clutch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079220A1 (en) * 2003-03-08 2004-09-16 Ina-Schaeffler Kg Free engine clutch

Similar Documents

Publication Publication Date Title
US20050073305A1 (en) Magnetic resonance imaging using direct, continuous real-time imaging for motion compensation
EP1227332B1 (en) Acquisition of high-temporal free-breathing MR images
US6404196B1 (en) Method for correction of MRI motion artifacts and main field fluctuation
JP4072879B2 (en) Nuclear magnetic resonance imaging system
JP2004033774A (en) Method and apparatus for reconstructing zoom mr image
US5531223A (en) Method and apparatus of nuclear magnetic resonance imaging with nonlinearly processed image display
US6043659A (en) Magnetic resonance imaging system with non-linear preamplification
US20050059880A1 (en) ECG driven image reconstruction for cardiac imaging
JP3802891B2 (en) Gain adjusting method and magnetic resonance imaging apparatus
JPH0464342A (en) Mri apparatus
JP3137366B2 (en) Magnetic resonance imaging equipment
JP3519270B2 (en) Magnetic resonance imaging apparatus and signal processing method in magnetic resonance imaging apparatus
JP3547520B2 (en) Magnetic resonance imaging system
JP2564428B2 (en) Nuclear magnetic resonance equipment
JP2526468B2 (en) MRI equipment
JP2555233B2 (en) Nuclear magnetic resonance equipment
JP3129191B2 (en) Magnetic resonance tomography equipment
JPH05228124A (en) Magnetic resonance imaging system
JP4822379B2 (en) Magnetic resonance imaging system
JP2870896B2 (en) Magnetic resonance imaging equipment
JP3247476B2 (en) Magnetic resonance imaging equipment
JP3515190B2 (en) Magnetic resonance imaging apparatus and method
JP3361837B2 (en) Magnetic resonance imaging
US6753683B2 (en) System and method for generating spectra
JPH045951A (en) Data collecting method by magnetic resonance imaging photographing