JPH0464265A - Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof - Google Patents

Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof

Info

Publication number
JPH0464265A
JPH0464265A JP2176870A JP17687090A JPH0464265A JP H0464265 A JPH0464265 A JP H0464265A JP 2176870 A JP2176870 A JP 2176870A JP 17687090 A JP17687090 A JP 17687090A JP H0464265 A JPH0464265 A JP H0464265A
Authority
JP
Japan
Prior art keywords
silicide
sic
thermoelectric conversion
conversion material
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2176870A
Other languages
Japanese (ja)
Inventor
Shozo Komiyama
昌三 小見山
Masashi Komabayashi
正士 駒林
Kenichi Hijikata
土方 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2176870A priority Critical patent/JPH0464265A/en
Publication of JPH0464265A publication Critical patent/JPH0464265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to enhance mechanical properties and further improve heat resistance and impact properties without damaging its thermoelectric properties by dispersing SiC short fiber or whisker into Fe silicide matrix. CONSTITUTION:SiC short fiber or whisker to be dispersed into a P type Fe silicide thermoelectric conversion material is either alpha short fiber or whisker. On the other hand, SiC short fiber or whisker to be dispersed into an n type Fe silicide thermoelectric conversion material is either beta-SiC short fiber or whisker. The alpha-SiC and beta-SiC short fiber or whisker serves to increase its fiber reinforcing effect, if it is more oriented and more dispersed to the p type Fe silicide matrix ad the n type Fe silicide matrix. It is, therefore, possible to protect the gasket material from damage induced when it s mounted. More particularly, the material is capable of resisting with harsh service conditions when external force is applied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、様々な熱源を利用して直接発電を行うこと
のできるFe珪化物を主成分としたマトリックス中に炭
化珪素(以下、SiCと記す)を分散強化した強度の優
れた熱電変換材料に関するものであり、この熱電変換材
料は、例えば、ガス器具用電磁弁を開状態に保つための
電源などに使用する熱電素子製造用材料に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on silicon carbide (hereinafter referred to as SiC) in a matrix mainly composed of Fe silicide, which can directly generate electricity using various heat sources. This thermoelectric conversion material is related to a thermoelectric conversion material with excellent strength that is dispersed and strengthened, and this thermoelectric conversion material is related to a material for manufacturing thermoelectric elements used in, for example, power sources for keeping solenoid valves for gas appliances open. It is.

〔従来の技術〕[Conventional technology]

一般に、熱電変換材料の1つとしてFe珪化物が知られ
ており、このFe珪化物は耐熱および耐酸化性に優れ、
かつ安価な材料であるために広く用いられている。
Generally, Fe silicide is known as one of the thermoelectric conversion materials, and this Fe silicide has excellent heat resistance and oxidation resistance.
It is also widely used because it is an inexpensive material.

このFe珪化物熱電変換材料には、n型Fe珪化物熱電
変換材料とn型Fe珪化物熱電変換材料があり、このn
型Fe珪化物熱電変換材料とn型Fe珪化物熱電変換材
料とをU字形に接合して熱電素子を作製している。
This Fe silicide thermoelectric conversion material includes an n-type Fe silicide thermoelectric conversion material and an n-type Fe silicide thermoelectric conversion material.
A thermoelectric element is manufactured by joining a type Fe silicide thermoelectric conversion material and an n type Fe silicide thermoelectric conversion material in a U-shape.

上記n型Fe珪化物熱電変換材料は、Fe5j2にFe
よりfS電子が1個少ないマンガン元素周期表系列、ま
たSiより価電子が1個少ないアルミニウム元素周期表
系列の元素から選ばれた1種または2種以上をドープし
て作製し、一方、n型Fe珪化物熱電変換材料は、F 
e S l 2にFeより価電子が1個多いコバルト元
素周期表系列、またSiより価電子が1個多いsb元素
周期表系列の元素から選ばれた1種または2種以上をド
ープして作製されることも知られている。これらFe珪
化物熱電変換材料で作製された熱電素子は一般に熱衝撃
に弱いために、急熱および急冷の繰返しによる使用中に
、破損されやすく、この点を改良するために、Fe珪化
物熱電変換材料にボロン元素を0.5〜4,6重量%含
有させたFe珪化物熱電変換材料も提供されている(特
開昭59−56781号公報参照)。
The above n-type Fe silicide thermoelectric conversion material contains Fe5j2 and Fe5j2.
It is prepared by doping with one or more elements selected from the elements of the periodic table series of manganese elements, which have one less fS electron than Si, and the elements of the periodic table series of aluminum elements, which have one less valence electron than Si; Fe silicide thermoelectric conversion material is F
Produced by doping e S l 2 with one or more selected from the elements of the periodic table series of cobalt elements, which have one more valence electron than Fe, and the elements of the periodic table series of sb elements, which have one more valence electron than Si. It is also known that Thermoelectric elements made with these Fe silicide thermoelectric conversion materials are generally susceptible to thermal shock and are easily damaged during use due to repeated rapid heating and cooling.In order to improve this point, Fe silicide thermoelectric conversion Fe silicide thermoelectric conversion materials containing 0.5 to 4.6% by weight of boron element have also been provided (see Japanese Patent Laid-Open No. 59-56781).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記ボロン含有Fe珪化物熱電変換材料は、耐
熱衝撃性は改善されているものの全体的な機械的強度は
十分でなく、取付は作業中に簡単に損傷したり、また耐
熱衝撃性も十分でなく急熱急冷の繰り返し使用により破
壊してしまうなどといった問題点があった。
However, although the boron-containing Fe silicide thermoelectric conversion material has improved thermal shock resistance, its overall mechanical strength is not sufficient, and the installation is easily damaged during work, and the thermal shock resistance is not sufficient. However, there was a problem in that it could be destroyed by repeated use of rapid heating and cooling.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、−層機械的強度および耐熱衝撃
性の優れたFe珪化物熱電変換材料を得べく研究を行っ
た結果、 Fe珪化物マトリックス中にSiCの短繊維またはウィ
スカーを分散させることにより、熱電特性を損うことな
く機械的強度を飛躍的に向上させ、さらに耐熱衝撃性を
一層向上させることかできるという知見を得たのである
Therefore, the present inventors conducted research to obtain an Fe silicide thermoelectric conversion material with excellent mechanical strength and thermal shock resistance, and found that SiC short fibers or whiskers were dispersed in an Fe silicide matrix. By doing so, we obtained the knowledge that it is possible to dramatically improve mechanical strength and further improve thermal shock resistance without impairing thermoelectric properties.

この発明は、かかる知見にもとづいてなされたものであ
って、 Fe珪化物マトリックス中にSiCの短繊維またはウィ
スカーを分散し強化したSiC繊維強化Fe珪化物熱電
変換材料に特徴を有するものである。
The present invention was made based on this knowledge, and is characterized by a SiC fiber-reinforced Fe silicide thermoelectric conversion material in which SiC short fibers or whiskers are dispersed and reinforced in an Fe silicide matrix.

一般に、SiCにはα−3iCとβ−SiCがあり、そ
の極性はα−SiCがp型でβ−SiCがn型であると
ころから、n型Fe珪化物熱電変換材料中に分散させる
SiCの短繊維またはウィスカーはα−SiCの短繊維
またはウィスカーであることか必要であり、一方、n型
Fe珪化物熱電変換材料中に分散させるSiCの短繊維
またはウィスカーはβ−3iCの短繊維またはウィスカ
ーであることが必要である。また、α−SiCおよびβ
−3iCの短繊維またはウィスカーは、それぞれp型F
e珪化物マトリックスおよびn型Fe珪化物マトリック
スに対して配向して分散している方か繊維強化の効果が
大きく好ましい。上記α−SiCおよびβ−SiCの短
繊維またはウィスカーの分散量か5容量%未満では十分
な機械的強度か得られず、一方、50容量%を越えて分
散すると十分に緻密化せず、密度比が90%に達しない
ので好ましくない。
In general, there are two types of SiC: α-3iC and β-SiC. The polarity of α-SiC is p-type and β-SiC is n-type. Therefore, SiC dispersed in an n-type Fe silicide thermoelectric conversion material is It is necessary that the short fibers or whiskers be α-SiC short fibers or whiskers, while the SiC short fibers or whiskers dispersed in the n-type Fe silicide thermoelectric conversion material are β-3iC short fibers or whiskers. It is necessary that Also, α-SiC and β
−3iC short fibers or whiskers are each p-type F
It is preferable that the fibers are oriented and dispersed in the e-silicide matrix and the n-type Fe silicide matrix because of the greater effect of fiber reinforcement. If the above-mentioned α-SiC and β-SiC short fibers or whiskers are dispersed in an amount less than 5% by volume, sufficient mechanical strength cannot be obtained.On the other hand, if the amount of dispersed short fibers or whiskers in α-SiC and β-SiC is less than 50% by volume, sufficient densification is not achieved, resulting in This is not preferable because the ratio does not reach 90%.

したがって、n型Fe珪化物熱電変換材料に分散するα
−SiCの短繊維またはウィスカーの量およびn型Fe
珪化物熱電変換材料に分散するβ−3iCの短繊維また
はウィスカーの量は、いずれも5〜50容量%に定めた
Therefore, α dispersed in the n-type Fe silicide thermoelectric conversion material
- Amount of short fibers or whiskers in SiC and n-type Fe
The amount of β-3iC short fibers or whiskers dispersed in the silicide thermoelectric conversion material was set at 5 to 50% by volume.

一般に市販されているSiCの短繊維またはウィスカー
は、直径:01〜30−5長さ:20〜1000即の寸
法を有するβ−3iCの短繊維またはウィスカーである
から、それをそのままn型Fe珪化物マトリックス中に
分散させることができるが、n型Fe珪化物マトリック
ス中に分散するαSiCの短繊維またはウィスカーを得
るには、上記市販のβ−SiCの短繊維またはウィスカ
ーを温度: 2100℃で熱処理しなければならない。
Generally commercially available SiC short fibers or whiskers are β-3iC short fibers or whiskers with diameter: 01 to 30-5 length: 20 to 1000, so they can be converted into n-type Fe silicide as they are. In order to obtain short fibers or whiskers of α-SiC which can be dispersed in an n-type Fe silicide matrix, the above commercial short fibers or whiskers of β-SiC are heat-treated at a temperature of 2100°C. Must.

この発明のSiC繊維強化Fe珪化物熱電変換材料を用
いて熱電素子を製造するには、αSiCの短繊維または
ウィスカーを含有するp型Fe珪化物粉末およびβ−S
iCの短繊維またはウィスカーを含有するn型Fe珪化
物粉末を、方で接合するようにそれらの間に絶縁物とし
て熱処理済のフォルステライト粉末またはフォルステラ
イトのグリーンシートをはさみ込む形で黒鉛製ホットプ
レスモールドに充填し、これを温度:1050〜119
0℃、圧力: 5(1−250kg/ cd、保持時間
:10〜60分の条件で真空ホットプレスする方法か最
も適している。また、α−SiCの短繊維またはウィス
カーを自存するp型Fe珪化物粉末およびβ−SiCの
短繊維またはウィスカーを0型Fe珪化物粉末をU字形
の底で接合するようにU字金型に充填し、プレス成形し
てU字形圧粉体を作製し、このU字形圧粉体を温度: 
1050〜1190℃、圧力: 50〜250kg/ 
cd、真空中10〜60分間保持の条件でホットプレス
する方法でも可能である。
In order to manufacture a thermoelectric element using the SiC fiber-reinforced Fe silicide thermoelectric conversion material of the present invention, p-type Fe silicide powder containing αSiC short fibers or whiskers and β-S
An n-type Fe silicide powder containing iC short fibers or whiskers is bonded with a heat-treated forsterite powder or forsterite green sheet as an insulator between them. Fill a press mold and heat it to a temperature of 1050 to 119
The most suitable method is vacuum hot pressing under the conditions of 0°C, pressure: 5 (1-250 kg/cd, holding time: 10-60 minutes). A U-shaped mold is filled with silicide powder and short fibers or whiskers of β-SiC so as to join the 0-type Fe silicide powder at the bottom of the U-shape, and press-molded to produce a U-shaped powder compact, Temperature of this U-shaped powder compact:
1050-1190℃, pressure: 50-250kg/
It is also possible to use a method of hot pressing under the conditions of cd and holding in vacuum for 10 to 60 minutes.

上記ホットプレスは、−軸圧縮であるために、α−Si
Cの短繊維またはウィスカーおよびβSiCの短繊維ま
たはウィスカーを圧縮方向に垂直な面内に配向し、Fe
珪化物を塑性変形させて密度比:90%以上に緻密化す
ることかできる。
Since the above hot press is -axial compression, α-Si
C short fibers or whiskers and βSiC short fibers or whiskers are oriented in a plane perpendicular to the compression direction, and Fe
It is possible to plastically deform the silicide and make it denser to a density ratio of 90% or more.

上記ホットプレス条件が、温度: 1050℃未満およ
び圧力:50kg/cd未満ては十分に緻密化せず、密
度比=90%に達しないところから、温度+ 1050
℃以上および圧力+50)cg/c−以上を必要とする
が、温度+ 1190℃を越えるとFe珪化物粒子の粒
成長が著しくなるだけでなくFe珪化物がホットプレス
モールドから溶出することかあるので好ましくない。ま
た圧力:l50kg/c−を越えると黒鉛製ポットプレ
スモールドの強度が限界に達するので好ましくない。
If the above hot pressing conditions are: temperature: less than 1050 ° C. and pressure: less than 50 kg/cd, sufficient densification will not occur and the density ratio will not reach 90%, so temperature + 1050
℃ or more and pressure +50)cg/c- or more are required, but if the temperature exceeds +1190℃, not only the grain growth of Fe silicide particles will be significant, but also Fe silicide may be eluted from the hot press mold. So I don't like it. Moreover, if the pressure exceeds 150 kg/c-, the strength of the graphite pot press mold will reach its limit, which is not preferable.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例 1 平均粒径:8廂を有しCo:2at%をドープしたF 
e S i2粉末に、市販のβ−3iCウイスカーを第
1表に示される割合に配合し、この配合原料をアセトン
とともに鉄製のポットに装入し、鉄製のボールを用いて
2時間のボールミル混合を行った。
Example 1 F having an average particle size of 8 squares and doped with Co: 2 at%
e Si2 powder was blended with commercially available β-3iC whiskers in the proportions shown in Table 1, this blended raw material was charged into an iron pot with acetone, and mixed in a ball mill for 2 hours using an iron ball. went.

このようにして得られた混合原料を乾燥してアセトンを
除去したのち、たて: Boas、横:30mmの開口
部を有する黒鉛製ホットプレスモールドに充填し、これ
をそのまま真空ホットプレス装置に装入し、第1表に示
される条件でホットプレスすることにより第1表に示さ
れる密度比およびC。
After drying the mixed raw material obtained in this way to remove acetone, it was filled into a graphite hot press mold with an opening of 30 mm (vertical: Boas) and horizontal: 30 mm, and this was loaded into a vacuum hot press machine as it was. The density ratio and C shown in Table 1 are obtained by hot-pressing under the conditions shown in Table 1.

ドープF e S l 2マトリックス中β−SiCウ
イスカー含有量を有する本発明Fe珪化物熱電変換材料
1〜10、比較Fe珪化物熱電変換材料1〜5および従
来Fe珪化物熱電変換材料1を作製した。
Present invention Fe silicide thermoelectric conversion materials 1 to 10, comparative Fe silicide thermoelectric conversion materials 1 to 5, and conventional Fe silicide thermoelectric conversion material 1 having a β-SiC whisker content in the doped Fe S l 2 matrix were prepared. .

このようにして得られたFe珪化物熱電変換材料をそれ
ぞれ切断して、たて=5龍、横=5■、長さ+30mm
の寸法を有する試験片を2本づつ作り、第1の試験片の
一端を800℃に加熱して両端の熱起電力を測定し、つ
いで同じ試験片でJIS規格R1601に規定する曲げ
強さ試験を行って3点曲げ強さを測定し、それらの測定
結果を第1表に示した。
The Fe silicide thermoelectric conversion material obtained in this way was cut into pieces with length = 5 dragons, width = 5 cm, and length + 30 mm.
Two test pieces each having the dimensions were made, one end of the first test piece was heated to 800°C, the thermoelectromotive force at both ends was measured, and then the same test piece was subjected to a bending strength test specified in JIS standard R1601. The three-point bending strength was measured, and the measurement results are shown in Table 1.

さらに、第2の試験片の全体を温度:800℃に加熱し
、加熱した状態から水中に投入し、破壊に至るまでの投
入回数を測定し、その結果も第1表に示した。
Further, the entire second test piece was heated to a temperature of 800° C. and placed in water in the heated state, and the number of times it was placed until it broke was measured. The results are also shown in Table 1.

実施例 2 平均粒径:8趨のCr+2at%をドープしたFeSi
2粉末に、市販のβ−SiCウイスカーを2100℃で
熱処理して得られたα−3iCウイスカーを第2表に示
される割合で配合し、この配合原料をアセトンとともに
鉄製のポットに装入し、鉄製のボールを用いて2時間の
ボールミル混合を行った。
Example 2 Average grain size: FeSi doped with 8 Cr+2 at%
2 powder, α-3iC whiskers obtained by heat-treating commercially available β-SiC whiskers at 2100 ° C. were blended in the proportions shown in Table 2, and this blended raw material was charged into an iron pot together with acetone. Ball mill mixing was performed for 2 hours using an iron ball.

このようにして得られた混合原料を乾燥してアセトンを
除去したのち、たて+ 30m1.横: 30mmの開
口部を有する黒鉛製ホットプレスモールドに充填し、こ
れをそのまま真空ホットプレス装置に装入し、第1表に
示される条件でホットプレスすることにより第1表に示
される密度比およびCrドープFe512マトリツクス
中α−3iCウイスカー含有量を有する本発明Fe珪化
物熱電変換材料11〜20、比較Fe珪化物熱電変換材
料6〜10および従来Fe珪化物熱電変換材料2を作製
した。
After drying the mixed raw material obtained in this way to remove acetone, it was heated to 30ml. Horizontal: Fill a graphite hot press mold with an opening of 30 mm, load this as it is into a vacuum hot press machine, and hot press under the conditions shown in Table 1 to achieve the density ratio shown in Table 1. Invention Fe silicide thermoelectric conversion materials 11 to 20, comparative Fe silicide thermoelectric conversion materials 6 to 10, and conventional Fe silicide thermoelectric conversion material 2 having α-3iC whisker content in a Cr-doped Fe512 matrix were prepared.

このようにして得られたFe珪化物熱電変換材料をそれ
ぞれ切断して、たて:5市、横=51、長さ:30龍の
寸法を有する試験片を2本づつ作り、実施例1と全く同
様にして熱起電力、3点曲げ強さおよび破壊に至るまで
の投入回数を測定し、その結果を第2表に示した。
The thus obtained Fe silicide thermoelectric conversion material was cut into two test pieces each having dimensions of 5 cm (vertical), 51 cm (width), and 30 cm (length). The thermoelectromotive force, three-point bending strength, and the number of injections until failure were measured in exactly the same manner, and the results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表の結果から、本発明Fe珪化物熱電
変換材料1〜20は、従来Fe珪化物熱電変換材料1〜
2に比べていずれも熱起電力については遜色なく、3点
曲げ強さおよび破壊に至るまでの回数が大幅に向上して
いることがわかる。またこの発明の条件を外れた比較F
e珪化物熱電変換材料1〜10は、熱起電力、3点曲げ
強さおよび破壊に至るまでの投入回数のうちいずれかが
極めて劣っていることがわかる。
From the results in Tables 1 and 2, it can be seen that the Fe silicide thermoelectric conversion materials 1 to 20 of the present invention are different from the conventional Fe silicide thermoelectric conversion materials 1 to 20.
It can be seen that the thermoelectromotive force of both samples is comparable to that of Sample No. 2, and the three-point bending strength and the number of times it takes to break are significantly improved. Also, a comparison F that deviates from the conditions of this invention
It can be seen that e-silicide thermoelectric conversion materials 1 to 10 are extremely poor in any one of thermoelectromotive force, three-point bending strength, and number of times of injection until breaking.

上述のように、この発明のSiC繊維強化Fe珪化物熱
電変換材料は、取付けに際して破損することがなく、特
に外力が加わるような苛酷な条件での使用に十分耐える
ことができるという優れた効果を奏するものである。
As mentioned above, the SiC fiber-reinforced Fe silicide thermoelectric conversion material of the present invention has the excellent effect of not being damaged during installation and being able to withstand use under harsh conditions, especially when external forces are applied. It is something to play.

Claims (7)

【特許請求の範囲】[Claims] (1)Fe珪化物マトリックス中に炭化珪素(以下Si
Cと記す)の短繊維またはウィスカーを分散してなるこ
とを特徴とするSiC繊維強化Fe珪化物熱電変換材料
(1) Silicon carbide (hereinafter referred to as Si) in the Fe silicide matrix
1. A SiC fiber-reinforced Fe silicide thermoelectric conversion material, characterized in that it is made by dispersing short fibers or whiskers of (denoted as C).
(2)上記SiCの短繊維またはウィスカーは、Fe珪
化物と同じ極性であることを特徴とする請求項1記載の
SiC繊維強化Fe珪化物熱電変換材料。
(2) The SiC fiber-reinforced Fe silicide thermoelectric conversion material according to claim 1, wherein the SiC short fibers or whiskers have the same polarity as the Fe silicide.
(3)上記SiCの短繊維またはウィスカーは、Fe珪
化物マトリックス中に5〜50容量%含有されているこ
とを特徴とする請求項1または2記載のSiC繊維強化
Fe珪化物熱電変換材料。
(3) The SiC fiber-reinforced Fe silicide thermoelectric conversion material according to claim 1 or 2, wherein the SiC short fibers or whiskers are contained in the Fe silicide matrix in an amount of 5 to 50% by volume.
(4)上記SiCの短繊維またはウィスカーは、Fe珪
化物マトリックス中に配向して分散していることを特徴
とする請求項1、2または3記載のSiC繊維強化Fe
珪化物熱電変換材料。
(4) The SiC fiber-reinforced Fe according to claim 1, 2 or 3, wherein the SiC short fibers or whiskers are oriented and dispersed in the Fe silicide matrix.
Silicide thermoelectric conversion material.
(5)p型Fe珪化物マトリックス中にα−SiCの短
繊維またはウィスカーを分散してなることを特徴とする
請求項2、3または4記載のSiC繊維強化Fe珪化物
熱電変換材料。
(5) The SiC fiber reinforced Fe silicide thermoelectric conversion material according to claim 2, 3 or 4, characterized in that α-SiC short fibers or whiskers are dispersed in a p-type Fe silicide matrix.
(6)n型Fe珪化物マトリックス中にβ−SiCの短
繊維またはウィスカーを分散してなることを特徴とする
請求項2、3または4記載のSiC繊維強化Fe珪化物
熱電変換材料。
(6) The SiC fiber-reinforced Fe silicide thermoelectric conversion material according to claim 2, 3 or 4, characterized in that β-SiC short fibers or whiskers are dispersed in an n-type Fe silicide matrix.
(7)Fe珪化物粉末およびSiCの短繊維またはウィ
スカーの混合体を、真空雰囲気中、 温度:1050〜1190℃、 圧力:50〜250kg/cm^2、 の範囲内の条件でホットプレスすることを特徴とするS
iC繊維強化Fe珪化物熱電変換材料の製造法。
(7) Hot pressing a mixture of Fe silicide powder and SiC short fibers or whiskers in a vacuum atmosphere under the following conditions: temperature: 1050 to 1190°C, pressure: 50 to 250 kg/cm^2. S characterized by
A method for producing an iC fiber-reinforced Fe silicide thermoelectric conversion material.
JP2176870A 1990-07-04 1990-07-04 Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof Pending JPH0464265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176870A JPH0464265A (en) 1990-07-04 1990-07-04 Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176870A JPH0464265A (en) 1990-07-04 1990-07-04 Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0464265A true JPH0464265A (en) 1992-02-28

Family

ID=16021237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176870A Pending JPH0464265A (en) 1990-07-04 1990-07-04 Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0464265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169595A (en) * 2011-01-12 2012-09-06 Emitec Ges Fuer Emissionstechnologie Mbh Thermoelectric material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169595A (en) * 2011-01-12 2012-09-06 Emitec Ges Fuer Emissionstechnologie Mbh Thermoelectric material and method for producing the same

Similar Documents

Publication Publication Date Title
US2752258A (en) Silicon nitride-bonded silicon carbide refractories
CN101565308B (en) Silicon nitride ceramics enhanced by boron nitride nanotube and preparation method thereof
CN101560099A (en) Method for preparing ZrN-Sialon-SiC composite powder
US4187116A (en) Silicon nitride-silicon carbide composite material
JPH04214075A (en) Boron carbide-base combined sintered body and its manufacture
US5120688A (en) Pressureless sintered silicon nitride-boron nitride composite
JPS6143309B2 (en)
JPH048395B2 (en)
US3248346A (en) Heat-resistant and oxidation-proof materials containing molybdenum disilicide
JPH0464265A (en) Thermoelectric conversion material of sic fiber reinforced fe silicide and manufacture thereof
JPH03223166A (en) Production of silicon carbide-based refractory having silicon nitride bond
JPS61227969A (en) Fiber reinforced ceramic composite material, intermediate material tape therefor and manufacture
US3821005A (en) Densification of silicon nitride
US5324694A (en) Silicon nitride/boron nitride composite with enhanced fracture toughness
US3529046A (en) Utilizing lithium oxide and precursors as sintering aid for hot pressing beryllium oxide
JPH02142881A (en) Friction material
JP3225873B2 (en) MgO composite ceramics and method for producing the same
JPS6152110B2 (en)
JPS60260197A (en) Microwave absorber
JPS61247661A (en) Oxidation-resistant high strength carbon material
SU504741A1 (en) Refractory material
JPS6022677B2 (en) Silicon nitride-based composite sintered body and its manufacturing method
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS5812224B2 (en) Method for manufacturing silicon nitride sintered body
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same