JPH0464068A - Method for detecting dc current - Google Patents
Method for detecting dc currentInfo
- Publication number
- JPH0464068A JPH0464068A JP2174979A JP17497990A JPH0464068A JP H0464068 A JPH0464068 A JP H0464068A JP 2174979 A JP2174979 A JP 2174979A JP 17497990 A JP17497990 A JP 17497990A JP H0464068 A JPH0464068 A JP H0464068A
- Authority
- JP
- Japan
- Prior art keywords
- current
- iron core
- magnetic
- conductor
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 63
- 230000005284 excitation Effects 0.000 claims abstract description 33
- 239000004020 conductor Substances 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 230000004907 flux Effects 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000010586 diagram Methods 0.000 description 9
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/18—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
- G01R15/183—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、過電流検出器、各種電流検出器などに用いら
れ、鉄心の磁気現象を利用して、主回路とは電気的に非
接触で直流の小電流を検出する方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in overcurrent detectors, various current detectors, etc., and utilizes the magnetic phenomenon of the iron core to make electrical contact with the main circuit non-contact. This paper relates to a method for detecting small direct currents.
直流電流を主回路とは電気的に非接触で検出するには、
直流変流器と、鉄心にギャップを設けてこのギャップに
ホール素子を挿入する装置が用いられている。To detect direct current without electrical contact with the main circuit,
A DC transformer and a device that provides a gap in the iron core and inserts a Hall element into this gap are used.
第20図は直流変流器の回路を要部構成とともに示した
模式図である。第20図において、検出する直流電流I
が流れる導体3を閉磁路の鉄心1a、 lbの中心孔に
通し、鉄心1a、 lbに巻回した励磁コイル2aと2
bを逆向きにして交流電源5に接続している。鉄心1a
、 lbは磁気特性が角形で保磁力の小さい材料を用い
る。導体3の被検出電流IがOのとき、交流電流iは鉄
心1a、 lbの励磁電流分のみが流れるが、導体3に
直流電流■が流れると、鉄心la、 lbの磁束密度範
囲が変わり交流電流iが増すので、その変化を交流電流
計4で読み取ることにより、直流電流すなわち被検出電
流■を求めることができる。なお6は主回路のt源、7
は同じく負荷を表わす。FIG. 20 is a schematic diagram showing the circuit of the DC transformer together with the main part configuration. In Fig. 20, the detected DC current I
The conductor 3 through which the current flows is passed through the center hole of the iron cores 1a and lb in a closed magnetic circuit, and the excitation coils 2a and 2 wound around the iron cores 1a and lb are connected.
b is connected to the AC power source 5 in the opposite direction. Iron core 1a
, lb uses a material with rectangular magnetic properties and low coercive force. When the detected current I in the conductor 3 is O, only the excitation current of the iron cores 1a and lb flows in the AC current i, but when the DC current ■ flows in the conductor 3, the magnetic flux density range of the iron cores la and lb changes and the AC Since the current i increases, by reading the change with the AC ammeter 4, the DC current, that is, the detected current ■ can be determined. Note that 6 is the t source of the main circuit, and 7
also represents the load.
第21図は鉄心とホール素子を用いる装置の構成を示す
模式図であり、第21図において、鉄心8のギヤ、ブに
挿入したホール素子9は、直流を流10により直流電圧
が印加されており、鉄心8の中心孔を通る導体3に被検
出電流■が流れると、鉄心8が磁化され、このとき生ず
る磁束によりホール素子9に電圧が生し、この電圧を直
流電圧計11で測定し、被検出電流■を求めることがで
きる。FIG. 21 is a schematic diagram showing the configuration of a device using an iron core and a Hall element. In FIG. When the current to be detected flows through the conductor 3 passing through the center hole of the iron core 8, the iron core 8 is magnetized, and the magnetic flux generated at this time generates a voltage in the Hall element 9, and this voltage is measured with a DC voltmeter 11. The detected current ■ can be determined.
近年、機器の予防保全が重要視され、直流用の過電流遮
断器、リレーが必要になっており、そのためには高精度
の直流電流検出方法が望まれる。In recent years, preventive maintenance of equipment has become important, and overcurrent circuit breakers and relays for DC have become necessary, and for this purpose, a highly accurate DC current detection method is desired.
しかし、直流変流器は鉄心を2個用いねばならず、検出
部の寸法が太き(なること、被検出電流が0でも鉄心の
励磁電流が流れるため誤差を生じやすいなどの問題があ
る。鉄心のギヤツブ部にホール素子を取り付ける装置は
、周囲温度の影響が大きく、誤差を生ずること、ホール
素子部が構造的に弱く壊れやすいなどの問題がある。However, DC current transformers require the use of two iron cores, and there are problems such as the size of the detection section being thick (and the excitation current of the iron core flowing even when the current to be detected is 0, which tends to cause errors). The device for attaching the Hall element to the gear part of the iron core has problems such as being greatly affected by ambient temperature, causing errors, and the Hall element part being structurally weak and easily broken.
本発明は上述の点に鑑みてなされたものであり、その目
的は、装置を大型化することなく、高精度に直流電流を
検出することが可能な電流検出方法を提供することにあ
る。The present invention has been made in view of the above points, and an object of the present invention is to provide a current detection method capable of detecting a direct current with high accuracy without increasing the size of the device.
上記の課題を解決するために、本発明の方法は、磁気ヒ
ステリシス曲線が角形を示し保磁力の小さい材料からな
る鉄心の磁気回路の一部にギャップを形成し、この鉄心
に巻回した励磁コイルに鉄心の
部上リアクタンスに比べて大きい抵抗を直列に接続し、
鉄心を交流の両波または半波の一定電流でlII磁して
おき、鉄心の内側空間部の中心に被検出電流が流れる導
体を通し、この導体に流れる電流の磁界によって鉄心の
磁束密度範囲を変化させ、励磁コイルとは別に鉄心に巻
回した検出コイルの誘起電圧の変化、または励磁コイル
両端の電圧変化から、導体に流れる直流電流を主回路と
は電気的に非接触で検出するものである。In order to solve the above problems, the method of the present invention forms a gap in a part of the magnetic circuit of an iron core made of a material with a rectangular magnetic hysteresis curve and a small coercive force, and an excitation coil wound around this iron core. Connect a resistor larger than the reactance of the iron core in series,
The iron core is magnetized with a constant AC double-wave or half-wave current, a conductor through which the current to be detected flows is passed through the center of the inner space of the iron core, and the magnetic flux density range of the iron core is determined by the magnetic field of the current flowing through this conductor. The DC current flowing through the conductor is detected without electrical contact with the main circuit from changes in the induced voltage of a detection coil wound around an iron core separately from the excitation coil, or from changes in the voltage across the excitation coil. be.
上記のように本発明の方法は、高透磁率で保磁力が小さ
く、磁気ヒステリシス曲線が角形を示す材料からなる鉄
心の一部にギャップを形成し、磁化特性を直線状にして
、同一波形の一定電流の交流磁界で励磁しているので、
鉄心の内側空間部を通した導体に流れる被検出電流で生
ずる磁界により、鉄心の磁界範囲が移動することを利用
して磁束密度範囲を変化させ、この変化に基づく誘起電
圧変化分から被検出電流を求めることが可能となる。As described above, the method of the present invention forms a gap in a part of the core made of a material that has high magnetic permeability, low coercive force, and exhibits a rectangular magnetic hysteresis curve. Since it is excited by an alternating magnetic field with a constant current,
The magnetic field range of the core moves due to the magnetic field generated by the detected current flowing through the conductor passing through the inner space of the core, and the magnetic flux density range is changed. It becomes possible to ask for it.
以下本発明の方法を実施例に基づき説明する。 The method of the present invention will be explained below based on Examples.
はじめに、本発明の方法における第1の方法について説
明する。第1図は、この方法が適用される装置の要部構
成の一例を示した模式図である。First, the first method of the present invention will be explained. FIG. 1 is a schematic diagram showing an example of the main part configuration of an apparatus to which this method is applied.
第1図において、鉄心12a、12bは磁気ヒステリシ
ス曲線が角形で保磁力の小さい材料からなり、例えば円
筒状に形成された一体のものを分割して磁気回路にギヤ
ツブを形成したものである。この鉄心12a、 12b
の内側空間部の中心を通って、導体15が被検出装置の
電源と負荷に接続されているが、それらの図示は省略し
である。鉄心12aはその肉厚部に交流励磁コイル13
を、鉄心部のりアクタンスに比べて大きい制御抵抗16
を介して交流励磁電源17に接続し、さらに鉄心12b
には検出コイル14を巻回して、積分器18.正負振幅
変換器19. il!真器20の順に接続し、減夏器2
0の一方の端子には直流基準電源21を接続している。In FIG. 1, iron cores 12a and 12b are made of a material with rectangular magnetic hysteresis curves and low coercive force, and are, for example, a cylindrical integral piece that is divided to form gears in the magnetic circuit. These iron cores 12a, 12b
A conductor 15 is connected to the power source and load of the detected device through the center of the inner space, but these are not shown. The iron core 12a has an AC excitation coil 13 in its thick part.
, the control resistance 16 is larger than the iron core glue actance.
is connected to the AC excitation power supply 17 via the iron core 12b.
The detection coil 14 is wound around the integrator 18. Positive/negative amplitude converter 19. Il! Connect in the order of true device 20, summer reducer 2
0 is connected to a DC reference power source 21.
次に第2図、第3図は鉄心12a、12bの磁気ヒステ
リシス曲線、第4図、第5図は磁束の波形図、第6図、
第7図は被検出電流と出力の関係線図を示したものであ
る。Next, FIGS. 2 and 3 are magnetic hysteresis curves of the iron cores 12a and 12b, FIGS. 4 and 5 are magnetic flux waveform diagrams, and FIG.
FIG. 7 shows a relationship diagram between detected current and output.
以下、本発明の方法における作動について、第1図〜第
7図を参照して説明する。鉄心12a、12bは、分割
する前は第2図の実線(イ)の特性を有するが、分割し
た後はギヤ、プ部の磁気抵抗により、点線−)のような
直線状の特性になる。この点線−)の傾斜は、ギヤツブ
の大きさを変えることにより任意に設定することができ
る。鉄心12a、 12bは、第1図の交流励磁電源1
7と制御抵抗16.交流励磁コイル13により励磁する
。ここでは、交流励磁電−a17は商用を源(正弦波5
0.60Hz)の場合について述べる。Hereinafter, the operation of the method of the present invention will be explained with reference to FIGS. 1 to 7. Before being divided, the iron cores 12a and 12b have the characteristics shown by the solid line (A) in FIG. 2, but after being divided, they have linear characteristics as shown by the dotted line (-) due to the magnetic resistance of the gear and pull sections. The slope of this dotted line -) can be arbitrarily set by changing the size of the gear. The iron cores 12a and 12b are connected to the AC excitation power source 1 in FIG.
7 and control resistor 16. It is excited by an AC excitation coil 13. Here, the AC excitation voltage a17 is a commercial source (sine wave 5
0.60Hz) will be described.
鉄心12a、12bの交流印加電圧、磁束密度、励磁電
流、誘起電圧の関係は(11,(2]式で表わされる。The relationship among the AC applied voltage, magnetic flux density, exciting current, and induced voltage of the iron cores 12a and 12b is expressed by equation (11, (2)).
B
Ea ” i B+ ” l Rz + Na
Ac □−−−−− (11t
B
Es ”Ns Ac □−−−・−−−
−一−・−I2)t
但し、E、:交流印加電圧
i:交流励磁電流
R1:直列に接続した制御抵抗16の値R1:交流励磁
コイルエ3の抵抗の値
N、:交流lII磁コイル13の巻数
A、:鉄心12a、12bの磁路断面積B:鉄心12a
、12bの磁束密度
t:待時
間、:検出コイル14の誘起電圧
Ns :検出コイル14の巻数
ここで(3)式のように設定すると、E、が一定であれ
ば、導体15の電流による磁界が加わっても励磁電流i
は変化しない0本発明はこの条件に設定する。B Ea ” i B+ ” l Rz + Na
Ac □---- (11t B Es "Ns Ac □----・----
-1-・-I2)t However, E: AC applied voltage i: AC excitation current R1: Value of the control resistor 16 connected in series R1: Resistance value of AC excitation coil 3 N,: AC lII magnetic coil 13 Number of turns A: Magnetic path cross-sectional area of cores 12a and 12b B: Core 12a
, 12b magnetic flux density t: waiting time, : induced voltage of the detection coil 14 Ns : number of turns of the detection coil 14 Here, when set as in equation (3), if E is constant, the magnetic field due to the current of the conductor 15 Even if the excitation current i
does not change.0 The present invention is set to this condition.
B
i R1+ l R1>>Ng A(−−・(3)
t
なお、
検出電流
HI
Hr
但し、
交流励磁電流iと磁界の関係は(4)式1被Iと磁界の
関係は(5)式で表わされる。B i R1+ l R1 >> Ng A(--(3)
t Note that the detection current HI Hr However, the relationship between the AC excitation current i and the magnetic field is expressed by Equation (4) 1 The relationship between I and the magnetic field is expressed by Equation (5).
=(NAXi)/L ・〜 (4)−(NI X
I) /L (51HL :交流励磁電流
lによる磁界
L :鉄心12a、12bの磁路長さ
HI :被検出電流Iによる磁界
N、:導体15の鉄心12a、12b ヘの巻数(通常
は1回)
第3図は説明を簡易にするため、鉄心12a、12bの
磁気ヒステリシス曲線を近位した特性を模式的に表わし
た図である。鉄心12a、12bは被検出電流■が0の
場合は、交流で第3図のHr(B+)とHI(Bz)の
範囲で励磁され、磁束変化量はB++になる。その波形
は第4図のように変化し、検出コイル14には(2)式
による電圧が誘起する。=(NAXi)/L ・~ (4)-(NIX
I) /L (51HL: Magnetic field L due to AC excitation current l: Magnetic path length of iron cores 12a, 12b HI: Magnetic field N due to detected current I: Number of turns of conductor 15 around iron cores 12a, 12b (usually 1 turn) 3 is a diagram schematically showing the characteristics of the magnetic hysteresis curves of the iron cores 12a and 12b in order to simplify the explanation.When the detected current ■ of the iron cores 12a and 12b is 0, It is excited with alternating current in the range of Hr (B+) and HI (Bz) shown in Figure 3, and the amount of change in magnetic flux becomes B++.The waveform changes as shown in Figure 4, and the detection coil 14 has the following equation (2). The voltage induced by
次に導体15に直流電流■が流れると(5)式による直
流磁界十H1が加わり、鉄心12a、 12bの磁界は
Hr とHlの和になって、第3図のH3(B I)。Next, when a DC current ■ flows through the conductor 15, a DC magnetic field 1 H1 according to equation (5) is added, and the magnetic field of the iron cores 12a and 12b becomes the sum of Hr and Hl, resulting in H3 (B I) in FIG.
H#(B−の範囲に移動し、磁束変化量はB+4になり
小さくなる。磁束波形は第5図のようになり、検出コイ
ル14の誘起電圧は小さくなる。被検出電流■がさらに
増すと磁束の変化範囲が低減し、検出コイル14の誘起
電圧も小さくなる。検出コイル14の誘起電圧を積分器
18を通して磁束波形に戻し、正負振幅変換器19で第
3図のB II + 814の値に比例した直流電圧に
変換すれば被検出電流Iを求めることができる、ここで
は被検出電流Iが正の場合について述べたが、負の場合
についても同様である。正負振幅変換器19の出力電圧
は被検出電流Iが増すと小さくなって、第6図のように
なる。H# (moves to the B- range, and the amount of change in magnetic flux becomes B+4, which becomes smaller. The magnetic flux waveform becomes as shown in Fig. 5, and the induced voltage in the detection coil 14 becomes smaller. When the detected current ■ further increases, The variation range of the magnetic flux is reduced, and the induced voltage of the detection coil 14 is also reduced.The induced voltage of the detection coil 14 is returned to the magnetic flux waveform through the integrator 18, and the value of B II + 814 in FIG. 3 is converted by the positive/negative amplitude converter 19. The detected current I can be obtained by converting it into a DC voltage proportional to . Here, the case where the detected current I is positive is described, but the same applies to the case where it is negative. The output of the positive/negative amplitude converter 19 The voltage becomes smaller as the detected current I increases, as shown in FIG.
出力電圧と被検出電流■の0点を合わせるには、正負振
幅変換器19の出力と直流基準電源21の電圧を減算器
20に入れ、被検出電流IがOの点で減算器20の出力
が0になるように設定しておけばよい。To match the output voltage and the zero point of the detected current ■, input the output of the positive/negative amplitude converter 19 and the voltage of the DC reference power supply 21 into the subtracter 20, and when the detected current I is at the point O, the output of the subtracter 20 is It is sufficient to set it so that it becomes 0.
この場合の被検出電流Iと出力電圧の関係は第7図によ
うになる。The relationship between the detected current I and the output voltage in this case is shown in FIG.
次に本発明における第2の方法について説明する。第2
の方法は第1の方法における検出部の構成を簡易にして
、さらに小型化するものであり、その装置の要部構成を
第8図に示し、第1図と共通部分を同一符号で表わしで
ある。第8図の装置が第1図の装置と異なる点は第1図
の検出コイル14を省略しであることである。第8図に
おいて、交流励磁電源17は商用電源を用いており、交
流励磁コイル13の両端の電圧は、(1)式の第2項と
第3項の和になるが、(6)式の条件、即ち(1)式の
第2項i R! < < N@ Ac
”−一・・・−−−−一−・−(6)t
の値を第3項の値に比べて非常に小さく設定すれば、第
2項のiRlは無視することができ、第1の方法におけ
る検出コイル14の誘起電圧と同等と見なすことができ
る。したがって、交流励磁コイル13の両端の電圧の被
検出電流■による変化は、第1の方法における検出コイ
ル14の電圧変化と同じであり、その値は第1の方法の
N A / N s倍になるので、直流電流の検出を行
なうことができる。Next, a second method in the present invention will be explained. Second
This method simplifies the configuration of the detection section in the first method and further reduces its size. The main configuration of the device is shown in FIG. 8, and parts common to those in FIG. be. The device shown in FIG. 8 differs from the device shown in FIG. 1 in that the detection coil 14 shown in FIG. 1 is omitted. In FIG. 8, the AC excitation power supply 17 uses a commercial power supply, and the voltage across the AC excitation coil 13 is the sum of the second and third terms in equation (1), but in equation (6). The condition, that is, the second term in equation (1) i R! < < N@Ac
"-1...----1-...-(6) If the value of t is set very small compared to the value of the third term, the second term iRl can be ignored, and the first It can be considered to be equivalent to the induced voltage of the detection coil 14 in the first method. Therefore, the change in the voltage across the AC excitation coil 13 due to the detected current ■ is the same as the voltage change in the detection coil 14 in the first method. Since the value is N A / N s times that of the first method, DC current can be detected.
出力側の回路は第9図のように、検出コイル14を用い
て両波整流器22.平滑器23を接続し、誘起電圧の平
均値を直流に変換する方法でも可能であり、第8図のよ
うに検出コイル14を用いない場合も、積分器18.正
負振幅変換器19を両波整流器22゜平滑器23に置き
換えることができる。また、交流励磁電源17の波形は
正弦波でなく、方形波など他の波形であってもよい。As shown in FIG. 9, the output side circuit uses a detection coil 14 and a double wave rectifier 22. It is also possible to connect a smoother 23 and convert the average value of the induced voltage into direct current, and even when the detection coil 14 is not used as shown in FIG. 8, the integrator 18. The positive/negative amplitude converter 19 can be replaced by a double-wave rectifier 22 and a smoother 23. Further, the waveform of the AC excitation power source 17 is not a sine wave, but may be another waveform such as a square wave.
次に本発明における第3の方法について説明する。第1
0図は第3の方法が適用される装置の要部構成を示した
模式図であり、第1図、第8図と共通部分に同一符号を
用いである。第10図は交流励磁コイル13.制m抵抗
16と直列に半波整流器24を接続したことのほかは第
1図と全く同様である。Next, a third method in the present invention will be explained. 1st
FIG. 0 is a schematic diagram showing the main part configuration of an apparatus to which the third method is applied, and the same reference numerals are used for parts common to FIGS. 1 and 8. FIG. 10 shows the AC excitation coil 13. The configuration is exactly the same as in FIG. 1 except that a half-wave rectifier 24 is connected in series with the m-control resistor 16.
第10図の装置で鉄心12a、 12bを励磁したとき
の磁気ヒステリシス曲線を表わす模式図を第11図に示
す、鉄心12a、 12bの励磁は前述の第1図の装置
の場合と同様(3)式の条件で行なう、被検出電流Iが
0のときは、交流で第11図のHS(B I)と、H,
Bが0の点との範囲で励磁し、磁束変化量はB、。であ
る、ここに被検出電流+■1が流れると、磁界H11が
加わりHA(Bl)と、H?(B t)の範囲となり、
磁束変化量は小さくB+tである。被検出電流−■□が
流れると、Hs(B+)と、H,(Bl)の範囲となり
、磁束変化量が太きく81.になる、導体15の被検出
電流■と正負振幅変換器19.減算器20の出力の関係
は第12図、第13図のようになり、直流電流を検出す
ることができる。FIG. 11 shows a schematic diagram showing the magnetic hysteresis curve when the cores 12a and 12b are excited in the device shown in FIG. 10. The excitation of the cores 12a and 12b is the same as in the device shown in FIG. 1 described above (3) When the detected current I is 0 under the conditions of the formula, HS (B I) in Fig. 11 and H,
It is excited in the range from the point where B is 0, and the amount of change in magnetic flux is B. When the detected current +■1 flows here, a magnetic field H11 is added and HA (Bl) and H? (B t) range,
The amount of change in magnetic flux is small and is B+t. When the current to be detected -■□ flows, the range is Hs (B+), H, (Bl), and the amount of change in magnetic flux becomes 81. , the current to be detected in the conductor 15 and the positive/negative amplitude converter 19. The relationship between the outputs of the subtracter 20 is as shown in FIGS. 12 and 13, and direct current can be detected.
第3の方法も(6)式の条件に設定することにより、第
14図に装置の模式図で示した如く検出コイル14を省
き、交流励磁コイル13の両端の電圧から電流を検出す
ることが可能である。In the third method, by setting the conditions of equation (6), it is possible to omit the detection coil 14 and detect the current from the voltage across the AC excitation coil 13, as shown in the schematic diagram of the device in FIG. It is possible.
これまでの説明で鉄心12a、 12bの形状は、円筒
状に形成された一体の鉄心を分割したものについて述べ
てきたが、例えば第15図の模式断面図に示したように
、円筒状鉄心の一部を除去してギャップを形成したもの
でもよい、しかし、これはギャップ寸法を調整するのが
難しい。また鉄心の形状は、第16図の模式断面図に示
したように、角形の筒状体を分割したものでもよいこと
は勿論である。In the explanation so far, the shape of the iron cores 12a and 12b has been described as one in which a cylindrical integral iron core is divided, but for example, as shown in the schematic cross-sectional view of FIG. A gap may be formed by removing a portion, but this makes it difficult to adjust the gap size. Moreover, the shape of the iron core may, of course, be one in which a rectangular cylindrical body is divided, as shown in the schematic cross-sectional view of FIG. 16.
以上、本発明の直流電流検出方法の通用される装置構成
と作動について、基本的な事柄を説明した0次に本発明
の方法を用いた具体的な事例を述べる。鉄心は市販のC
o系アモルファス合金薄帯で巻鉄心を形成し、所定の熱
処理を施し樹脂を含浸した後切断した。第17図はその
鉄心とコイル部を示す模式断面図である。これは第17
図のように、プラスチック薄板のコイル枠25を用いて
、励磁コイル13aと検出コイル14aを重ねて参回し
、分割して得られた鉄心12c、 12dをコイル枠2
5に挿入す第
図
第
図
2]
第
図
第
図
第
図
凪界
第12
図
第13
図
第15
図
第16図
第18図The basic matters have been explained above regarding the device configuration and operation to which the DC current detection method of the present invention is applied. Next, a specific example using the method of the present invention will be described. The iron core is commercially available C.
A wound core was formed from an o-based amorphous alloy ribbon, subjected to a prescribed heat treatment, impregnated with resin, and then cut. FIG. 17 is a schematic sectional view showing the iron core and coil portion. This is the 17th
As shown in the figure, the excitation coil 13a and the detection coil 14a are overlapped and circulated using a coil frame 25 made of a thin plastic plate, and the obtained iron cores 12c and 12d are inserted into the coil frame 2.
Figure 5 Inserted in Figure 2] Figure Figure Figure Figure Nagikai Figure 12 Figure 13 Figure 15 Figure 16 Figure 18
Claims (1)
材料からなる鉄心の磁気回路の一部にギャップを形成し
、この鉄心に巻回した励磁コイルに高抵抗を直列に接続
し正負対称の一定電流を流して交流磁界を加えておき、
前記鉄心の内側空間部の中心に被検出電流が流れる導体
を通し、この導体に流れる電流の磁界によって前記鉄心
の磁束密度範囲を変化させ、前記鉄心に前記励磁コイル
とは別に巻回した検出コイルの誘起電圧の変化から前記
導体に流れる直流電流を検出することを特徴とする直流
電流検出方法。 2)磁気ヒステリシス曲線が角形を示し保磁力の小さい
材料からなる鉄心の磁気回路の一部にギヤップを形成し
、この鉄心に巻回した励磁コイルに高抵抗を直列に接続
し正負対称の一定電流を流して交流磁界を加えておき、
前記鉄心の内側空間部の中心に被検出電流が流れる導体
を通し、この導体に流れる電流の磁界によって前記鉄心
の磁束密度範囲を変化させ、前記励磁コイル両端の電圧
変化から前記導体に流れる直流電流を検出することを特
徴とする直流電流検出方法。 3)磁気ヒステリシス曲線が角形を示し保磁力の小さい
材料からなる鉄心の磁気回路の一部にギャップを形成し
、この鉄心に巻回した励磁コイルに正または負のみの一
定電流を流して半波の交流磁界を加えておき、前記鉄心
の内側空間部の中心に被検出電流が流れる導体を通し、
この導体に流れる電流の磁界によって前記鉄心の磁束密
度範囲を変化させ、前記鉄心に前記励磁コイルとは別に
巻回した検出コイルの誘起電圧の変化から前記導体に流
れる直流電流を検出することを特徴とする直流電流検出
方法。 4)磁気ヒステリシス曲線が角形を示し保磁力の小さい
材料からなる鉄心の磁気回路の一部にギャップを形成し
、この鉄心に巻回した励磁コイルに正または負のみの一
定電流を流して半波の交流磁界を加えておき、前記鉄心
の内側空間部の中心に被検出電流が流れる導体を通し、
この導体に流れる電流の磁界によって前記鉄心の磁束密
度範囲を変化させ、前記励磁コイル両端の電圧変化から
前記導体に流れる直流電流を検出することを特徴とする
直流電流検出方法。[Claims] 1) A gap is formed in a part of the magnetic circuit of an iron core made of a material with a rectangular magnetic hysteresis curve and a low coercive force, and a high resistance is connected in series to an excitation coil wound around this iron core. Then, a constant current with positive and negative symmetry is applied and an alternating magnetic field is applied.
A detection coil that is wound around the iron core separately from the excitation coil by passing a conductor through which a current to be detected flows through the center of the inner space of the iron core, changing the magnetic flux density range of the iron core by the magnetic field of the current flowing through the conductor. A method for detecting a direct current, comprising detecting a direct current flowing through the conductor from a change in the induced voltage of the conductor. 2) A gap is formed in a part of the magnetic circuit of an iron core whose magnetic hysteresis curve is square and is made of a material with low coercive force, and a high resistance is connected in series to the excitation coil wound around this iron core to generate a constant current with positive and negative symmetry. is applied and an alternating magnetic field is applied.
A conductor through which a current to be detected flows passes through the center of the inner space of the iron core, the magnetic flux density range of the iron core is changed by the magnetic field of the current flowing through this conductor, and a DC current flows through the conductor from voltage changes at both ends of the excitation coil. A direct current detection method characterized by detecting. 3) A gap is formed in a part of the magnetic circuit of an iron core whose magnetic hysteresis curve is rectangular and is made of a material with low coercive force, and a constant positive or negative current is passed through the excitation coil wound around this iron core to generate a half wave. an alternating current magnetic field is applied, a conductor through which the current to be detected flows is passed through the center of the inner space of the iron core,
The magnetic flux density range of the iron core is changed by the magnetic field of the current flowing through the conductor, and the DC current flowing through the conductor is detected from the change in the induced voltage of a detection coil wound around the iron core separately from the excitation coil. DC current detection method. 4) A gap is formed in a part of the magnetic circuit of an iron core whose magnetic hysteresis curve is rectangular and is made of a material with low coercive force, and a constant positive or negative current is passed through the excitation coil wound around this iron core to generate a half wave. an alternating current magnetic field is applied, a conductor through which the current to be detected flows is passed through the center of the inner space of the iron core,
A direct current detection method comprising changing the magnetic flux density range of the iron core by the magnetic field of the current flowing through the conductor, and detecting the direct current flowing through the conductor from voltage changes across the excitation coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2174979A JPH0464068A (en) | 1990-07-02 | 1990-07-02 | Method for detecting dc current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2174979A JPH0464068A (en) | 1990-07-02 | 1990-07-02 | Method for detecting dc current |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0464068A true JPH0464068A (en) | 1992-02-28 |
Family
ID=15988099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2174979A Pending JPH0464068A (en) | 1990-07-02 | 1990-07-02 | Method for detecting dc current |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0464068A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506946A (en) * | 2004-07-14 | 2008-03-06 | エーティーエス ネットワークス | DC current sensor |
FR2919068A1 (en) * | 2007-07-19 | 2009-01-23 | Airbus France Sa | PERFECTED CURRENT SENSOR |
WO2011130905A1 (en) * | 2010-04-20 | 2011-10-27 | 安阳安科电器股份有限公司 | Pulse current sensor and lightning protection cabinet with surge wave recording composed of the sensor |
US8361731B2 (en) | 2007-07-19 | 2013-01-29 | Biomerieux | Ezrin assay method for the in vitro diagnosis of colorectal cancer |
US8367362B2 (en) | 2007-07-19 | 2013-02-05 | Biomerieux | Aminoacylase 1 assay method for the in vitro diagnosis of colorectal cancer |
US8445211B2 (en) | 2007-07-19 | 2013-05-21 | Biomerieux | I-Plastin assay method for the in vitro diagnosis of colorectal cancer |
US8735078B2 (en) | 2007-07-19 | 2014-05-27 | Biomerieux | Apolipoprotein AII assay method for the in vitro diagnosis of colorectal cancer |
US9726670B2 (en) | 2007-07-19 | 2017-08-08 | Biomerieux | Method for the assay of liver fatty acid binding protein, ACE and CA 19-9 for the in vitro diagnosis of colorectal cancer |
US9891223B2 (en) | 2007-07-19 | 2018-02-13 | Biomerieux | Method of assaying leukocyte elastase inhibitor for the in vitro diagnosis of colorectal cancer |
US10591482B2 (en) | 2007-07-19 | 2020-03-17 | Biomerieux | Method of assaying Apolipoprotein AI for the in vitro diagnosis of colorectal cancer |
-
1990
- 1990-07-02 JP JP2174979A patent/JPH0464068A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506946A (en) * | 2004-07-14 | 2008-03-06 | エーティーエス ネットワークス | DC current sensor |
FR2919068A1 (en) * | 2007-07-19 | 2009-01-23 | Airbus France Sa | PERFECTED CURRENT SENSOR |
WO2009024692A1 (en) * | 2007-07-19 | 2009-02-26 | Airbus France | Improved current sensor |
US8361731B2 (en) | 2007-07-19 | 2013-01-29 | Biomerieux | Ezrin assay method for the in vitro diagnosis of colorectal cancer |
US8367362B2 (en) | 2007-07-19 | 2013-02-05 | Biomerieux | Aminoacylase 1 assay method for the in vitro diagnosis of colorectal cancer |
US8445211B2 (en) | 2007-07-19 | 2013-05-21 | Biomerieux | I-Plastin assay method for the in vitro diagnosis of colorectal cancer |
US8735078B2 (en) | 2007-07-19 | 2014-05-27 | Biomerieux | Apolipoprotein AII assay method for the in vitro diagnosis of colorectal cancer |
US8773112B2 (en) | 2007-07-19 | 2014-07-08 | Airbus Operations Sas | Current sensor |
US9726670B2 (en) | 2007-07-19 | 2017-08-08 | Biomerieux | Method for the assay of liver fatty acid binding protein, ACE and CA 19-9 for the in vitro diagnosis of colorectal cancer |
US9891223B2 (en) | 2007-07-19 | 2018-02-13 | Biomerieux | Method of assaying leukocyte elastase inhibitor for the in vitro diagnosis of colorectal cancer |
US10591482B2 (en) | 2007-07-19 | 2020-03-17 | Biomerieux | Method of assaying Apolipoprotein AI for the in vitro diagnosis of colorectal cancer |
WO2011130905A1 (en) * | 2010-04-20 | 2011-10-27 | 安阳安科电器股份有限公司 | Pulse current sensor and lightning protection cabinet with surge wave recording composed of the sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100993928B1 (en) | Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method | |
US4278940A (en) | Means for automatically compensating DC magnetization in a transformer | |
JPH0464068A (en) | Method for detecting dc current | |
CN100460878C (en) | Magnetic bridge electric power sensor | |
KR101192830B1 (en) | Current transformer and electric energy meter | |
US7145321B2 (en) | Current sensor with magnetic toroid | |
Takach et al. | Distribution transformer no-load losses | |
Wang et al. | Split core closed loop Hall effect current sensors and applications | |
JP4716030B2 (en) | Current sensor | |
Ripka et al. | Current sensor in PCB technology | |
US4963818A (en) | Current sensor having an element made of amorphous magnetic metal | |
Shede et al. | Leakage current sensing techniques | |
Yanase et al. | AC magnetic properties of electrical steel core under DC-biased magnetization | |
Petrun et al. | Evaluation of iron core quality for resistance spot welding transformers using current controlled supply | |
de Souza et al. | A novel nanocrystalline-based current transformer working on saturated region | |
US4827214A (en) | Method for measuring losses of a magnetic core | |
JPH0440372A (en) | Detection of current | |
JP2000266786A (en) | Current sensor | |
JPH0296661A (en) | Clamp-type ammeter | |
Charubin et al. | Automatic measurement station for ferrite materials testing | |
SU1732141A1 (en) | Device for measuring thickness of ferromagnetic tapes and sheets | |
PL133866B1 (en) | Electric current measuring system | |
JPH03251772A (en) | Method for detecting current | |
FI67963B (en) | KOPPLINGSARRANGEMANG FOER ATT REGLERA MAGNETISERINGSSTROEM | |
Lloyd et al. | The testing of transformer steel |