JPH0464051A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH0464051A
JPH0464051A JP2176040A JP17604090A JPH0464051A JP H0464051 A JPH0464051 A JP H0464051A JP 2176040 A JP2176040 A JP 2176040A JP 17604090 A JP17604090 A JP 17604090A JP H0464051 A JPH0464051 A JP H0464051A
Authority
JP
Japan
Prior art keywords
oxygen
gap
thin film
oxide semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2176040A
Other languages
Japanese (ja)
Other versions
JP2926912B2 (en
Inventor
Takeshi Yamada
武司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2176040A priority Critical patent/JP2926912B2/en
Publication of JPH0464051A publication Critical patent/JPH0464051A/en
Application granted granted Critical
Publication of JP2926912B2 publication Critical patent/JP2926912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable detection of concentration of an oxygen gas in a wide range even in an ambience having another gas mixed in, by a method wherein a set of solid electrolytes making the oxygen gas in an ambient gas permeate are used for an oxygen pump and an ambience introducing part respectively. CONSTITUTION:In this sensor, a counter electrode 12 covered with an oxide semiconductor thin film 13 is provided on an alumina substrate 11 having a thin-film heater 14 formed on the rear side. Above this electrode, solid-electrolyte thin films 2 and 2' having electrodes 7 and 8 provided on the upper and lower surfaces are held by a silicon single-crystal substrate 1 insulated by an oxide film 6, the part of this oxide film 6 is bonded on the substrate 11, and thereby a gap 10 is formed. One of these thin films 2 and 2' is used as an oxygen pump, and by a difference between the concentrations of oxygen in an ambience and the gap part 10, the oxygen is diffused from the part of the higher concentration to the lower. On the occasion, a voltage is impressed on the thin film 2 so that the resistance of the thin film 13 being a sensitive body may not be changed, and the oxygen is supplied into and discharged from the gap part 10 forcedly. Only the oxygen is present in this gap 10 and accurate detection can be executed even when another gas is mixed in an ambient gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸素センサに関する。更に詳しくは、酸素ポ
ンプと金属酸化物半導体とを組合せ、その間に間隙を設
けた酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen sensor. More specifically, the present invention relates to an oxygen sensor that combines an oxygen pump and a metal oxide semiconductor, with a gap provided therebetween.

〔従来の技術〕[Conventional technology]

酸素イオン伝導体の固体電解質からなる酸素ポンプと、
酸素分圧に応して抵抗値の変化する金属酸化物半導体か
らなる感応体とを組合せた酸素センサが従来から知られ
ており、その−例が第5図に示されている。この態様の
酸素センサにあっては、支持体21の内底面に感応体2
2が、また上面側には中心に導入孔23を穿設し、表裏
両面に電極24を設けた酸素ポンプ25が設置されてい
る。
An oxygen pump made of an oxygen ion conductor solid electrolyte,
Oxygen sensors have been known which are combined with a sensitive body made of a metal oxide semiconductor whose resistance value changes depending on the oxygen partial pressure, and an example thereof is shown in FIG. In the oxygen sensor of this embodiment, a sensitive body 2 is provided on the inner bottom surface of the support 21.
2, and an oxygen pump 25 having an introduction hole 23 in the center on the upper surface side and electrodes 24 on both the front and back surfaces.

この種の酸素センサは、雰囲気ガス中の酸素濃度が変化
しても、感応体の抵抗値が一定となるように酸素ポンプ
に流す電流量を制御し、そのときの電流量から雰囲気ガ
ス中の酸素濃度を検出している。即ち、雰囲気ガス中の
酸素濃度が高い場合には、ポンプ電極の外側を陽極、内
側を陰極にして電圧を印加すると、電圧に比例した酸素
がセル内から排出され、逆に酸素濃度が低い場合には、
ポンプ電極の外側を陰極、内側を陽極にして電圧を印加
し、セル内に酸素を供給するようにしている。このとき
の酸素の排出量または供給量が雰囲気ガス中の酸素濃度
に比例するため、酸素ポンプに流れる電流量により酸素
濃度の検出が可能となるのである。
This type of oxygen sensor controls the amount of current flowing through the oxygen pump so that the resistance value of the sensing element remains constant even if the oxygen concentration in the atmospheric gas changes, and the amount of current flowing through the oxygen pump is determined based on the current amount at that time. Detecting oxygen concentration. In other words, when the oxygen concentration in the atmospheric gas is high, if a voltage is applied with the outside of the pump electrode as the anode and the inside as the cathode, oxygen proportional to the voltage will be exhausted from the cell, whereas when the oxygen concentration is low, for,
The outside of the pump electrode is used as a cathode and the inside as an anode, and a voltage is applied to supply oxygen into the cell. Since the amount of oxygen discharged or supplied at this time is proportional to the oxygen concentration in the atmospheric gas, the oxygen concentration can be detected based on the amount of current flowing through the oxygen pump.

しかしながら、このような酸素センサは、感応体が酸素
のみならず、炭化水素やアルコールといったガスにも感
度を示すため、これらのガスが混在する雰囲気中では正
確な酸素濃度の検出が困難であるという問題がみられる
However, since the sensing body of such oxygen sensors is sensitive not only to oxygen but also to gases such as hydrocarbons and alcohol, it is difficult to accurately detect oxygen concentration in an atmosphere containing a mixture of these gases. I see a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、酸素ポンプと金属酸化物半導体とを組
合せた酸素センサにおいて、大気あるいは徘呂ガスなど
、他のガスが混在する雰囲気でも広い濃度範囲にわたっ
て酸素濃度の検出が可能な酸素センサを提供することに
ある。
An object of the present invention is to provide an oxygen sensor that is a combination of an oxygen pump and a metal oxide semiconductor and is capable of detecting oxygen concentration over a wide concentration range even in an atmosphere containing other gases such as the atmosphere or wandering gas. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的は、酸素ポンプと金属酸化物半導体
とを組合せ、その間に間隙を設けた酸素センサにおいて
、雰囲気ガス中の酸素ガスのみを透過させる一組の固体
電解質の一方を酸素ポンプとして用い、また他方を雰囲
気導入部として用いることによって達成される。
An object of the present invention is to provide an oxygen sensor in which an oxygen pump and a metal oxide semiconductor are combined and a gap is provided between them, in which one of a pair of solid electrolytes that transmits only oxygen gas in an atmospheric gas is used as the oxygen pump. , and by using the other as an atmosphere introduction part.

このような酸素センサの具体的な一態様が第1図に示さ
れており、この酸素センサは、裏面側に薄膜ヒータを形
成させた絶縁性基板上に、金属酸化物半導体で覆われた
対向電極が設けられており、該金属酸化物半導体上方に
は上下両面側に電極を設けた固体電解質薄膜一組(2つ
)が、酸化膜で絶縁されたシリコン基板によって保持さ
れており。
A specific embodiment of such an oxygen sensor is shown in FIG. Electrodes are provided, and above the metal oxide semiconductor, a set (two) of solid electrolyte thin films with electrodes provided on both upper and lower surfaces are held by a silicon substrate insulated with an oxide film.

該酸化膜部分を絶縁性基板上に接着させることにより、
金属酸化物半導体と固体電解質との間に間隙を形成せし
めた構成を有している。
By bonding the oxide film portion onto an insulating substrate,
It has a structure in which a gap is formed between a metal oxide semiconductor and a solid electrolyte.

次に、このような酸素センサの製造工程を、第2図(a
)〜(d)および第3図(e)〜(g)の各工程順に説
明する。
Next, the manufacturing process of such an oxygen sensor is shown in Figure 2 (a).
) to (d) and FIGS. 3(e) to (g) will be explained in order.

(a)面方位(100)面を基板面とするシリコン単結
晶基板1の上面側に、金属マスクを使用し、膜厚的0.
5〜30μ農の固体電解質薄膜2,2゛を、イツトリウ
ム、カルシウム、ハフニウムなどを約6〜8モル%添加
した安定化ジルコニアから、イオンブレーティング法に
より形成させる。これらの固体電解質薄膜の一方がセル
の酸素ポンプとして使用され、酸素の強制的な供給また
はそこからの排出が行われる。
(a) A metal mask is used on the upper surface side of a silicon single crystal substrate 1 whose substrate surface is the (100) plane, and a film thickness of 0.
A solid electrolyte thin film 2,2'' having a size of 5 to 30 .mu.m is formed from stabilized zirconia containing about 6 to 8 mol% of yttrium, calcium, hafnium, etc., by an ion-blating method. One of these solid electrolyte membranes is used as an oxygen pump for the cell, forcing oxygen to be supplied or removed from it.

(b)固体電解質薄膜を形成させたシリコン単結晶基板
の裏側部分3,3′を完全にエツチング除去し、その際
こ九らの部分3,3゛にまたがる基板部分4は、強度を
保持させるため、その厚さの一部についてのみエツチン
グが行われる。
(b) The back side parts 3 and 3' of the silicon single crystal substrate on which the solid electrolyte thin film has been formed are completely etched away, and at this time, the substrate part 4 that spans these parts 3 and 3' is made to maintain its strength. Therefore, etching is performed only on a portion of the thickness.

このような2段階エツチングでは、まず(b゛)に図示
されるようなマスクを用い、70%HNO□と49.2
%HFとの容積比5:1のエツチング液を用い、エツチ
ング速度約lθ〜15μra/分で室温下のエツチング
を基板の厚さの約172迄行った後1次に(b”)に図
示されるようなマスクを用い、前記裏側部分3,3゛の
基板が完全に除去される迄エツチング処理を行う。
In such two-step etching, first, using a mask as shown in (b), 70% HNO□ and 49.2
After performing etching at room temperature using an etching solution with a volume ratio of 5:1 and an etching rate of about lθ to 15 μra/min to a thickness of about 172 mm of the substrate, the first step is shown in (b''). Using a mask similar to that shown in FIG.

(C)前工程で全くエツチング処理されなかった基板の
両端部分5,5′の全面に、熱酸化法により厚さ約0.
1〜1μm程度の酸化膜6,6′を形成させる。形成さ
れた酸化膜は、シリコンを通しての陽極と陰極との短絡
を防止させる。
(C) The entire surface of both end portions 5 and 5' of the substrate, which had not been etched at all in the previous step, was etched to a thickness of about 0.0 mm by thermal oxidation.
Oxide films 6, 6' having a thickness of about 1 to 1 μm are formed. The formed oxide film prevents short circuit between the anode and the cathode through the silicon.

(d)固体電解質薄膜上7,7゛および基板裏面側の部
分エツチング部分4を除く全面8に、それぞれ適当な金
属マスクを用いる真空蒸着法により、厚さ約100〜2
00人の電極を白金、ロジウム、パラジウムなどの貴金
属で形成させる。
(d) The solid electrolyte thin film 7,7゜ and the entire surface 8 excluding the partially etched portion 4 on the back side of the substrate are etched to a thickness of approximately 100~200 nm by vacuum evaporation using an appropriate metal mask, respectively.
00 electrodes are made of noble metals such as platinum, rhodium, and palladium.

(e)以上の各工程とは別に、アルミナ基板11上に貴
金属の対向電極12.12′を真空蒸着法により形成さ
せる。この電極は、感応体の抵抗値を測定するために設
けられる。
(e) Separately from the above steps, noble metal counter electrodes 12 and 12' are formed on the alumina substrate 11 by vacuum evaporation. This electrode is provided to measure the resistance value of the sensitive body.

(f)これらの対向電極12.12’を覆うように、金
属SnO□、TiO□などの酸化物半導体をターゲット
とするスパッタリング法により、金属酸化物半導体のス
パッタリング薄膜13を約1000〜20000人の厚
さに形成させる。
(f) A sputtered thin film 13 of a metal oxide semiconductor is deposited by approximately 1,000 to 20,000 people using a sputtering method targeting an oxide semiconductor such as metal SnO□ or TiO□ so as to cover these counter electrodes 12 and 12'. Form into a thick layer.

(g)アルミナ基板11の裏面側に、金などで薄膜ヒー
タ14を形成させる。この薄膜ヒータは、いずれも40
0℃以上の高温でないと動作しない感応体および固体電
解質を昇温させるために設けられるものである。
(g) A thin film heater 14 is formed using gold or the like on the back side of the alumina substrate 11. Both of these thin film heaters are
This is provided to raise the temperature of the sensitive body and solid electrolyte, which do not operate unless the temperature is 0° C. or higher.

上記(g)工程部材と(d)工程部材とを、耐熱性無機
接着剤を用いであるいはガラス封着により接着し、金属
酸化物半導体13と固体電解質2,2′との間に間隙I
Oを形成せしめて、第1図に示されるセルを作製する。
The above (g) process member and (d) process member are bonded using a heat-resistant inorganic adhesive or by glass sealing, and a gap I is formed between the metal oxide semiconductor 13 and the solid electrolytes 2, 2'.
The cell shown in FIG. 1 is manufactured by forming O.

〔作用〕および〔発明の効果〕 固体電解質2,2′は、酸素イオン伝導体であり、その
一方は酸素ポンプとして作用し、雰囲気ガス中の酸素濃
度とセルの間隙部10との酸素濃度差に応じて、酸素濃
度の高い方から低い方へと酸素を拡散させる。このとき
、感応体である金属酸化物13の抵抗値が変化しないよ
うに、固体電解質2′に電圧を印加することにより、酸
素ポンプとして強制的に酸素を間隙部10に供給し、あ
るいはそこから排出する。
[Function] and [Effects of the Invention] The solid electrolytes 2 and 2' are oxygen ion conductors, and one of them acts as an oxygen pump, reducing the oxygen concentration difference between the oxygen concentration in the atmospheric gas and the gap 10 of the cell. Oxygen is diffused from the area with higher oxygen concentration to the area with lower oxygen concentration. At this time, by applying a voltage to the solid electrolyte 2', oxygen is forcibly supplied to the gap 10 as an oxygen pump, or from there, so that the resistance value of the metal oxide 13, which is the sensitive body, does not change. Discharge.

この結果、固体電解質2による酸素の自然拡散と固体電
解質2′による酸素の強制拡散とが平衡となるときの固
体電解質2′に流れるポンプ電流が雰囲気ガス中の酸素
濃度に比例するため、酸素濃度の検出が可能となる。
As a result, since the pump current flowing through the solid electrolyte 2' when the natural diffusion of oxygen by the solid electrolyte 2 and the forced diffusion of oxygen by the solid electrolyte 2' are in equilibrium is proportional to the oxygen concentration in the atmospheric gas, the oxygen concentration detection becomes possible.

また、固体電解質と金属酸化物半導体との間の間隙10
には、酸素のみが存在し、感応体たる金属酸化物半導体
は雰囲気ガスにさらされることがないので、雰囲気ガス
中に炭化水素やアルコールなどが混在していても、正確
な酸素濃度を検出することができる。
Moreover, the gap 10 between the solid electrolyte and the metal oxide semiconductor
Only oxygen exists in the sensor, and the metal oxide semiconductor that serves as the sensor is not exposed to atmospheric gas, so it is possible to accurately detect oxygen concentration even if the atmospheric gas contains hydrocarbons, alcohol, etc. be able to.

更に、本発明の酸素センサでは、固体電解質、電極、感
応体(金属酸化物半導体)、ヒータなどを真空蒸着法、
イオンブレーティング法などで薄膜化することができ、
そのため低温動作化、微細化、量産化を可能としている
。また、固体電解質と感応体との間に形成される間隙部
も、シリコンのエツチングにより形成させることができ
るので、特性のバラツキを著しく低減化することができ
る。
Furthermore, in the oxygen sensor of the present invention, the solid electrolyte, electrode, sensitive body (metal oxide semiconductor), heater, etc. are manufactured by vacuum evaporation method,
It can be made into a thin film using ion blating method etc.
This enables low-temperature operation, miniaturization, and mass production. Further, since the gap formed between the solid electrolyte and the sensitive body can also be formed by etching silicon, variations in characteristics can be significantly reduced.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 前記(a)〜(g)工程に従って、セルが作製された。Example A cell was produced according to steps (a) to (g) above.

(a)工程:RF電力500v、基板バイヤス200V
(a) Process: RF power 500v, board bias 200V
.

導入ガス圧力5 X 10”’Torrでイオンブレー
ティングし、膜厚20μ−のイツトリア(8モルX)添
加安定化ジルコニア薄膜を形成させた (c)工程:炉温度900℃、30分間のウェット酸化
(d)工程:厚さ100人の白金電極を形成させた(f
)工程:厚さ1μmのSnO2スパッタリング薄膜を形
成させた このようにして作製されたセルについて、500℃にお
ける酸素濃度に対する応答性を測定した。
Ion blating was performed at an introduced gas pressure of 5 x 10''' Torr to form a 20 μ-thick ytria (8 mol x)-added stabilized zirconia thin film. (c) Step: Furnace temperature 900°C, wet oxidation for 30 minutes (d) Process: A platinum electrode with a thickness of 100 mm was formed (f
) Process: The response to oxygen concentration at 500° C. was measured for the thus manufactured cell in which a 1 μm thick SnO 2 sputtering thin film was formed.

即ち、イツトリア添加安定化ジルコニア薄膜の一方を短
絡、他方をSnO□の抵抗値が100KΩとなるように
電圧制御を行い、酸素濃度2〜100容積%の窒素希釈
酸素または純酸素について、酸素濃度に対するポンプ電
流値を測定すると、第4図のグラフに示されるように、
酸素濃度4〜60容積ぶの間では酸素濃度の対数に比例
したポンプ電流が得られることが確認された。
That is, one side of the ittria-doped stabilized zirconia thin film is short-circuited, and the other side is voltage-controlled so that the resistance value of SnO□ becomes 100KΩ. When the pump current value is measured, as shown in the graph of Figure 4,
It was confirmed that a pump current proportional to the logarithm of the oxygen concentration was obtained when the oxygen concentration was between 4 and 60 volumes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る酸素センサの一態様の縦断面図
である。第2図(a)〜(d)および第3図(e)〜(
g)は、それぞれ酸素センサを構成する2つの部材の製
造工程を示している。第4図は1作製された酸素センサ
の酸素濃度とポンプ電流との関係を示すグラフである。 また、第5図は、従来の酸素センサの縦断面図である。 (符号の説明) 1・・・・・・・シリコン単結晶基板 2・・・・・・・固体電解質薄膜 3・・・・・・・基板エツチング除去部分4・・・・・
・・基板部分エツチング部分5・・・・・・・基板の両
端部分 6・・・・・・・酸化膜 7.8・・・・電極 11・・・・・・・アルミナ基板 12・・・・・・・対向電極 13・・・・・・・酸化物半導体薄膜 14・・・・・・・薄膜ヒータ
FIG. 1 is a longitudinal sectional view of one embodiment of an oxygen sensor according to the present invention. Figures 2(a) to (d) and Figures 3(e) to (
g) shows the manufacturing process of two members, each of which constitutes an oxygen sensor. FIG. 4 is a graph showing the relationship between oxygen concentration and pump current of one manufactured oxygen sensor. Moreover, FIG. 5 is a longitudinal cross-sectional view of a conventional oxygen sensor. (Explanation of symbols) 1...Silicon single crystal substrate 2...Solid electrolyte thin film 3...Substrate etching removed portion 4...
...Etched portion of the substrate 5...Both end portions of the substrate 6...Oxide film 7.8...Electrode 11...Alumina substrate 12... ...Counter electrode 13...Oxide semiconductor thin film 14...Thin film heater

Claims (1)

【特許請求の範囲】 1、酸素ポンプと金属酸化物半導体とを組合せ、その間
に間隙を設けた酸素センサにおいて、雰囲気ガス中の酸
素ガスのみを透過させる一組の固体電解質の一方を酸素
ポンプとして用い、また他方を雰囲気導入部として用い
たことを特徴とする酸素センサ。 2、裏面側に薄膜ヒータを形成させた絶縁性基板上に、
金属酸化物半導体で覆われた対向電極が設けられており
、該金属酸化物半導体上方には上下両面側に電極を設け
た固体電解質薄膜一組が、酸化膜で絶縁されたシリコン
基板によって保持されており、該酸化膜部分を絶縁性基
板上に接着させることにより、金属酸化物半導体と固体
電解質との間に間隙を形成せしめてなる酸素センサ。 3、固体電解質薄膜が安定化ジルコニアから形成されて
いる請求項1または2記載の酸素センサ。
[Claims] 1. In an oxygen sensor in which an oxygen pump and a metal oxide semiconductor are combined and a gap is provided between them, one of a pair of solid electrolytes that transmits only oxygen gas in an atmospheric gas is used as an oxygen pump. An oxygen sensor characterized in that the oxygen sensor is used as an atmosphere introduction part, and the other part is used as an atmosphere introduction part. 2. On an insulating substrate with a thin film heater formed on the back side,
A counter electrode covered with a metal oxide semiconductor is provided, and above the metal oxide semiconductor, a set of solid electrolyte thin films with electrodes provided on both upper and lower surfaces are held by a silicon substrate insulated with an oxide film. An oxygen sensor in which a gap is formed between a metal oxide semiconductor and a solid electrolyte by bonding the oxide film portion onto an insulating substrate. 3. The oxygen sensor according to claim 1 or 2, wherein the solid electrolyte thin film is made of stabilized zirconia.
JP2176040A 1990-07-03 1990-07-03 Oxygen sensor Expired - Fee Related JP2926912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176040A JP2926912B2 (en) 1990-07-03 1990-07-03 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176040A JP2926912B2 (en) 1990-07-03 1990-07-03 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPH0464051A true JPH0464051A (en) 1992-02-28
JP2926912B2 JP2926912B2 (en) 1999-07-28

Family

ID=16006671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176040A Expired - Fee Related JP2926912B2 (en) 1990-07-03 1990-07-03 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP2926912B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517364A2 (en) * 1991-06-07 1992-12-09 Ford Motor Company Limited Apparatus for sensing hydrocarbons and carbon monoxide
US6406181B1 (en) * 1999-03-10 2002-06-18 Robert Bosch Gmbh Temperature sensor
CN111044576A (en) * 2019-12-27 2020-04-21 安徽芯淮电子有限公司 MEMS (micro electro mechanical System) integrated gas sensor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517364A2 (en) * 1991-06-07 1992-12-09 Ford Motor Company Limited Apparatus for sensing hydrocarbons and carbon monoxide
EP0517364A3 (en) * 1991-06-07 1994-06-29 Ford Motor Co Apparatus for sensing hydrocarbons and carbon monoxide
US6406181B1 (en) * 1999-03-10 2002-06-18 Robert Bosch Gmbh Temperature sensor
CN111044576A (en) * 2019-12-27 2020-04-21 安徽芯淮电子有限公司 MEMS (micro electro mechanical System) integrated gas sensor and manufacturing method thereof
CN111044576B (en) * 2019-12-27 2020-07-31 安徽芯淮电子有限公司 MEMS (micro electro mechanical System) integrated gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2926912B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US5755940A (en) Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
US4500412A (en) Oxygen sensor with heater
US4668374A (en) Gas sensor and method of fabricating same
JP2506551B2 (en) Wide range oxygen sensor
JPS6228422B2 (en)
JP3760573B2 (en) NOx sensor manufacturing method and NOx sensor
JPH08122287A (en) Measuring device and method of concentration of gas component
US4356150A (en) Humidity sensor with electrical rejection of contaminants
JPH0464051A (en) Oxygen sensor
US4810529A (en) Method of producing a miniature internal reference gas chamber within an automotive, internal reference, solid electrolyte, lean oxygen sensor
JP3831320B2 (en) Limit current type oxygen sensor
JP2805811B2 (en) Combustion control sensor
JP2501856B2 (en) Electrochemical sensor
JPH04254749A (en) Laminated-type limiting-current-type oxygen sensor
JPH06288952A (en) Gas sensor
JPH0735726A (en) Gas component detecting element
JP2643409B2 (en) Limit current type oxygen sensor
JPH0147740B2 (en)
JPH0514912U (en) Oxygen sensor
JPH02154139A (en) Oxygen sensor
JPH036449A (en) Manufacture of oxygen sensor
JP3073523B2 (en) Limit current sensor for gas partial pressure measurement
JPH04291144A (en) Manufacture of solid electrolyte gas sensor
JPH11344464A (en) Oxygen concentration sensor and its manufacture
JPS58103653A (en) Gas sensor and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees