JPH04291144A - Manufacture of solid electrolyte gas sensor - Google Patents
Manufacture of solid electrolyte gas sensorInfo
- Publication number
- JPH04291144A JPH04291144A JP3081826A JP8182691A JPH04291144A JP H04291144 A JPH04291144 A JP H04291144A JP 3081826 A JP3081826 A JP 3081826A JP 8182691 A JP8182691 A JP 8182691A JP H04291144 A JPH04291144 A JP H04291144A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- substrate
- film
- etching
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000005530 etching Methods 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- 238000005304 joining Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 15
- 239000010408 film Substances 0.000 description 45
- 239000007789 gas Substances 0.000 description 29
- 239000012528 membrane Substances 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- -1 oxygen ion Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は固体電解質ガスセンサ、
特に限界電流式固体電解質ガスセンサの製造方法に関す
る。[Industrial Application Field] The present invention relates to a solid electrolyte gas sensor,
In particular, the present invention relates to a method of manufacturing a limiting current type solid electrolyte gas sensor.
【0002】0002
【従来の技術】この種の固体電解質センサとして、安定
化ジルコニア等の酸素イオン導電性を示す固体電解質の
両面に電極を設け、電極の一方を排気ガスに、他方を大
気に接触させて、両電極間に酸素イオン濃度差に応じた
起電力を得て、排気ガス中の酸素濃度を測定する酸素セ
ンサが車両用として多用されている。[Prior Art] In this type of solid electrolyte sensor, electrodes are provided on both sides of a solid electrolyte exhibiting oxygen ion conductivity such as stabilized zirconia, and one electrode is brought into contact with exhaust gas and the other with the atmosphere. Oxygen sensors that measure the oxygen concentration in exhaust gas by generating an electromotive force between electrodes depending on the difference in oxygen ion concentration are often used in vehicles.
【0003】この場合、酸素センサの出力電圧は理論空
燃比の前後で急変するため、理論空燃比の検出には有効
であるが、空燃比を他の割合で制御したい場合には不向
きである。In this case, since the output voltage of the oxygen sensor changes suddenly around the stoichiometric air-fuel ratio, it is effective for detecting the stoichiometric air-fuel ratio, but is not suitable for controlling the air-fuel ratio at other ratios.
【0004】そこで例えば特開昭60−252254号
公報における如く、被測定ガスたる排気ガスに接する側
の電極を、小径の酸素拡散孔を設けたカプセルで覆って
、拡散孔よりカプセル内に流入する酸素分子と、固体電
解質を経て外部へ排出される酸素分子とを均衡せしめて
イオン電流を飽和せしめ(限界電流)、広い濃度範囲で
良好な検出を可能とした限界電流式固体電解質センサが
提案されている。Therefore, as disclosed in Japanese Patent Application Laid-Open No. 60-252254, the electrode on the side that is in contact with the exhaust gas, which is the gas to be measured, is covered with a capsule provided with a small-diameter oxygen diffusion hole, and oxygen flows into the capsule through the diffusion hole. A limiting current type solid electrolyte sensor has been proposed that saturates the ion current (limiting current) by balancing oxygen molecules and oxygen molecules discharged to the outside via the solid electrolyte, and enables good detection over a wide concentration range. ing.
【0005】[0005]
【発明が解決しようとする課題】ところで、酸素拡散孔
の径はセンサの性能を決する重要な要素であるが、上記
従来のセンサにおけるカプセルは難加工性のセラミック
材料で製作されることが多く、かかるカプセルに精度良
く小孔を開けることは生産性の点で困難が多い上に、セ
ンサの小型化にも難があつた。[Problems to be Solved by the Invention] Incidentally, the diameter of the oxygen diffusion hole is an important factor that determines the performance of the sensor, but the capsule in the above-mentioned conventional sensor is often made of a ceramic material that is difficult to process. It is difficult to form small holes in such capsules with high accuracy in terms of productivity, and it is also difficult to miniaturize the sensor.
【0006】本発明はかかる課題を解決するもので、精
度の良い小型のセンサを量産することができる固体電解
質センサの製造方法を提供することを目的とする。[0006] The present invention has been made to solve these problems, and it is an object of the present invention to provide a method for manufacturing a solid electrolyte sensor that can mass-produce small, highly accurate sensors.
【0007】[0007]
【課題を解決するための手段】本発明になる製造方法は
、基板2の上面に膜形成とエッチングを繰返して上下を
電極膜5、6に挟まれた固体電解質膜4を形成する工程
と、上記基板2の下面を周縁部を除いて下側電極膜5に
至るまでエッチング除去して空洞31を形成する工程と
、基板2上面を貫通して上記空洞31に至るピンホ−ル
32をエッチング形成する工程と、上記基板2の下面周
縁部を台座1に接合する工程とよりなるものである。[Means for Solving the Problems] The manufacturing method of the present invention includes the steps of repeating film formation and etching on the upper surface of a substrate 2 to form a solid electrolyte film 4 sandwiched between upper and lower electrode films 5 and 6; A step of etching away the bottom surface of the substrate 2 up to the lower electrode film 5 except for the peripheral portion to form a cavity 31, and etching a pinhole 32 penetrating the top surface of the substrate 2 to reach the cavity 31. and a step of joining the lower peripheral edge of the substrate 2 to the pedestal 1.
【0008】本発明の製造方法においては、膜形成とエ
ッチングによりセンサが製造され、セラミックの穴開け
等の機械的な製造工程が無いから、高精度で小型のセン
サを量産することができる。In the manufacturing method of the present invention, the sensor is manufactured by film formation and etching, and since there is no mechanical manufacturing process such as drilling holes in ceramic, it is possible to mass-produce small-sized sensors with high precision.
【0009】[0009]
【実施例】以下、本発明を図面に基づいて説明する。図
1、図2は本発明の製造方法により製造された酸素検出
用のマイクロガスセンサである。図において、ガラス製
の台座1上にはシリコン単結晶よりなる基板2が接合層
11を介して接合されており、基板2の上面にはシリコ
ン酸化膜(SiO2 )よりなる絶縁膜21が形成して
ある。上記絶縁膜21のほぼ中央部には安定化ジルコニ
ア等の固体電解質膜4が埋設してあり、固体電解質膜4
の上下面にはプラチナ電極膜5、6が形成してある。こ
れら電極膜5、6は、プラチナよりなるリ−ド部51、
61により外部回路に接続している。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings. 1 and 2 show a micro gas sensor for oxygen detection manufactured by the manufacturing method of the present invention. In the figure, a substrate 2 made of silicon single crystal is bonded to a glass pedestal 1 via a bonding layer 11, and an insulating film 21 made of silicon oxide film (SiO2) is formed on the upper surface of the substrate 2. There is. A solid electrolyte membrane 4 made of stabilized zirconia or the like is buried approximately in the center of the insulating film 21.
Platinum electrode films 5 and 6 are formed on the upper and lower surfaces of. These electrode films 5 and 6 include a lead portion 51 made of platinum,
61, it is connected to an external circuit.
【0010】固体電解質膜4下方の上記基板2には、下
側電極膜5に接して空洞31が形成してあり、該空洞3
1は絶縁膜21に設けたピンホ−ル32により外部との
連通を保持している。このピンホ−ル32により空洞3
1内への被測定ガスの導入が制限され、空洞31および
ピンホ−ル32は、空洞31に接する下側電極膜5への
被測定ガスの移動または拡散を制限する拡散制限部とし
て機能する。また、絶縁膜21上には、固体電解質膜4
の周囲を覆うようにヒ−タ膜7が形成してあり、ヒ−タ
膜端部71は図略の電源に接続されている。A cavity 31 is formed in the substrate 2 below the solid electrolyte membrane 4 in contact with the lower electrode membrane 5.
1 maintains communication with the outside through a pinhole 32 provided in the insulating film 21. This pinhole 32 makes the cavity 3
The introduction of the gas to be measured into the cavity 31 is restricted, and the cavity 31 and the pinhole 32 function as a diffusion restriction section that restricts the movement or diffusion of the gas to be measured to the lower electrode film 5 in contact with the cavity 31. Further, on the insulating film 21, a solid electrolyte film 4 is provided.
A heater film 7 is formed to cover the periphery of the heater film 7, and an end portion 71 of the heater film is connected to a power source (not shown).
【0011】次に製造工程を図3〜図5で説明する。図
3(1)の工程において、シリコン基板2表面を熱酸化
し、基板2上下面に約7000ÅのSiO2絶縁膜21
、22を形成する。次いで、公知のフォトエッチング工
程により、基板2上面のSiO2 絶縁膜21の一部を
除去する。ここでは例えば絶縁膜21上にフォトレジス
トを塗布し、絶縁膜21のパターニングを描いたフォト
マスクを使用してレジストを硬化させた後、フッ酸、フ
ッ化アンモニウムの約1:9混合液を使用して絶縁膜2
1の所定個所を除去する。その後流水洗浄し、レジスト
を除去する。Next, the manufacturing process will be explained with reference to FIGS. 3 to 5. In the step of FIG. 3(1), the surface of the silicon substrate 2 is thermally oxidized, and a SiO2 insulating film 2 of approximately 7000 Å is formed on the upper and lower surfaces of the substrate 2.
, 22. Next, a part of the SiO2 insulating film 21 on the upper surface of the substrate 2 is removed by a known photo-etching process. Here, for example, a photoresist is applied on the insulating film 21, the resist is hardened using a photomask depicting the patterning of the insulating film 21, and then a mixture of about 1:9 of hydrofluoric acid and ammonium fluoride is used. Insulating film 2
1 predetermined location is removed. Thereafter, the resist is removed by washing with running water.
【0012】図3(2)の工程においては、絶縁膜21
の上面にプラチナ(Pt)膜51をスパッタ法によつて
約1000Åの厚さに形成する。続いて(3)の工程で
、フォトエッチング工程によりPt膜51を必要部位を
残して除去し、Pt膜51のパターニングを行って下側
電極膜5とする。ここでは、Pt膜のエッチングには例
えばアルゴン・イオンミリング法を使用する。In the step of FIG. 3(2), the insulating film 21
A platinum (Pt) film 51 with a thickness of about 1000 Å is formed on the upper surface by sputtering. Subsequently, in step (3), the Pt film 51 is removed by a photo-etching process except for the necessary portion, and the Pt film 51 is patterned to form the lower electrode film 5. Here, for example, argon ion milling method is used for etching the Pt film.
【0013】図3(4)の工程では、絶縁膜21、下側
電極膜5の上面に固体電解質膜4を形成する。固体電解
質としては、例えばジルコニア(ZrO2 )に酸化カ
ルシウム(CaO)、酸化イットリウム(Y2 O3
)、酸化イッテリビウム(Yb2 O3 )等を数%〜
十数%の割合で添加した安定化ジルコニアを用い、高周
波スパッタリング法によって約5000Åの厚さの固体
電解質膜4を形成する。固体電解質膜4の形成方法とし
ては、スパッタ法等のPVD(物理気相蒸着)の他に、
CVD(化学気相蒸着)またはスピンコート等の薄膜形
成法を用いてもよい。In the step shown in FIG. 3(4), the solid electrolyte film 4 is formed on the upper surface of the insulating film 21 and the lower electrode film 5. Examples of solid electrolytes include zirconia (ZrO2), calcium oxide (CaO), and yttrium oxide (Y2O3).
), ytterbium oxide (Yb2O3), etc. from several % to
A solid electrolyte membrane 4 having a thickness of about 5000 Å is formed by high frequency sputtering using stabilized zirconia added at a ratio of more than 10%. As a method for forming the solid electrolyte membrane 4, in addition to PVD (physical vapor deposition) such as sputtering,
Thin film formation methods such as CVD (chemical vapor deposition) or spin coating may also be used.
【0014】さらに図3(5)の工程において、固体電
解質膜4上面に、Pt膜61を高周波スパッタリング法
によって約5000Åの厚さに形成し、上記図3(3)
の工程と同様にしてパターニングを行い、上側電極膜6
を形成する(図4(6))。Further, in the step shown in FIG. 3(5), a Pt film 61 with a thickness of about 5000 Å is formed on the upper surface of the solid electrolyte membrane 4 by high frequency sputtering, and as shown in FIG. 3(3) above.
Patterning is performed in the same manner as in the step of , and the upper electrode film 6
(Fig. 4 (6)).
【0015】図4(7)の工程においては、フォトエッ
チング工程を用いてピンホール形成個所の固体電解質膜
4を除去する。まず固体電解質膜4の上面にフォトレジ
ストを塗布し、フォトマスクを使用してレジストを硬化
させた後、塩素系ガスを用いた反応性イオンエッチング
法により固体電解質膜4の一部を除去する。その後、レ
ジストを除去する。これにより露出する絶縁膜21に、
フォト工程によりレジストをパターニングし、続いてフ
ッ素系ガスを用いた反応性イオンエッチング法によって
ピンホール32を形成する。ピンホール径は約30μm
する。In the step shown in FIG. 4(7), the solid electrolyte membrane 4 at the pinhole formation location is removed using a photo-etching process. First, a photoresist is applied to the upper surface of the solid electrolyte membrane 4, and after the resist is hardened using a photomask, a portion of the solid electrolyte membrane 4 is removed by a reactive ion etching method using a chlorine-based gas. After that, the resist is removed. The insulating film 21 exposed by this,
The resist is patterned by a photo process, and then pinholes 32 are formed by reactive ion etching using fluorine gas. Pinhole diameter is approximately 30μm
do.
【0016】次に図4(8)の工程で、固体電解質膜4
および絶縁膜22表面に、それぞれ窒化ケイ素(SiN
)膜81、82をプラズマCVD法によって2000Å
の厚さに形成する。フォトエッチング工程により、基板
2下方のSiN膜82および絶縁膜22を周辺部を残し
て除去した後(図4(9))、図5(10)の工程で、
水酸化カリウム(KOH)溶液を用いて基板2を下方か
らエッチングする。この時、図4(9)の工程で残った
SiN膜82および絶縁膜22をエッチングマスクとし
て使用する。またこの工程で除去された部分が空洞31
となる。Next, in the step shown in FIG. 4(8), the solid electrolyte membrane 4
and silicon nitride (SiN) on the surface of the insulating film 22.
) Films 81 and 82 were formed to a thickness of 2000 Å by plasma CVD method.
Form to a thickness of . After removing the SiN film 82 and the insulating film 22 below the substrate 2 by a photo-etching process (FIG. 4(9)), in the step of FIG. 5(10),
The substrate 2 is etched from below using a potassium hydroxide (KOH) solution. At this time, the SiN film 82 and insulating film 22 remaining from the step of FIG. 4(9) are used as an etching mask. Also, the part removed in this process is the cavity 31.
becomes.
【0017】図5(11)の工程では、SiN膜81、
82をフッ素系ガスを用いたプラズマエッチング法によ
り除去する。図5(12)の工程でガラス製の台座1に
はんだ付けあるいは陽極接合等の気密接合法を用いて実
装し、センサエレメントとする。In the step of FIG. 5(11), the SiN film 81,
82 is removed by plasma etching using fluorine gas. In the process shown in FIG. 5 (12), the sensor element is mounted on the glass pedestal 1 using an airtight method such as soldering or anodic bonding.
【0018】図6にこのマイクロガスセンサの動作原理
を示す。被測定ガスは、ピンホール32を通過してセン
サ内部の空洞31に導入されるが、このときピンホール
32によつてガスの拡散は制限される。一方、電極膜5
、6間に電圧が印加されると、被測定ガス中の酸素ガス
は電極5(陰極)でイオン化し固体電解質膜4中を通っ
て電極膜6(陽極)に達し、再び気体化する。ここで電
極5、6間に流れる電流を測定すると、電極膜5に供給
されるガスはピンホール32で制限されるため、電流は
下式に示すように流れ、図7に示すような限界電流特性
を示す。FIG. 6 shows the operating principle of this micro gas sensor. The gas to be measured passes through the pinhole 32 and is introduced into the cavity 31 inside the sensor, but at this time, the pinhole 32 restricts the diffusion of the gas. On the other hand, the electrode film 5
, 6, oxygen gas in the gas to be measured is ionized at the electrode 5 (cathode), passes through the solid electrolyte membrane 4, reaches the electrode membrane 6 (anode), and is gasified again. When the current flowing between the electrodes 5 and 6 is measured here, the gas supplied to the electrode film 5 is restricted by the pinhole 32, so the current flows as shown in the formula below, and the limiting current as shown in FIG. Show characteristics.
【0019】 Il:限界電流 R:気体定数 D0 :酸素の拡散係数 T:絶対温度 S:ピンホールの面積 P:被測定ガスの全圧 Po2 :被測定ガス中の酸素分圧 l:ピンホールの長さ[0019] Il: Limiting current R: gas constant D0: Oxygen diffusion coefficient T: Absolute temperature S: Area of pinhole P: Total pressure of gas to be measured Po2: Oxygen partial pressure in the measured gas l: Pinhole length
【0020】印加電圧を一定値に設定した場合、電流値
は図8に示すように被測定ガス濃度に比例する形で検出
される。従って、電極膜5、6間を流れるイオン電流値
を測定することにより被測定ガス中の酸素濃度を精度良
く検出することができる。When the applied voltage is set to a constant value, the current value is detected in proportion to the gas concentration to be measured, as shown in FIG. Therefore, by measuring the value of the ion current flowing between the electrode films 5 and 6, the oxygen concentration in the gas to be measured can be detected with high accuracy.
【0021】[0021]
【発明の効果】以上の如く本発明の製造方法によれば、
エッチング技術および薄膜形成技術を用いることにより
センサの超小型化が可能であり、さらに超小型化により
固体電解質の温度調節を小電力で素早く行うことができ
、消費電力の低減、高速応答、立ち上がり時間の短縮が
可能である。また、量産性にも優れている。[Effects of the Invention] As described above, according to the manufacturing method of the present invention,
By using etching technology and thin film formation technology, it is possible to make the sensor ultra-miniaturized.Furthermore, by making the sensor ultra-miniaturized, the temperature of the solid electrolyte can be quickly adjusted with low power, resulting in reduced power consumption, fast response, and rise time. can be shortened. It also has excellent mass productivity.
【図1】ガスセンサの平面図である。FIG. 1 is a plan view of a gas sensor.
【図2】ガスセンサの断面図である。FIG. 2 is a cross-sectional view of the gas sensor.
【図3】ガスセンサの製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing the manufacturing process of the gas sensor.
【図4】ガスセンサの製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing the manufacturing process of the gas sensor.
【図5】ガスセンサの製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing the manufacturing process of the gas sensor.
【図6】ガスセンサの作動を示す図である。FIG. 6 is a diagram showing the operation of the gas sensor.
【図7】ガスセンサの限界電流特性を示す図である。FIG. 7 is a diagram showing the limiting current characteristics of a gas sensor.
【図8】酸素ガス濃度とイオン電流値を示す図である。FIG. 8 is a diagram showing oxygen gas concentration and ion current value.
1 台座 2 基板 31 空洞 32 ピンホール 4 固体電解質膜 5、6 電極膜 7 ヒータ膜 1 Pedestal 2 Board 31 Cavity 32 Pinhole 4 Solid electrolyte membrane 5, 6 Electrode film 7 Heater membrane
Claims (1)
返して上下を電極膜に挟まれた固体電解質膜を形成する
工程と、上記基板の下面を周縁部を除いて下側電極膜に
至るまでエッチング除去して空洞を形成する工程と、基
板上面を貫通して上記空洞に至るピンホールをエッチン
グ形成する工程と、上記基板の下面周縁部を台座に接合
する工程とを具備する固体電解質ガスセンサの製造方法
。[Claim 1] A step of repeating film formation and etching on the upper surface of the substrate to form a solid electrolyte film sandwiched between upper and lower electrode films; A solid electrolyte gas sensor comprising: forming a cavity by etching away; forming a pinhole through the upper surface of the substrate to reach the cavity; and joining the peripheral edge of the lower surface of the substrate to a pedestal. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3081826A JP3052410B2 (en) | 1991-03-20 | 1991-03-20 | Method for manufacturing solid electrolyte gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3081826A JP3052410B2 (en) | 1991-03-20 | 1991-03-20 | Method for manufacturing solid electrolyte gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04291144A true JPH04291144A (en) | 1992-10-15 |
JP3052410B2 JP3052410B2 (en) | 2000-06-12 |
Family
ID=13757281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3081826A Expired - Fee Related JP3052410B2 (en) | 1991-03-20 | 1991-03-20 | Method for manufacturing solid electrolyte gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3052410B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136329A1 (en) * | 2013-03-08 | 2014-09-12 | ローム株式会社 | Limiting current gas sensor, method for producing limiting current gas sensor, and sensor network system |
WO2015158599A1 (en) * | 2014-04-17 | 2015-10-22 | Robert Bosch Gmbh | Device for detecting a parameter of a gas, method for operating such a device, and measuring system for determining a parameter of a gas |
-
1991
- 1991-03-20 JP JP3081826A patent/JP3052410B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136329A1 (en) * | 2013-03-08 | 2014-09-12 | ローム株式会社 | Limiting current gas sensor, method for producing limiting current gas sensor, and sensor network system |
JP2014196995A (en) * | 2013-03-08 | 2014-10-16 | ローム株式会社 | Limiting current type gas sensor, method for manufacturing limiting current type gas sensor and sensor network system |
WO2015158599A1 (en) * | 2014-04-17 | 2015-10-22 | Robert Bosch Gmbh | Device for detecting a parameter of a gas, method for operating such a device, and measuring system for determining a parameter of a gas |
CN106461492A (en) * | 2014-04-17 | 2017-02-22 | 罗伯特·博世有限公司 | Device for detecting a parameter of a gas, method for operating such a device, and measuring system for determining a parameter of a gas |
Also Published As
Publication number | Publication date |
---|---|
JP3052410B2 (en) | 2000-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4668374A (en) | Gas sensor and method of fabricating same | |
KR100812996B1 (en) | Micro gas sensor and method for manufacturing the same | |
US10620153B2 (en) | Nitrogen oxide based gas sensor, oxygen pump, gas sensor apparatus, manufacturing method of gas sensor apparatus, and sensor network system | |
EP0744603A1 (en) | Linear capacitive sensor by fixing the center of a membrane | |
JP2013156259A (en) | Micromechanical solid-electrolyte sensor device and production method thereof | |
KR20070085024A (en) | Thin film structure body and formation method thereof, vibrating sensor, pressure sensor and degree of acceleration sensor | |
US6464940B1 (en) | pH sensor and pH measurement method employing the same | |
CN107250783A (en) | The method for being used for detecting the gas sensor device for measuring at least one of medium gaseous analytes for manufacturing and method and gas sensor device for detecting at least one of measurement medium gaseous analytes | |
JP3760573B2 (en) | NOx sensor manufacturing method and NOx sensor | |
US4810350A (en) | Automotive, internal reference, solid electrolyte, lean oxygen sensor | |
US4810529A (en) | Method of producing a miniature internal reference gas chamber within an automotive, internal reference, solid electrolyte, lean oxygen sensor | |
US6265750B1 (en) | Electrochemical gas sensor and method of making the same | |
JPH04291144A (en) | Manufacture of solid electrolyte gas sensor | |
JPH1022511A (en) | Semiconductor pressure sensor and its manufacture | |
JP2926912B2 (en) | Oxygen sensor | |
JPH0554708B2 (en) | ||
JP2859294B2 (en) | Oxygen sensor | |
JP2619003B2 (en) | Oxygen detecting element and method for manufacturing the same | |
JPH0495741A (en) | Pressure sensor | |
JPH0758347A (en) | Semiconductor pressure sensor and its manufacture | |
JP3906548B2 (en) | Switch-type acceleration sensor and manufacturing method thereof | |
JPH11135806A (en) | Semiconductor pressure sensor and its manufacture | |
JPH0735726A (en) | Gas component detecting element | |
JPH04232454A (en) | Oxygen sensor | |
JPH06249822A (en) | Solid electrolyte oxygen concentration sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000307 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |