JPH0464032B2 - - Google Patents
Info
- Publication number
- JPH0464032B2 JPH0464032B2 JP58232531A JP23253183A JPH0464032B2 JP H0464032 B2 JPH0464032 B2 JP H0464032B2 JP 58232531 A JP58232531 A JP 58232531A JP 23253183 A JP23253183 A JP 23253183A JP H0464032 B2 JPH0464032 B2 JP H0464032B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- transistor
- constant current
- circuit
- terminal pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 229920005994 diacetyl cellulose Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
- H03K19/00323—Delay compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31903—Tester hardware, i.e. output processing circuits tester configuration
- G01R31/31908—Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
- G01R31/3191—Calibration
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Logic Circuits (AREA)
Description
【発明の詳細な説明】
発明の技術分野
本発明は、入力信号に対する出力信号の遅れ時
間を可調整にした論理ゲート回路を用いた試験信
号発生方法に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a test signal generation method using a logic gate circuit in which the delay time of an output signal with respect to an input signal is adjustable.
従来技術と問題点
集積回路の試験機(ICテスター)などでは多
数の出力信号ピンを備え、該ピンより集積回路へ
各種信号を加え、その出力状態をチエツクする。
この場合、上記各種信号は正確に同じタイミング
で加えたい場合があるが、該各種信号を発生する
各回路の構成はまちまちであり、含まれるゲート
数が異なるからナノ秒(nS)のオーダーではあ
るが該各種信号の発生タイミングにはバラつきが
ある。Prior Art and Problems Integrated circuit testers (IC testers) are equipped with a large number of output signal pins, and various signals are applied to the integrated circuit through these pins to check the output status.
In this case, it may be desirable to apply the various signals mentioned above at exactly the same timing, but the configuration of each circuit that generates the various signals is different, and the number of gates included is different, so it is on the order of nanoseconds (ns). However, there are variations in the timing of generation of these various signals.
発明の目的
本発明は、前記各種信号を出力する論理ゲート
回路に、入力信号に対する出力信号の遅れ時間即
ち信号伝播遅延時間Tpdを可変にする微調整回路
を付加して、該微調整回路を調整することにより
出力タイミングを変更し、各論理ゲートが同タイ
ミングで出力可能にしようとするものである。Purpose of the Invention The present invention provides a logic gate circuit that outputs various signals, by adding a fine adjustment circuit for varying the delay time of the output signal with respect to the input signal, that is, the signal propagation delay time Tpd, and adjusting the fine adjustment circuit. By doing this, the output timing is changed so that each logic gate can output at the same timing.
発明の構成
本発明は、複数の入力端子ピンに接続された入
力ゲート群と、該入力ゲート群に接続され、試験
信号を発生させる内部ゲート群と、複数の出力端
が出力端子ピンに接続され、入力端が該内部ゲー
トに接続され;一方のベースが該内部ゲートから
の信号を受ける入力端に接続され、エミツタ結合
された1対のトランジスタと、そのエミツタ側に
接続された第1の定電流源トランジスタとを有す
るゲート回路と、該ゲート回路の出力をベースに
受け、エミツタが第2の定電流源と該出力端に接
続された出力段エミツタフオロアトランジスタ
と、該エミツタフオロアトランジスタのベースに
接続されたベース容量可変トランジスタと、該ベ
ース容量可変トランジスタに接続された第3の定
電流源とを有する出力ゲート群;とを有し、該入
力端子ピンに加わる入力信号と該出力端子ピンか
ら出力される出力信号との間の時間差を測るカウ
ンタを、該入力端子ピンと該出力端子ピンとの間
に接続し、該時間差を全出力信号で同じにするの
に必要な付加遅延時間を演算回路により求め、該
付加遅延時間に対応する制御電圧を、該第2及び
第3の定電流源トランジスタのベースに印加し、
該第2の定電流トランジスタが流す定電流値を制
御し、及び該ベース容量可変トランジスタのベー
ス容量を制御し、チツプに該入力端子ピン及び出
力端子ピンを接続した後において該出力端子ピン
の出力信号の遅延を一定に制御することを可能と
することを特徴とするが、次に実施例を参照しな
がらこれを詳細に説明する。Structure of the Invention The present invention includes a group of input gates connected to a plurality of input terminal pins, a group of internal gates connected to the input gate group and generating a test signal, and a plurality of output terminals connected to the output terminal pin. , an input terminal connected to the internal gate; one base connected to the input terminal receiving a signal from the internal gate; a pair of emitter-coupled transistors; and a first transistor connected to the emitter side. a gate circuit having a current source transistor; an output stage emitter follower transistor whose base receives the output of the gate circuit and whose emitter is connected to a second constant current source and the output terminal; and the emitter follower transistor. an output gate group having a variable base capacitance transistor connected to the base of the transistor; and a third constant current source connected to the variable base capacitance transistor; A counter that measures the time difference between the output signal output from the output terminal pin is connected between the input terminal pin and the output terminal pin, and the additional delay time required to make the time difference the same for all output signals. is determined by an arithmetic circuit, and a control voltage corresponding to the additional delay time is applied to the bases of the second and third constant current source transistors,
After controlling the constant current value flowing through the second constant current transistor and controlling the base capacitance of the variable base capacitance transistor, and connecting the input terminal pin and the output terminal pin to the chip, the output terminal pin is controlled. The present invention is characterized in that it is possible to control the signal delay to a constant value, and this will be described in detail below with reference to embodiments.
発明の実施例
第1図は本発明で用いる論理ゲート回路を示
し、Q1,Q2はエミツタ結合されたトランジス
タ、Q3は定電流源となるトランジタ、R1〜R
3は抵抗で、これらはECL(エミツタカツプルド
ロジツク)回路を構成する。Q4はエミツタホロ
アで用いられるトランジスタ、Q8は定電流源を
構成するトランジスタ、R4は抵抗で、これらの
Q8,R4はエミツタホロアトランジスタQ4の
負荷抵抗となる。Viはこれらで構成される論理
ゲート回路に対する入力電圧、Vrは基準電圧、
Voは出力電圧、Vsは定電流値を定める電圧であ
る。基準電圧Vrは入力電圧ViのH(ハイ)、L(ロ
ー)に対する閾値となるもので、ViがVrよりH
であればトランジスタQ1オン、Q2オフ、出力
VoはHとなり、ViがVrよりLであればQ1オ
フ、Q2オン、VoはLである。Embodiment of the Invention FIG. 1 shows a logic gate circuit used in the present invention, Q1 and Q2 are emitter-coupled transistors, Q3 is a transistor serving as a constant current source, and R1 to R
3 is a resistor, and these constitute an ECL (emitter pull logic) circuit. Q4 is a transistor used as an emitter follower, Q8 is a transistor constituting a constant current source, and R4 is a resistor. Q8 and R4 serve as a load resistance of the emitter follower transistor Q4. Vi is the input voltage to the logic gate circuit composed of these, Vr is the reference voltage,
Vo is the output voltage, and Vs is the voltage that determines the constant current value. The reference voltage Vr is a threshold value for H (high) and L (low) of the input voltage Vi, and when Vi is higher than Vr,
If so, transistor Q1 on, Q2 off, output
Vo becomes H, and if Vi is L lower than Vr, Q1 is off, Q2 is on, and Vo is L.
この回路では入力電圧Viに対し出力電圧Voは
ある時間だけ遅れるが、その遅れ時間は電流値に
依存して一定である。本回路ではこれを可調整に
すべく出力段のエミツタホロア回路に並列に、ト
ランジスタQ5〜Q7,Q9及び抵抗R5からな
る負荷容量として機能するエミツタホロア回路を
接続し、端子Tに加える制御電圧Vcで該負荷回
路に流れる電流値を制御する。トランジスタQ5
〜Q7は並列に接続され、ベースはトランジスタ
Q4のベースと共にECL回路の出力端へ接続さ
れる。これによりECL回路の出力端にトランジ
スタQ5〜Q7のベース容量が接続されたことに
なり、遅延時間Tpdは大になる。またトランジス
タQ5〜Q7のベース容量は各々のトランジスタ
に流れる電流の値により変るが、トランジスタQ
9はトランジスタQ5〜Q7に流れる電流値を制
御電圧Vcにより調整するので、トランジスタQ
5〜Q7のベース容量は制御電圧Vcにより制御
され、ひいては遅延時間Tpdが制御電圧Vcによ
り可調整になる。また本回路では制御電圧Vcは
トランジスタQ8のベースへも加えられるので、
出力段の電流値も制御電圧Vcにより調整され、
これによつても遅延時間Tpdが調整される。 In this circuit, the output voltage Vo is delayed by a certain amount of time with respect to the input voltage Vi, but the delay time is constant depending on the current value. In this circuit, in order to make this adjustable, an emitter follower circuit that functions as a load capacitance consisting of transistors Q5 to Q7, Q9 and a resistor R5 is connected in parallel to the emitter follower circuit of the output stage, and the control voltage Vc applied to the terminal T is used to adjust the emitter follower circuit. Controls the current value flowing into the load circuit. Transistor Q5
~Q7 are connected in parallel, and their bases are connected together with the base of transistor Q4 to the output end of the ECL circuit. This means that the base capacitances of the transistors Q5 to Q7 are connected to the output terminal of the ECL circuit, and the delay time Tpd increases. Also, the base capacitance of transistors Q5 to Q7 varies depending on the value of the current flowing through each transistor.
9 adjusts the current value flowing through the transistors Q5 to Q7 by the control voltage Vc, so the transistor Q
The base capacitances of transistors 5 to Q7 are controlled by the control voltage Vc, and thus the delay time Tpd can be adjusted by the control voltage Vc. In addition, in this circuit, the control voltage Vc is also applied to the base of the transistor Q8, so
The current value of the output stage is also adjusted by the control voltage Vc,
This also adjusts the delay time Tpd.
制御電圧Vcを高くしてトランジスタQ8,Q
9の電流を大にするとエミツタホロア回路の動作
は高速になり、遅延時間Tpdは小になる。これと
は逆に制御電圧Vcを低くしてトランジスタQ8,
Q9の電流を小にするとエミツタホロア回路の動
作は低速になり、遅延時間は大になる。第2図は
制御電圧Vc対信号伝播遅延時間Tpdの関係を示
す。この図の横軸は制御電圧Vc(V)、縦軸は信
号伝播遅延時間Tpd(nS)であり、点線曲線C2
は負荷回路Q5〜Q7,Q9がなく、トランジス
タQ8単独の場合の遅延特性で、曲線C1は負荷
回路を加えた場合の全体の遅延特性である。トラ
ンジスタQ5,Q6,…の個数を増加するとそれ
だけ負荷容量が大になるから遅延時間Tpdは大に
なる。なお本回路では制御電圧Vcは出力段エミ
ツタホロア回路のトランジスタQ8と負荷回路の
トランジスタQ9に共通に加えているが、トラン
ジスタQ8とQ9とに独立に制御電圧Vcを加え
れば、さらに精度の高い調整を行なうことができ
る。 Transistors Q8 and Q by increasing the control voltage Vc
When the current of 9 is increased, the operation of the emitter follower circuit becomes faster and the delay time Tpd becomes smaller. On the contrary, by lowering the control voltage Vc, the transistor Q8,
When the current of Q9 is reduced, the operation of the emitter follower circuit becomes slower and the delay time becomes longer. FIG. 2 shows the relationship between control voltage Vc and signal propagation delay time Tpd. The horizontal axis of this figure is the control voltage Vc (V), the vertical axis is the signal propagation delay time Tpd (nS), and the dotted curve C2
is the delay characteristic when the transistor Q8 is used alone without the load circuits Q5 to Q7, Q9, and the curve C1 is the overall delay characteristic when the load circuit is added. As the number of transistors Q5, Q6, . . . increases, the load capacitance increases accordingly, and thus the delay time Tpd increases. In this circuit, the control voltage Vc is commonly applied to the transistor Q8 of the output stage emitter follower circuit and the transistor Q9 of the load circuit, but if the control voltage Vc is applied independently to the transistors Q8 and Q9, even more precise adjustment can be achieved. can be done.
また第2図に示すように負荷回路Q5〜Q7を
加えることにより、制御電圧Vcにより変えられ
る遅延時間Tpdの範囲が大となり、より精度の高
い調整を行なうことができる。 Furthermore, by adding load circuits Q5 to Q7 as shown in FIG. 2, the range of the delay time Tpd that can be changed by the control voltage Vc becomes larger, and more accurate adjustment can be performed.
他の実施例として、トランジスタQ1,Q2よ
りなるECL回路の定電流トランジスタQ3のベ
ースに接続される端子T2に与える電圧Vsを制御
しても遅延時間Tpdを調整することができる。す
なわちVsを大にするとECL回路は高速に動作し
遅延時間Tpdは小となり、一方、Vsを小にする
とECL回路は低速に動作し遅延時間Tpdは大とな
る。 As another embodiment, the delay time Tpd can also be adjusted by controlling the voltage Vs applied to the terminal T2 connected to the base of the constant current transistor Q3 of the ECL circuit including the transistors Q1 and Q2. That is, when Vs is made large, the ECL circuit operates at high speed and the delay time Tpd becomes small, while when Vs is made small, the ECL circuit operates at low speed and the delay time Tpd becomes large.
よつて、端子T1への電圧Vcを制御しても、端
子T2への電圧Vsを制御してもTpdを変えること
はでき、両方同時、又は一方のみ、又は両方独立
して制御する等が可能である。 Therefore, Tpd can be changed even if the voltage Vc to terminal T 1 is controlled or the voltage Vs to terminal T 2 is controlled, and both can be controlled simultaneously, only one, or both independently. is possible.
第3図は本発明で用いる他の論理ゲート回路を
示し、第1図と同じ部分には同じ符号が付してあ
る。トランジスタQ41とQ81と抵抗R41、
トランジスタQ42とQ82と抵抗R42、トラ
ンジスタQ43とQ83とQ43はそれぞれエミ
ツタホロアを構成し、トランジスタQ81〜Q8
3はそれらの定電流源となる。即ち第1図のエミ
ツタホロアは第3図では縦続接続された3段のエ
ミツタホロアで構成され、その回路の定電流トラ
ンジスタQ81〜Q83とECL回路の定電流源
用トランジスタQ3のベースが、共通に制御電圧
Vcを受ける。 FIG. 3 shows another logic gate circuit used in the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. Transistors Q41 and Q81 and resistor R41,
Transistors Q42 and Q82 and resistor R42, transistors Q43 and Q83 and Q43 each constitute an emitter follower, and transistors Q81 to Q8
3 becomes their constant current source. That is, the emitter follower in FIG. 1 is composed of three stages of cascade-connected emitter followers in FIG.
Receives Vc.
この回路では制御電圧Vcを高めてトランジス
タQ3,Q81〜Q83の電流値を大にすると
ECL回路およびエミツタホロア回路共に動作速
度が大になり、遅延時間Tpdは小になる。制御電
圧Vcを低くすると、この逆の動作が行なわれる。
第4図に本回路の遅延特性を示す。実線曲線C1
は本回路全体の、そして点線曲線C2はECL回
路のみVcで制御したときの遅延特性を示す。 In this circuit, if you increase the control voltage Vc and increase the current value of transistors Q3, Q81 to Q83,
The operating speed of both the ECL circuit and the emitter follower circuit increases, and the delay time Tpd decreases. When the control voltage Vc is lowered, the opposite operation occurs.
Figure 4 shows the delay characteristics of this circuit. Solid curve C1
shows the delay characteristics of the entire circuit, and the dotted curve C2 shows the delay characteristics when only the ECL circuit is controlled by Vc.
これは、単にECL回路の定電流用トランジス
タQ3のベース電位のみVcにて制御するよりも、
エミツタホロアの定電流用トランジスタQ81〜
Q83をも同時に制御した方が、同じように制御
電圧Vcを低くした場合より遅延時間Tpdを大き
くすることができることを示している。さらに、
複数段のエミツタホロワとすることにより全体の
遅延時間Tpdも大となり、Vcの制御によりより
精度の高いTpdの調整をすることができるように
なることを示している。もちろん本実施例でもト
ランジスタQ3とトランジスタQ81〜Q83と
を一方のみ、又は双方独立して制御するようにし
ても良い。 This is better than simply controlling the base potential of the constant current transistor Q3 of the ECL circuit with Vc.
Emitter follower constant current transistor Q81~
This shows that if Q83 is also controlled at the same time, the delay time Tpd can be made larger than if the control voltage Vc is similarly lowered. moreover,
The use of a multi-stage emitter follower also increases the overall delay time Tpd, indicating that Tpd can be adjusted with higher precision by controlling Vc. Of course, in this embodiment as well, only one or both of the transistor Q3 and the transistors Q81 to Q83 may be controlled independently.
第5図は本発明方法を実施するICテスターを
示す。10は各種試験信号の発生部で12はその
入力端子ピン群、14は出力端子ピン群、16は
制御端子ピン群である。G1は入力ゲート群、G
2は内部ゲート群、G3は出力ゲート群で、本発
明回路は出力ゲート群G3に適用する。第1図又
は第3図の本発明回路は出力端子ピンの数だけ設
けられる。20は制御部で、入、出力端子ピン毎
にその入、出力信号の時間差従つてTpdを測定す
るカウンタ、該遅延時間Tpdを全出力ピンで同じ
にするに必要な付加遅延時間を求め、該付加遅延
時間に対する制御電圧Vcを出力する演算回路お
よびテーブルなどを備える制御回路CNT、各出
力端子ピン毎の制御電圧Vc(デジタル値)を書込
まれるメモリMEM、および該メモリから読出し
た各端子ピンの制御電圧(デジタル値)をアナロ
グ電圧に変換するデジタルアナログ変換器DAC
を備える。DACは出力端子ピンの数だけ設け、
その入力側にレジスタを設けて該レジスタにメモ
リ読出しデータをセツトして、ICテストに当つ
て各端子ピンに対する制御電圧Vcを各DACに出
力させる。勿論各端子ピン側即ち第1図、第3図
の回路に、指定された制御電圧Vcの発生回路を
設けて第5図のDACは1つとし、該DACに各端
子ピンのVcを出力させ、該Vcを上記各電圧発生
回路に出力させるようにしてもよい。第1図、第
3図の出力段ゲート回路の遅延は一定とすれば、
上記Tpdの測定、Vcの決定などは一度行なえば
よく、こうして本ICテスターから各種試験電圧
を正確に一斉に出力させることができる。 FIG. 5 shows an IC tester implementing the method of the invention. Reference numeral 10 designates a generation unit for various test signals, 12 a group of input terminal pins thereof, 14 a group of output terminal pins, and 16 a group of control terminal pins. G1 is input gate group, G
2 is an internal gate group, G3 is an output gate group, and the circuit of the present invention is applied to the output gate group G3. The circuit of the present invention shown in FIG. 1 or 3 is provided as many as the number of output terminal pins. Reference numeral 20 denotes a control unit that includes a counter that measures the time difference between the input and output signals, thus Tpd, for each input and output terminal pin, and calculates the additional delay time necessary to make the delay time Tpd the same for all output pins, and calculates the additional delay time required to make the delay time Tpd the same for all output pins. A control circuit CNT that includes an arithmetic circuit and a table that outputs the control voltage Vc for the additional delay time, a memory MEM in which the control voltage Vc (digital value) for each output terminal pin is written, and each terminal pin read from the memory. Digital-to-analog converter DAC that converts the control voltage (digital value) into analog voltage
Equipped with. The number of DACs is equal to the number of output terminal pins,
A register is provided on the input side, memory read data is set in the register, and a control voltage Vc for each terminal pin is output to each DAC during an IC test. Of course, a generation circuit for the specified control voltage Vc is provided on each terminal pin side, that is, in the circuits shown in FIGS. 1 and 3, so that there is only one DAC in FIG. 5, and the DAC is made to output the Vc of each terminal pin. , the Vc may be outputted to each of the voltage generating circuits described above. Assuming that the delay of the output stage gate circuit in Figs. 1 and 3 is constant,
The above-mentioned measurement of Tpd, determination of Vc, etc. need only be performed once, and in this way, various test voltages can be accurately output all at once from this IC tester.
試験信号発生部10及び制御部20は1つの
LSIにまとめられ、あるいは個々のICにまとめら
れる。個々のICに纏められる場合は制御電圧Vc
を受ける端子Tは試験信号発生部のICの外端端
子ピンとなる。 The test signal generation section 10 and the control section 20 are one
They can be assembled into LSIs or individual ICs. Control voltage Vc when combined into individual ICs
The terminal T receiving the signal becomes the outer terminal pin of the IC of the test signal generating section.
発明の効果
以上説明したように本発明では論理ゲート回路
に信号伝播遅延時間Tpdを調整する回路を付加し
たので該ゲート回路を出力段に用いて各信号の一
斉出力などを行なうことができ甚だ有効である。Effects of the Invention As explained above, in the present invention, since a circuit for adjusting the signal propagation delay time Tpd is added to the logic gate circuit, the gate circuit can be used in the output stage to simultaneously output each signal, which is extremely effective. It is.
第1図および第3図は本発明で用いる論理ゲー
トの回路図、第2図および第4図は動作特性を示
すグラフ、第5図は本発明方法を実施するICテ
スターを示すブロツク図である。
図面で、Q1,Q2はECLを構成する一対の
トランジスタ、Q3,Q8,Q9,Q81〜Q8
3は定電流源トランジスタ、MEM,CNT,
DACは制御電圧を出力する遅延時間調整回路で
ある。
Figures 1 and 3 are circuit diagrams of logic gates used in the present invention, Figures 2 and 4 are graphs showing operating characteristics, and Figure 5 is a block diagram showing an IC tester implementing the method of the present invention. . In the drawing, Q1 and Q2 are a pair of transistors that constitute ECL, Q3, Q8, Q9, and Q81 to Q8.
3 is a constant current source transistor, MEM, CNT,
DAC is a delay time adjustment circuit that outputs a control voltage.
Claims (1)
群G1と、 該入力ゲート群に接続され、試験信号を発生さ
せる内部ゲート群G2と、 複数の出力端が出力端子ピンに接続され、入力
端が該内部ゲートに接続され; 一方のベースが該内部ゲートからの信号を受け
る入力端に接続され、エミツタ結合された1対の
トランジスタと、そのエミツタ側に接続された第
1の定電流源トランジスタとを有するゲート回路
と、 該ゲート回路の出力をベースに受け、エミツタ
が第2の定電流源トランジスタと該出力端に接続
された出力段エミツタフオロアトランジスタと、 該エミツタフオロアトランジスタのベースに接
続されたベース容量可変トランジスタと、 該ベース容量可変トランジスタに接続された第
3の定電流源トランジスタとを有する出力ゲート
群G3;とを有し、 該入力端子ピンに加わる入力信号と該出力端子
ピンから出力される出力信号との間の時間差を測
るカウンタを、該入力端子ピンと該出力端子ピン
との間に接続し、 該時間差を全出力信号で同じにするのに必要な
付加遅延時間を演算回路により求め、該付加遅延
時間に対応する制御電圧を、該第2及び第3の定
電流源トランジスタのベースに印加し、該第2の
定電流源トランジスタが流す定電流値を制御し、
及び該ベース容量可変トランジスタのベース容量
を制御し、チツプに該入力端子ピン及び出力端子
ピンを接続した後において該出力端子ピンの出力
信号の遅延を一定に制御することを可能とするこ
とを特徴とする試験信号発生方法。[Claims] 1. An input gate group G1 connected to a plurality of input terminal pins; an internal gate group G2 connected to the input gate group and generating a test signal; and a plurality of output terminals connected to the output terminal pins. a pair of emitter-coupled transistors, one base of which is connected to an input terminal that receives a signal from the internal gate; and a first transistor connected to the emitter side of the transistor. a gate circuit having a constant current source transistor; an output stage emitter follower transistor whose base receives the output of the gate circuit and whose emitter is connected to the second constant current source transistor and the output terminal; an output gate group G3 having a variable base capacitance transistor connected to the base of the ivy follower transistor and a third constant current source transistor connected to the variable base capacitance transistor; A counter that measures the time difference between the applied input signal and the output signal output from the output terminal pin is connected between the input terminal pin and the output terminal pin, and the time difference is made the same for all output signals. A necessary additional delay time is determined by an arithmetic circuit, a control voltage corresponding to the additional delay time is applied to the bases of the second and third constant current source transistors, and a constant current flowing through the second constant current source transistor is determined. Controls the current value,
and controlling the base capacitance of the variable base capacitance transistor, making it possible to control the delay of the output signal of the output terminal pin to a constant value after the input terminal pin and the output terminal pin are connected to the chip. test signal generation method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58232531A JPS60124122A (en) | 1983-12-09 | 1983-12-09 | Logical gate circuit |
DE8484308520T DE3483576D1 (en) | 1983-12-09 | 1984-12-07 | GATE CIRCUIT ARRANGEMENT. |
EP84308520A EP0151875B1 (en) | 1983-12-09 | 1984-12-07 | Gate circuit device |
KR1019840007774A KR900002599B1 (en) | 1983-12-09 | 1984-12-08 | Gate circuit apparatus |
US06/679,998 US4645958A (en) | 1983-12-09 | 1984-12-10 | Variable delay gate circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58232531A JPS60124122A (en) | 1983-12-09 | 1983-12-09 | Logical gate circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60124122A JPS60124122A (en) | 1985-07-03 |
JPH0464032B2 true JPH0464032B2 (en) | 1992-10-13 |
Family
ID=16940795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58232531A Granted JPS60124122A (en) | 1983-12-09 | 1983-12-09 | Logical gate circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60124122A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710530A (en) * | 1980-05-16 | 1982-01-20 | Ibm | Electronic device |
JPS5756945A (en) * | 1980-09-19 | 1982-04-05 | Mitsubishi Electric Corp | Logic circuit |
JPS58107725A (en) * | 1981-12-22 | 1983-06-27 | Nec Corp | Current switching type logical circuit |
-
1983
- 1983-12-09 JP JP58232531A patent/JPS60124122A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710530A (en) * | 1980-05-16 | 1982-01-20 | Ibm | Electronic device |
JPS5756945A (en) * | 1980-09-19 | 1982-04-05 | Mitsubishi Electric Corp | Logic circuit |
JPS58107725A (en) * | 1981-12-22 | 1983-06-27 | Nec Corp | Current switching type logical circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS60124122A (en) | 1985-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6313681B1 (en) | Variable delay circuit | |
US4675562A (en) | Method and apparatus for dynamically controlling the timing of signals in automatic test systems | |
US5072136A (en) | Ecl output buffer circuit with improved compensation | |
US5191234A (en) | Pulse signal generator and cascode differential amplifier | |
US4820944A (en) | Method and apparatus for dynamically controlling the timing of signals in automatic test systems | |
JPH05259845A (en) | Delay line | |
US4507576A (en) | Method and apparatus for synthesizing a drive signal for active IC testing including slew rate adjustment | |
EP0151875B1 (en) | Gate circuit device | |
US5917360A (en) | Differential current-switch circuit, D/A conversion circuit and method of transient response reduction | |
JPS6332379A (en) | Active load network | |
EP0477537A2 (en) | Timing generator | |
US5243240A (en) | Pulse signal generator having delay stages and feedback path to control delay time | |
JP2002156422A (en) | Semiconductor testing device | |
JPH0464032B2 (en) | ||
US6025747A (en) | Logic signal selection circuit | |
JP3136890B2 (en) | Programmable delay generator | |
JPH0421370B2 (en) | ||
JPS62171315A (en) | Delay regulating circuit | |
US5781059A (en) | Driver circuit for semiconductor test system | |
JP3036962B2 (en) | Integrated circuit test circuit | |
JP2777399B2 (en) | Variable delay circuit, timing generator using the circuit, and LSI tester | |
CN117391016A (en) | Simulation circuit, impedance calibration simulation method and electronic equipment | |
JPH0575410A (en) | Timing generating circuit | |
JPH0529938A (en) | Controller | |
JPS62263706A (en) | Differential delay buffer |