JPH0464011B2 - - Google Patents

Info

Publication number
JPH0464011B2
JPH0464011B2 JP13091983A JP13091983A JPH0464011B2 JP H0464011 B2 JPH0464011 B2 JP H0464011B2 JP 13091983 A JP13091983 A JP 13091983A JP 13091983 A JP13091983 A JP 13091983A JP H0464011 B2 JPH0464011 B2 JP H0464011B2
Authority
JP
Japan
Prior art keywords
temperature
specific gravity
flow rate
volume conversion
conversion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13091983A
Other languages
Japanese (ja)
Other versions
JPS6024421A (en
Inventor
Takashi Suzuki
Yasushi Saisu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tatsuno Co Ltd
Original Assignee
Tokyo Tatsuno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tatsuno Co Ltd filed Critical Tokyo Tatsuno Co Ltd
Priority to JP13091983A priority Critical patent/JPS6024421A/en
Priority to DE8484304884T priority patent/DE3468943D1/en
Priority to EP84304884A priority patent/EP0132374B1/en
Priority to KR1019840004300A priority patent/KR890001595B1/en
Publication of JPS6024421A publication Critical patent/JPS6024421A/en
Priority to US07/065,685 priority patent/US4720800A/en
Publication of JPH0464011B2 publication Critical patent/JPH0464011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、例えば油槽所、精油所等で使用され
る温度補正付流量測定装置に関する。 [従来技術] 流量測定装置が容積型のものである場合、温度
によつて測定しようとする流体の容積が変化する
ので誤差を生ずる。従来の温度補正付流量測定装
置は、流量計の出力軸を微量変速器を介して積算
流量表示計に連結し、流体の温度変化を機械的変
位に換算するベローズで微量変速器の変速調整を
行うことにより、温度補正された流量を表示計に
積算するようにしている。ところで、原油および
石油製品の温度変化による容積変化は、JIS K
2249に規定されているように、温度変化だけでな
く、流体の比重によつても変化するので、従来の
ように機械式のものでは正確な温度補正はでき
ず、その結果正確に流量を測定するのは充分では
なかつた。 近時、電子機器の発展に伴い、温度補正係数デ
ータを記憶し、その中間の値に対しては比例配分
する技術が知られている。しかしながら、前記の
JIS K 2249で規定される容積積算係数表は膨大
であり、これらのデータをすべて記憶することは
膨大な記憶要領のある記憶手段を必要とする。ま
たこの容積換算係数差は小数点4桁まで必要とす
るので、その桁数までの記憶容量を必要とし、結
果的に相当量の記憶容量とならざるを得ない。 [解決する課題] したがつて、本発明の目的は、記憶手段の記憶
容量がすくなくも測定しようとする流体の比重お
よび温度に応じて正確に補正された流量を測定で
きる温度補正付流量測定装置を提供するにある。 [課題を解決する手段] 本発明の温度補正付流量測定装置によれば、流
量計に設けられた流量信号発信器と、流体の温度
を測定する温度測定器と流体の比重を設定する比
重設定器と、流体の温度補正係数を温度および比
重に対応して記憶する記憶手段と、温度補正され
た流量値を演算する制御装置とを備え、前記記憶
手段で記憶する手前記温度補正係数は所定の温度
における特定間隔での各比重に対応する容積換算
係数を基準として温度の特定間隔ごとの容積換算
係数の差を10000倍した値とし、前記制御装置は
前記温度測定器で測定された温度と前記比重設定
器で設定された比重により記憶した前記温度補正
係数に基づいて、測定温度における設定比重の容
積換算係数を式[(基準温度の容積換算係数)−
{(測定温度間の温度補正係数の和)/(10000)}]
で算出し、そして測定した温度および設定された
比重が記憶された温度・比重の中間の値の場合は
上記の算出式に基づいて比例配分で算出し、流量
信号発信器から流量信号と算出した容積換算係数
とにより温度補正された流量値を演算するように
なつている。 [作用効果の説明] したがつて、記憶手段には、温度補正係数を特
定間隔の温度(例えば5℃)毎に、比重値につい
ても特定間隔(例えば0.03g/c.c.)毎に記憶手段
に記憶させるが、その温度補正係数は特定間隔の
温度に対するJISの容積換算係数の差を10000倍し
た値であるから、桁数は2桁位であり、したがつ
て、記憶容積が小さくできる。すなわち、単に差
を求めては小数点4桁まで必要とするので、桁数
が多くなるが、特定間隔の差は比較的に小さいの
で、10000倍することにより2桁程度となるので
ある。 比重に関しては、測定すべき油種が定まつてい
るので、あらかじめ比重設定器で設定しておく。
この設定した比重が前記記憶した比重の中間値の
場合は、温度補正係数を比例配分する。 JISでも規定している通り、この比例配分で正
確である。 そして基準信号(例えば−25℃)におけるJIS
の容積換算係数はあらかじめ記憶しておく。そし
て流体の温度と前記の基準信号との差が分るの
で、前記のJISの容積換算係数の差を10000倍した
温度補正係数をその温度差分だけ加算してその値
を10000で割ればJISの容積換算係数の差が求めら
れるのである。 この温度に関しても中間値に対しては比例配分
で求めればよい。 このように本発明によれば基準温度のJISの容
積換算係数に基づいて特定間隔の温度毎の容積換
算係数の差を10000倍した値を温度補正係数とし、
この温度補正係数を記憶手段に記憶させたので、
記憶容量を少なくでき、しかも比例配分により正
確な流量を求めることができる。
[Industrial Field of Application] The present invention relates to a temperature-compensated flow rate measuring device used, for example, in oil depots, oil refineries, and the like. [Prior Art] If the flow rate measuring device is of a volumetric type, the volume of the fluid to be measured changes depending on the temperature, resulting in errors. Conventional temperature-compensated flow measurement devices connect the output shaft of the flowmeter to an integrated flow rate display meter via a micro-transmission, and adjust the speed of the micro-transmission using a bellows that converts temperature changes in the fluid into mechanical displacement. By doing so, the temperature-corrected flow rate is integrated on the display meter. By the way, the volume change due to temperature change of crude oil and petroleum products is determined by JIS K.
2249, it changes not only due to temperature changes but also due to the specific gravity of the fluid, so it is not possible to accurately compensate for temperature with conventional mechanical types, and as a result, it is difficult to accurately measure the flow rate. It wasn't enough to do that. In recent years, with the development of electronic devices, there has been known a technique for storing temperature correction coefficient data and proportionally distributing temperature correction coefficient data for intermediate values. However, the above
The volumetric coefficient table specified in JIS K 2249 is enormous, and storing all of this data requires a storage means with an enormous storage capacity. Further, since this volume conversion coefficient difference requires up to four decimal places, a storage capacity up to that number of digits is required, resulting in a considerable amount of storage capacity. [Problems to be Solved] Therefore, an object of the present invention is to provide a flow rate measuring device with temperature correction that can measure a flow rate that is accurately corrected according to the specific gravity and temperature of the fluid to be measured, even if the storage capacity of the storage means is at least is to provide. [Means for Solving the Problems] According to the flow rate measuring device with temperature correction of the present invention, a flow rate signal transmitter provided in a flow meter, a temperature measuring device for measuring the temperature of the fluid, and a specific gravity setting for setting the specific gravity of the fluid are provided. a storage means for storing a temperature correction coefficient of the fluid corresponding to the temperature and specific gravity, and a control device for calculating a temperature-corrected flow rate value, wherein the temperature correction coefficient stored in the storage means is a predetermined value. The difference in volume conversion coefficients for each specific interval of temperature is multiplied by 10000 based on the volume conversion coefficient corresponding to each specific gravity at a specific interval at a temperature of Based on the temperature correction coefficient stored according to the specific gravity set by the specific gravity setting device, the volume conversion coefficient of the set specific gravity at the measurement temperature is calculated using the formula [(volume conversion coefficient of reference temperature) -
{(sum of temperature correction coefficients between measured temperatures)/(10000)}]
If the measured temperature and set specific gravity are intermediate values between the memorized temperature and specific gravity, they are calculated by proportional distribution based on the above calculation formula, and the flow rate signal is calculated from the flow rate signal generator. A temperature-corrected flow rate value is calculated using a volume conversion coefficient. [Description of effects] Therefore, the storage means stores temperature correction coefficients at specific intervals of temperature (for example, 5°C) and also stores specific gravity values at specific intervals (for example, 0.03 g/cc). However, since the temperature correction coefficient is a value obtained by multiplying the difference in the JIS volume conversion coefficient for the temperature at a specific interval by 10,000, the number of digits is about 2, and therefore the storage volume can be reduced. In other words, simply calculating the difference requires up to four decimal places, resulting in a large number of digits, but since the difference between specific intervals is relatively small, multiplying by 10,000 yields about two digits. As for the specific gravity, the type of oil to be measured is fixed, so set it in advance using a specific gravity setting device.
If the set specific gravity is an intermediate value of the stored specific gravity, the temperature correction coefficient is distributed proportionally. As stipulated in JIS, this proportional allocation is accurate. and JIS at the reference signal (e.g. -25℃)
The volume conversion coefficient of is memorized in advance. Then, since the difference between the temperature of the fluid and the reference signal mentioned above is known, add the temperature correction coefficient that is 10000 times the difference in the JIS volume conversion coefficient mentioned above, and divide that value by 10000. The difference in volume conversion coefficients is determined. Regarding this temperature as well, it is sufficient to calculate the intermediate value by proportional distribution. As described above, according to the present invention, the temperature correction coefficient is a value obtained by multiplying the difference in the volume conversion coefficient for each temperature at a specific interval by 10,000 based on the JIS volume conversion coefficient of the reference temperature,
Since this temperature correction coefficient was stored in the storage means,
The storage capacity can be reduced, and moreover, an accurate flow rate can be determined by proportional distribution.

【実施例】【Example】

以下図面を参照して本発明の実施例を説明す
る。 第1図は本発明を実施した温度補正付流量測定
装置の一例を示し、図示されていない貯油タンク
と、同様に図示されていない吐出ノズルとの間に
設けられた給油管1A,1Bの間に後述の流量測
定装置を備えた接続管1Cがフランジ接続されて
おり、その接続管1Cには管内を流れる油の流量
を測定する流量計2および油の温度を測定する温
度測定器である温度センサー3が設けられてい
る。そして流量計2により駆動される流量信号発
信器である流量パルス発信器4が設けられ、流量
パルス発信器4からの流量信号がパルス信号とし
て制御装置5に入力される。また温度センサー3
からの温度信号が同様に制御装置5に入力され
る。 制御装置5には前述のようにJIS K 2249で定
められている容積換算係数表のうち、特定間隔の
温度および比重に対する数値が予め記憶されてい
るが、そ数値(温度補正係数という)については
後述する。また後述の如く設定ダイヤル6により
計測する油の比重を制御装置5に入力する。油を
流すと、温度センサー3からの温度信号と先に入
力した比重により、制御装置5は温度補正係数が
制御装置5により算出される。また流量パルス発
信器4からの流量信号と温度補正係数より温度補
正された流量が後述の如く制御装置5により演算
され積算流量が表示計9に表示され、また図示さ
れていないバツチカウンタ7等へ伝わるようにな
つている。そして流量パルス発信器4、制御装置
5、表示計9は防爆ボツクス11内に収納されて
いる。 第2図は本発明に実施される制御装置5の一例
を示し、図において、比重設定ダイヤル6、温度
センサー3および流量パルス発信器4からの信号
は入出力装置51に送られ、この入出力装置51
は中央制御部52に信号の授受を行う。この中央
制御部52にはタイマ53からの信号が入力され
ると共に、記憶手段(ROM)54および一時記
憶手段(RAM)55と信号の授受を行う。この
記憶手段54には後述のように所定の温度におけ
る特定間隔で各比重に対応するJISの容積換算係
数を基準として温度の特定間隔毎の容積換算の差
を10000倍した温度補正係数の記憶部54aと、
後述の態様で演算を行うための計算式の記憶部5
4bと、所定のプログラム54cとを備えてい
る。また一時記憶手段55は温度補正係数を記憶
する一時記憶部55aと後述の態様で単位量に対
する端数を記憶する残量記憶部55bとを備えて
いる。 JISの容積換算係数表は比重に関しては0.005
g/c.c.毎に、また温度に関しては0.5℃毎に定め
られている。しかしながら前述の如く、これでは
記憶量が膨大となるので、本発明の実施に際して
は例えば下表の如く、データ記憶部54aには比
重に関しては、特定間隔である0.03g/c.c.毎に、
また温度に関しては特定間隔である5℃毎に記憶
させればよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a temperature-compensated flow rate measuring device according to the present invention, between oil supply pipes 1A and 1B provided between an oil storage tank (not shown) and a discharge nozzle (also not shown). A connecting pipe 1C equipped with a flow rate measuring device (described later) is flange-connected to the connecting pipe 1C, and a flow meter 2 that measures the flow rate of oil flowing inside the pipe and a temperature measuring device that measures the temperature of the oil are connected to the connecting pipe 1C. A sensor 3 is provided. A flow rate pulse transmitter 4 which is a flow rate signal transmitter driven by the flow meter 2 is provided, and the flow rate signal from the flow rate pulse transmitter 4 is inputted to the control device 5 as a pulse signal. Also temperature sensor 3
Similarly, a temperature signal from the controller 5 is input to the control device 5. As mentioned above, the control device 5 stores in advance the values for temperature and specific gravity at specific intervals from the volume conversion coefficient table defined in JIS K 2249, but the values (referred to as temperature correction coefficients) are stored in advance. This will be explained later. Further, as will be described later, the specific gravity of the oil to be measured is input to the control device 5 using the setting dial 6. When the oil flows, the control device 5 calculates a temperature correction coefficient based on the temperature signal from the temperature sensor 3 and the specific gravity input earlier. Further, the flow rate temperature-corrected using the flow rate signal from the flow rate pulse transmitter 4 and the temperature correction coefficient is calculated by the control device 5 as described later, and the integrated flow rate is displayed on the display meter 9, and is also transmitted to the batch counter 7, etc. (not shown). It's becoming like that. The flow rate pulse transmitter 4, the control device 5, and the display meter 9 are housed in an explosion-proof box 11. FIG. 2 shows an example of a control device 5 implemented in the present invention. In the figure, signals from a specific gravity setting dial 6, a temperature sensor 3, and a flow rate pulse transmitter 4 are sent to an input/output device 51. device 51
sends and receives signals to and from the central control unit 52. This central control unit 52 receives signals from a timer 53 and also exchanges signals with a storage means (ROM) 54 and a temporary storage means (RAM) 55. As will be described later, this storage means 54 has a storage section for storing temperature correction coefficients that are obtained by multiplying the difference in volume conversion for each specific interval of temperature by 10,000 based on the JIS volume conversion coefficient corresponding to each specific gravity at specific intervals at a predetermined temperature. 54a and
Storage unit 5 for calculation formulas for performing calculations in the manner described below
4b and a predetermined program 54c. Further, the temporary storage means 55 includes a temporary storage section 55a that stores a temperature correction coefficient, and a remaining amount storage section 55b that stores a fraction of a unit amount in a manner described later. The JIS volume conversion factor table is 0.005 for specific gravity.
It is determined in units of g/cc and temperature in units of 0.5°C. However, as mentioned above, this requires a huge amount of storage, so when implementing the present invention, for example, as shown in the table below, the data storage section 54a stores information about specific gravity at specific intervals of 0.03 g/cc.
Regarding the temperature, it is sufficient to memorize it at specific intervals of 5°C.

【表】 この表において容積換算係数は温度−25℃を基
準とし、以下5℃の差ごとの係数の差の10000倍
を温度補正係数として記憶しておく。例えば比重
0.78の油の温度5℃と温度10℃との温度補正係数
の差(上記の表では10℃の所に示す)が49である
ことはJISの容積換算係数の差が0.0049であるこ
とを示している。 次に主として第3図イ,ロを参照して本発明の
実施の態様につき説明する。 第3図イは、温度補正係数を算出するフローチ
ヤートを示す図であり、まず中央制御部分52は
比重設定ダイヤル6の設定比重を読み取る(ステ
ツプS1)。今、その設定値が例えば0.825であるも
のとする。次に温度センサー3の温度を読み取る
(ステツプS2)。今、その温度が例えば22℃とあ
るものとする。次に中央制御部52は記憶部54
bに記憶されている計算式[(基準温度の容積換
算係数)−{(測定温度間の温度補正係数の和)/
(10000)}]に基づいて温度補正係数の演算を行う
(ステツプS3)。その演算は下記の通りである。 (1) 比重0.81、温度20℃の容積換算係数を求める
(−25℃を基準として計算する)。 1.0353−Σ20/10000=0.9956 ここでΣ20は表中20℃の所までの差の合計値で
ある。 (2) 比重0.81、温度25℃の容積換算係数を求め
る。 1.0353−Σ25/10000=0.9912 ここでΣ25は表中25℃の所までの差の合計値で
ある。 (3) 比重0.84、温度20℃の容積換算係数を求め
る。 1.0329−Σ20/1000=0.9959 (4) 比重0.84、温度25℃の容積換算係数を求め
る。 1.0329−Σ25/10000=0.9918 (5) 比重配分によつて比重0.81、温度22℃の容積
換算係数を求める。 0.9956−(0.9956−0.9912) ×(2/5)=0.9938 (6) 比例配分によつて比重0.84、温度22℃の容積
換算係数を求める。 0.9959−(0.9959−0.9918) ×(2/5)=0.9943 (7) 上記の(5)、(6)の値から比例配分によつて比重
0.825、温度22℃の容積換算係数を求める。 0.9938+{(0.9943−0.9938) ×(0.825−0.81)}/(0.84−0.81) =0.9941 この値0.9941が容積換算係数であるから、これ
を一時記憶装置55の一時記憶部55aに記憶す
る(ステツプS4)。 このようにして、容積換算係数を算出するが、
流体の温度変化はあまり激しくなく、かつ温度セ
ンサーの時定数等からみてもこのフローは、2〜
3秒毎に繰り返されれば充分である。 なお上記の(5)、(6)、(7)の計数はまず比例配分で
温度(22℃)を求めてから比重を計算したが、比
重を求めてから温度を計算してもよい。 次に第3図ロを参照して流量パルス発信器4か
らパルス信号が入力した時に、前述の容積換算係
数により温度補正された流量を演算し、表示計9
へ積算流量を表示する関係について好ましい実施
例を説明する。すなわち表示計9は整数パルスに
よつて表示されるが、前記の演算により端数が生
じてしまう。第3図ロはその端数処理の好ましい
例でいる。 流量計2の流量パルス発信器4からパルス(例
えば0.1)が入力されると(ステツプS5)。この
流量の入力はいわゆる割込み信号で処理され、中
央処理部52は一時記憶部55aに記憶されてい
る容積換算係数(0.9941)とパルスから温度補正
された流量値(0.9941×0.1=0.09941)を算出
する(ステツプS6)、そして一時記憶手段55の
残量記憶部55bの残量値に加算(例えば残量が
0.05432である場合には、0.05432+0.09941=
0.15373)する(ステツプS7)。この加算値を単
位量(例えば0.1)と比較し(ステツプS8)、加
算値が単位量より多い場合は、1パルス(流量で
0.1)を出力し(ステツプS9)、表示計9やバツ
チカウンタ7は1パルス分(0.1)積算される。
次いでその加算値から単位量を減算して
(0.15373−0.1=0.05373)、残量を残量記憶部5
5bに記憶する(ステツプS10)。ステツプS8に
おいて、加算値が単位量より少い場合は表示計へ
パルスを出力せずに戻る。以下この作業を繰り返
す。 したがつて、制御装置において単位量以下の計
算が行われ、単位量を越えたときに初めて1パル
スを出力し、もつて表示計9等を動かすのであ
る。 次に第4図を参照して別の実施の態様を説明す
る。 第3図の実施例では、毎回設定比重の読み取り
を行つているが、この実施例では、流量測定を開
始する時にだけ、設定比重の読み取りを行うよう
にしたものであり、第4図イにおいて流量測定を
開始に先立つて流量測定装置の電源が入れらと
(ステツプS11)、設定比重が読み取られる(ステ
ツプS12)。次に中央処理部52は前述と同様の
計算により、該設定比重の各温度に対する容積換
算係数を演算し(ステツプS13)、このデーター
を一時記憶手段55の一時記憶部55aに記憶す
る(ステツプS14)。このようにして設定比重の
各温度に対する容積換算係数を前もつて演算し記
憶しておく。次に第4図ロに示すように温度セン
サー3の温度を読み取り(ステツプS15)、一時
記憶部55aに記憶されている当該温度に対応す
る容積換算係数を演算し(ステツプS16)、該容
積換算係数を一時記憶部55aに記憶する(ステ
ツプS17)ようにしている。そして流量計2の流
量パルス発信器4から流量パルスが入力した場合
は、第3図ロのフローで流量演算処理が行われ
る。 [発明の効果] 以上の如く、本発明によれば下記のすぐれた効
果を奏する。 (1) 記憶手段に記憶される数値が2桁ですみ、か
つ特定間隔毎でよいから、記憶手段の記憶容量
が少なくてすむ。 (2) 特定間隔の間の数値に対しては比例配分で求
めるので正確である。 (3) したがつて、膨大なJISの容積換算係数を記
憶することなく、記憶容量が少なく桁数も少な
いので、演算速度が速くなる。
[Table] In this table, the volume conversion coefficient is based on a temperature of -25°C, and 10,000 times the coefficient difference for each 5°C difference is stored as a temperature correction coefficient. For example, specific gravity
The difference in the temperature correction coefficient between the oil temperature of 5℃ and 10℃ of 0.78 (indicated at 10℃ in the table above) is 49, which means that the difference in the JIS volume conversion coefficient is 0.0049. ing. Next, embodiments of the present invention will be described with reference mainly to FIGS. 3A and 3B. FIG. 3A is a flowchart for calculating the temperature correction coefficient. First, the central control section 52 reads the specific gravity set on the specific gravity setting dial 6 (step S1). Now, assume that the setting value is, for example, 0.825. Next, the temperature of the temperature sensor 3 is read (step S2). Now, let us assume that the temperature is, for example, 22°C. Next, the central control unit 52
Calculation formula stored in b [(Volume conversion coefficient of reference temperature) - {(sum of temperature correction coefficients between measured temperatures)/
(10000)}], a temperature correction coefficient is calculated (step S3). The calculation is as follows. (1) Find the volume conversion coefficient for a specific gravity of 0.81 and a temperature of 20°C (calculated based on -25°C). 1.0353−Σ20/10000=0.9956 Here, Σ20 is the total value of the difference up to 20°C in the table. (2) Find the volume conversion coefficient for a specific gravity of 0.81 and a temperature of 25℃. 1.0353−Σ25/10000=0.9912 Here, Σ25 is the total value of the difference up to 25°C in the table. (3) Find the volume conversion coefficient for a specific gravity of 0.84 and a temperature of 20℃. 1.0329−Σ20/1000=0.9959 (4) Find the volume conversion coefficient for a specific gravity of 0.84 and a temperature of 25°C. 1.0329−Σ25/10000=0.9918 (5) Find the volume conversion coefficient for a specific gravity of 0.81 and a temperature of 22°C using the specific gravity distribution. 0.9956 - (0.9956 - 0.9912) × (2/5) = 0.9938 (6) Find the volume conversion coefficient for a specific gravity of 0.84 and a temperature of 22°C by proportional distribution. 0.9959−(0.9959−0.9918) ×(2/5)=0.9943 (7) Based on the values of (5) and (6) above, calculate the specific weight by proportional allocation.
Find the volume conversion factor of 0.825 and a temperature of 22℃. 0.9938+{(0.9943−0.9938)×(0.825−0.81)}/(0.84−0.81) =0.9941 Since this value 0.9941 is the volume conversion coefficient, it is stored in the temporary storage section 55a of the temporary storage device 55 (step S4). In this way, the volume conversion coefficient is calculated,
The temperature change of the fluid is not very drastic, and judging from the time constant of the temperature sensor, this flow is
Repeating every 3 seconds is sufficient. Note that in the calculations in (5), (6), and (7) above, the temperature (22°C) was first determined by proportional distribution and then the specific gravity was calculated, but it is also possible to calculate the temperature after determining the specific gravity. Next, referring to FIG.
A preferred embodiment of the relationship for displaying the integrated flow rate will be described. That is, although the display meter 9 is displayed by integer pulses, a fraction is generated due to the above calculation. Figure 3B shows a preferred example of rounding. When a pulse (for example, 0.1) is input from the flow rate pulse generator 4 of the flow meter 2 (step S5). This flow rate input is processed by a so-called interrupt signal, and the central processing unit 52 calculates a temperature-corrected flow rate value (0.9941×0.1=0.09941) from the volume conversion coefficient (0.9941) stored in the temporary storage unit 55a and the pulse. (step S6), and is added to the remaining amount value in the remaining amount storage section 55b of the temporary storage means 55 (for example, if the remaining amount is
If it is 0.05432, then 0.05432+0.09941=
0.15373) (step S7). This added value is compared with the unit amount (for example, 0.1) (step S8), and if the added value is greater than the unit amount, 1 pulse (flow rate
0.1) (step S9), and the display 9 and batch counter 7 integrate one pulse (0.1).
Next, the unit amount is subtracted from the added value (0.15373−0.1=0.05373), and the remaining amount is stored in the remaining amount storage section 5.
5b (step S10). In step S8, if the added value is less than the unit amount, the process returns without outputting a pulse to the display meter. Repeat this process below. Therefore, the control device performs calculations below the unit amount, and only when the unit amount is exceeded does it output one pulse, thereby moving the display meter 9 and the like. Next, another embodiment will be described with reference to FIG. In the embodiment shown in Fig. 3, the set specific gravity is read every time, but in this embodiment, the set specific gravity is read only when starting flow rate measurement. Prior to starting flow rate measurement, when the flow rate measuring device is turned on (step S11), the set specific gravity is read (step S12). Next, the central processing section 52 calculates the volume conversion coefficient for each temperature of the set specific gravity by the same calculation as described above (step S13), and stores this data in the temporary storage section 55a of the temporary storage means 55 (step S14). ). In this way, the volume conversion coefficient for each temperature of the set specific gravity is calculated and stored in advance. Next, as shown in FIG. 4B, the temperature of the temperature sensor 3 is read (step S15), the volume conversion coefficient corresponding to the temperature stored in the temporary storage section 55a is calculated (step S16), and the volume conversion coefficient is calculated. The coefficients are stored in the temporary storage section 55a (step S17). When a flow rate pulse is input from the flow rate pulse transmitter 4 of the flow meter 2, the flow rate calculation process is performed according to the flow shown in FIG. 3B. [Effects of the Invention] As described above, the present invention provides the following excellent effects. (1) Since the number to be stored in the storage means only needs to be two digits and can be stored at specific intervals, the storage capacity of the storage means can be reduced. (2) It is accurate because it is calculated by proportional allocation for numerical values between specific intervals. (3) Therefore, there is no need to memorize a huge number of JIS volume conversion coefficients, and since the storage capacity is small and the number of digits is small, the calculation speed becomes faster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に実施される流量測定装置の説
明図、第2図は本発明に実施される制御回路を示
す図、第3図イ,ロはそれぞれ本発明の実施の態
様の一例のフローチヤートを示す図、第4図イ,
ロはそれぞれ他の例のフローチヤートを示す図で
ある。 2……流量計、4……流量パルス発信器、5…
…制御装置、6……比重設定ダイヤル、9……流
量表示計、52……中央制御部、54……記憶手
段、55……一時記憶手段。
FIG. 1 is an explanatory diagram of a flow rate measuring device implemented in the present invention, FIG. 2 is a diagram showing a control circuit implemented in the present invention, and FIGS. 3A and 3B illustrate an example of an embodiment of the present invention. Diagram showing the flowchart, Figure 4 A,
B is a diagram showing flowcharts of other examples. 2...Flowmeter, 4...Flow rate pulse transmitter, 5...
...Control device, 6...Specific gravity setting dial, 9...Flow rate display meter, 52...Central control unit, 54...Storage means, 55...Temporary storage means.

Claims (1)

【特許請求の範囲】[Claims] 1 流量計に設けられた流量信号発信器と、流体
の温度を測定する温度測定器と流体の比重を設定
する比重設定器と、流体の温度補正係数を温度お
よび比重に対応して記憶する記憶手段と、温度補
正された流量値を演算する制御装置とを備え、前
記記憶手段で記憶する前記温度補正係数は所定の
温度における特定間隔での各比重に対応する容積
換算係数を基準として温度の特定間隔ごとの容積
換算係数の差を10000倍した値とし、前記制御装
置は前記温度測定器で測定された温度と前記比重
設定器で設定された比重により記憶した前記温度
補正係数に基づいて、測定温度における設定比重
の容積換算係数を式[(基準温度の容積換算係数)
−{測定温度間の温度補正係数の和)/
(10000)}]で算出し、そして測定した温度および
設定された比重が記憶された温度・比重の中間の
値の場合は上記の算出式に基づいて比例配分で算
出し、流量信号発信器からの流量信号と算出した
容積換算係数とにより温度補正された流量値を演
算するものであることを特徴とする温度補正付流
量測定装置。
1. A flow signal transmitter installed in the flowmeter, a temperature measuring device for measuring the temperature of the fluid, a specific gravity setting device for setting the specific gravity of the fluid, and a memory for storing the temperature correction coefficient of the fluid in correspondence with the temperature and specific gravity. and a control device for calculating a temperature-corrected flow rate value, and the temperature correction coefficient stored in the storage means is a temperature correction coefficient that is calculated based on a volume conversion coefficient corresponding to each specific gravity at a specific interval at a predetermined temperature. The difference in volume conversion coefficients for each specific interval is multiplied by 10,000, and the control device is based on the temperature correction coefficient stored based on the temperature measured by the temperature measuring device and the specific gravity set by the specific gravity setting device, The volume conversion coefficient of the set specific gravity at the measurement temperature is calculated using the formula [(Volume conversion coefficient of reference temperature)
−{sum of temperature correction coefficients between measured temperatures)/
(10000)}], and if the measured temperature and set specific gravity are intermediate values between the stored temperature and specific gravity, it is calculated by proportional distribution based on the above calculation formula, and the flow rate signal generator 1. A temperature-corrected flow rate measuring device, characterized in that it calculates a temperature-corrected flow rate value using a flow rate signal and a calculated volume conversion coefficient.
JP13091983A 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction Granted JPS6024421A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13091983A JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction
DE8484304884T DE3468943D1 (en) 1983-07-20 1984-07-18 Device for measuring liquid flow volume with temperature compensating
EP84304884A EP0132374B1 (en) 1983-07-20 1984-07-18 Device for measuring liquid flow volume with temperature compensating
KR1019840004300A KR890001595B1 (en) 1983-07-20 1984-07-20 Measuring volume flow instrument having function if temperature compensation
US07/065,685 US4720800A (en) 1983-07-20 1987-06-17 Device for measuring liquid flow volume with temperature compensating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091983A JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction

Publications (2)

Publication Number Publication Date
JPS6024421A JPS6024421A (en) 1985-02-07
JPH0464011B2 true JPH0464011B2 (en) 1992-10-13

Family

ID=15045800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091983A Granted JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction

Country Status (1)

Country Link
JP (1) JPS6024421A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446024A (en) * 1987-08-07 1989-02-20 Honda Motor Co Ltd Injecting method for oil of fluid coupling

Also Published As

Publication number Publication date
JPS6024421A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4262523A (en) Measurement of fluid density
US4872351A (en) Net oil computer
EP0333713B1 (en) Apparatus and methods for measuring the density of an unknown fluid using a coriolis meter
US4876879A (en) Apparatus and methods for measuring the density of an unknown fluid using a Coriolis meter
US3965341A (en) Flow rate computer
JPH01163621A (en) Apparatus and method for measuring amount of material in tank
CA1131342A (en) Acoustic flowmeter with reynolds number compensation
US6935156B2 (en) Characterization of process pressure sensor
US4490803A (en) Temperature compensation of a resistance bridge circuit
DE69309939T2 (en) FLOWMETER
US5656784A (en) Fluid density variation compensation for fluid flow volume measurement
US11169016B2 (en) Standards traceable verification of a vibratory meter
JPH0464011B2 (en)
CN115023592A (en) Method for correcting flow meter variable
JPS5834321A (en) Correcting device for dual rotor type volumetric flow meter
JPH0319492B2 (en)
JPH0318135B2 (en)
JPH0150848B2 (en)
JP3103700B2 (en) Flowmeter
JPH0119062Y2 (en)
JPH0315963B2 (en)
SU1273857A1 (en) Device for automatic correction of error of instrument transducer
JPS62106331A (en) Method for measuring average temperature of feed liquid
JPH06258104A (en) Flowrate meter
JPH06331426A (en) Correcting device for instrumental error