JPH0463986B2 - - Google Patents

Info

Publication number
JPH0463986B2
JPH0463986B2 JP24974586A JP24974586A JPH0463986B2 JP H0463986 B2 JPH0463986 B2 JP H0463986B2 JP 24974586 A JP24974586 A JP 24974586A JP 24974586 A JP24974586 A JP 24974586A JP H0463986 B2 JPH0463986 B2 JP H0463986B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
storage tank
temperature
dwelling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24974586A
Other languages
Japanese (ja)
Other versions
JPS63105354A (en
Inventor
Shiro Hozumi
Hozumi Yamada
Minoru Tagashira
Koji Ebisu
Isao Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61249745A priority Critical patent/JPS63105354A/en
Publication of JPS63105354A publication Critical patent/JPS63105354A/en
Publication of JPH0463986B2 publication Critical patent/JPH0463986B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプによる住宅用給油装置、
中でも特に集合住宅用給油装置に関するものであ
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a residential oil supply system using a heat pump,
Among these, it particularly relates to a refueling device for housing complexes.

従来の技術 住宅の給油加熱に電力を用いることは、燃焼に
よる加熱のごとく廃気を発生しないので、クリー
ンであり、また焔が無く、ガス漏れ等の虞れが無
く安全であり望ましい。しかし電力による瞬間加
熱式の機器では燃料価格が高価であるだけでな
く、1住戸当たりの配電容量が大きくなり、それ
らが集合すると、地域の電力供給のインフラスト
ラクチヤーに対し大きな負担を与え、事実上実現
不可能である。そこで従来の電力による給湯機で
は安価な深夜電力によつて朝までに電気ヒータを
用いて85℃程度まで沸き上げた湯を貯湯し、当日
深夜までの給湯を賄う深夜電力温水機が一般に普
及している。
BACKGROUND TECHNOLOGY The use of electric power to heat the fuel supply in a house is desirable because it does not generate waste air, unlike heating by combustion, and is therefore clean, free from flames, and safe because there is no risk of gas leakage. However, with electric instant heating equipment, not only is the fuel price expensive, but the power distribution capacity per residential unit is large, and when these devices are aggregated, it places a large burden on the local power supply infrastructure. This is not possible. Therefore, in contrast to conventional electric water heaters, late-night electric water heaters have become popular, as they use cheap late-night electricity to store hot water that has been heated to around 85℃ using an electric heater in the morning, providing hot water supply until midnight on the same day. ing.

実際の住宅で使用する湯量は、季節によつて大
きく変化するだけでなく、同一季節中であつても
日毎に大巾に変動し、その需要の最大に合わせて
貯湯槽を持てば、大部分の日は過大な貯湯を残
し、いたずらに放熱損失が大きくなる。
The amount of hot water used in actual houses not only varies greatly depending on the season, but also varies widely from day to day even during the same season. During the day, excessive hot water is left in storage, which unnecessarily increases heat dissipation loss.

電気ヒータ加熱に要する電力の(1/成績係
数)の電力量で加熱できるヒートポンプによる給
湯機が知られている。この場合は電力消費が小さ
いので住戸当たりの配電容量は小さく、瞬間加熱
方式も可能であるが、設備価格が高い上に、機器
自身の熱容量が大きくその加熱に無効エネルギー
が消費されるので、実用には小型の機器を連続的
に運転する貯湯式が用いられている。現状ではヒ
ートポンプによる沸き上げ温度が60℃と低いの
で、電気ヒータ式より貯湯槽は大きくしなければ
ならない。
BACKGROUND ART There is known a water heater using a heat pump that can heat water with an amount of electricity equal to (1/coefficient of performance) the amount of electricity required for heating with an electric heater. In this case, the power consumption is low, so the power distribution capacity per dwelling unit is small, and an instant heating method is also possible, but the equipment is expensive and the heat capacity of the equipment itself is large, so ineffective energy is consumed for heating, so it is not practical. A hot water storage type, in which small equipment is operated continuously, is used. Currently, the boiling temperature using heat pumps is as low as 60°C, so the storage tank must be larger than with electric heaters.

従来技術では、ヒートポンプによる給湯機は省
エネルギー性が高く、即ち燃料費が安く、配電容
量も小さく、電気ヒータ式より優れているが、機
器、貯湯槽共に価格が高く、また設置面積が大き
く、広く受け入れられる状態ではない。
In the conventional technology, water heaters using heat pumps have high energy efficiency, that is, low fuel costs, small power distribution capacity, and are superior to electric heater types, but they are expensive for both equipment and hot water storage tanks, and require a large installation area. This is not an acceptable condition.

既に述べたように各住戸における日々の給湯使
用量は大巾に変動するが、複数戸では、その数が
多い程平均化され、また使用時刻も各住戸相互に
ずれて、1住戸当たりに換算した時間当たり平均
必要給湯量は小さくなる。これに関しては、建築
設備の分野では同時使用率が1以下になるという
の概念で一般に知られていることである。この考
えによる給湯システムは住棟セントラル式と呼ば
れているもので、1住戸当たりに換算して、比較
的容量の小さい熱源を設置して、各住戸へは60℃
位の湯が供給される。本システムでは各住戸は必
要な湯量を自由に使用できるが、各住戸において
湯栓を開いた時、直ちに湯を出すために住棟内に
24時間温水を循環させる必要があり、このための
ポンプ動力と、循環の為の配管表面からの熱損失
が大きく経済的ではない。
As already mentioned, the daily amount of hot water used in each residence fluctuates widely, but in the case of multiple residences, the larger the number, the more it is averaged out, and the time of use also differs between each residence, so it is converted to a per-dwelling amount. The average amount of hot water required per hour becomes smaller. Regarding this, it is generally known in the field of building equipment that the simultaneous usage rate is less than 1. The hot water supply system based on this idea is called the housing central type, in which a heat source with a relatively small capacity is installed per housing unit, and each housing unit is heated to a temperature of 60°C.
Hot water is provided. With this system, each dwelling unit can freely use the amount of hot water it needs;
It is necessary to circulate hot water 24 hours a day, which is not economical because the pump power required for this and the heat loss from the piping surface for circulation are large.

発明が解決しようとする問題点 先に述べたように電力による給湯はクリーンで
安全性が高く、特に高層建物の集合住宅の給湯シ
ステムに非常に適しているが、電気ヒータによる
深夜電力温水機を各住戸に設けるものでは、各住
戸当たりの配電容量が相当大きい上に、各住戸の
1日当たり給湯使用量に限界があり、今後増加す
ると考えられている住宅における給湯需要に対応
することが難しいという問題がある。
Problems to be Solved by the Invention As mentioned earlier, electric hot water supply is clean and highly safe, and is particularly suitable for hot water supply systems in high-rise apartment complexes. For systems installed in each dwelling unit, the power distribution capacity per dwelling unit is quite large, and there is a limit to the amount of hot water each dwelling unit can use per day, making it difficult to meet the demand for hot water supply in homes, which is expected to increase in the future. There's a problem.

上記配電容量を減じ、省エネルギーを実現する
ヒートポンプと貯湯槽を各住戸に設置するもので
は、給湯使用量に限度があり、また現状では電気
ヒータ式より貯湯温度が低く、前者よりさらに大
きな貯湯槽が必要で、設備費、設置面積の両面で
経済性に問題がある。
Installing a heat pump and a hot water storage tank in each dwelling unit, which reduces the power distribution capacity and saves energy, has a limit to the amount of hot water that can be used. However, there are economical problems in terms of both equipment costs and installation area.

各住戸に直接温水を供給する住棟セントラル給
湯システムでは、温水循環のための必要動力が大
きく、また温水配管表面からの放熱損失のために
エネルギー効率が低く、燃料コストの点で問題が
ある。
A residential central hot water system that supplies hot water directly to each residential unit requires a large amount of power to circulate the hot water, has low energy efficiency due to heat loss from the surface of the hot water piping, and has problems in terms of fuel costs.

問題点を解決するための手段 本発明は、さきに述べた各住戸にヒートホンプ
と貯湯槽を設ける個別式と、住棟セントラル式の
長所を兼ね備えた、きわめて優れた新規な集合住
宅用給湯装置である。
Means for Solving the Problems The present invention is an extremely excellent new hot water supply system for apartment buildings that combines the advantages of the aforementioned individual system in which a heat pump and hot water storage tank are installed in each dwelling unit, and the central system for residential buildings. be.

複数戸に対して、熱源として蒸発器、圧縮機を
含んだヒートホンプユニツトを1つ備え、各住戸
には小容量の貯湯槽を備え、各貯湯槽には凝縮器
とそれによつて加熱される給湯熱交換器を設け、
前記ヒートポンプユニツトに各凝縮器を並列的に
ヒートポンプ作用媒体管路で接続したものであ
る。
For multiple units, one heat pump unit containing an evaporator and compressor is provided as a heat source, and each unit is equipped with a small-capacity hot water tank, and each hot water tank has a condenser and is heated by it. Install a hot water heat exchanger,
Each condenser is connected to the heat pump unit in parallel through a heat pump working medium conduit.

作 用 本発明の給湯装置における、ヒートポンプによ
る給湯加熱は、電気ヒータ式に比べ、配電容量を
(1/成績係数)まで小さくし、省エネルギー性
が高く、安価な燃料費で運転される。複数戸に対
して1つのヒートポンプユニツトを設置する本発
明の給湯装置では、住戸集合における同時使用率
が1よりはるかに小さいという原理から、1住戸
当たりに換算された機器能力は小さくてもよく、
結果として設備費が低減されるだけでなく、各住
戸に日毎に大巾に変動する給湯需要量に対して、
貯湯槽の中位置に設けた温度検知器の作用で給湯
使用量の多い住戸を判断し、優先的に加熱するこ
とで給湯水がほぼ限度なく対応して供給できる。
また、各住戸で湯栓を開いた場合は、その住戸に
貯湯槽が備えられているので、個別方式と同様に
直ちに出湯すると同時にその開栓と同時に熱源の
ヒートポンプユニツトが稼働状態になり、発生し
た高圧作用媒体蒸気が管路によつて貯湯槽の凝縮
器に送り込まれて、そこで凝縮液化し給湯熱交換
器で半ば瞬間加熱式に、貯湯槽に入つて来る新し
い市水を貯湯温度まで加熱する。
Effects In the hot water supply device of the present invention, the hot water heating by the heat pump reduces the power distribution capacity to (1/coefficient of performance) compared to the electric heater type, has high energy efficiency, and operates with low fuel cost. In the water heater of the present invention, which installs one heat pump unit for multiple units, based on the principle that the simultaneous usage rate in a group of units is much smaller than 1, the equipment capacity converted per unit may be small.
As a result, not only will equipment costs be reduced, but the demand for hot water, which fluctuates widely from day to day, will be reduced.
A temperature sensor installed in the middle of the hot water storage tank determines which units use the most hot water, and by heating them preferentially, an almost unlimited supply of hot water can be achieved.
In addition, when the hot water tap is opened in each residence, since that residence is equipped with a hot water storage tank, the hot water is immediately released as in the individual method, and the heat pump unit that is the heat source is activated at the same time as the hot water tap is opened. The high-pressure working medium vapor is sent through a pipe to the condenser of the hot water storage tank, where it is condensed and liquefied, and the new city water entering the hot water storage tank is heated semi-instantaneously in a hot water heat exchanger to the hot water storage temperature. do.

実施例 まず、本発明の給湯装置の基本概念について説
明する。前記給湯装置が1住戸に換算して、小さ
い貯湯槽、ヒートポンプユニツト容量でありなが
ら、各住戸の給湯需要に限度なく対応できる原理
は、集合住宅における同時使用率が1以下となる
概念に基づくものである。この同時使用率が1以
下となる概念はすくなくとも数10戸以上の集合住
宅において成立するものでるが、本発明の給湯装
置では5〜10戸の重合であり、統計的ゆらぎが大
きく、短時間ではあるが同時使用率が1に近い時
間が発生する可能性がある。この問題点を解決す
るために、各住戸に対する配湯量を制御する。
Embodiments First, the basic concept of the water heater of the present invention will be explained. The principle that the hot water supply system can meet the hot water demand of each dwelling unit without limit even though the capacity of the hot water storage tank and heat pump unit is small in terms of one dwelling unit is based on the concept that the simultaneous usage rate in an apartment complex is 1 or less. It is. This concept of a simultaneous usage rate of 1 or less holds true in apartment complexes with at least several dozen or more units, but with the water heater of the present invention, the combination of 5 to 10 units causes large statistical fluctuations, and in a short period of time. However, there may be times when the concurrent usage rate is close to 1. In order to solve this problem, the amount of hot water distributed to each dwelling unit is controlled.

次に具体構成について、第1図とともに説明す
る。管路9,6,7,8には作用媒体R12が満た
され、圧縮機1が運転状態にある時は、管路7の
低圧R12蒸気は、圧縮機1によつて圧縮され、高
圧蒸気になつて管路8に吐出される。管路8内の
高圧R12蒸気は管路14,24、閉塞栓15,2
8を通つて凝縮器16,29内で凝縮液化し、給
湯熱交換器19,34を加熱する。すなわち、ヒ
ートポンプユニツトから各住戸の貯湯槽への熱供
給は、ヒートポンプサイクル作用媒体の蒸気相に
よつてなされ、ヒートポンプユニツト内の圧縮機
から出た高圧の作用媒体蒸気は自らの圧力差によ
つて各住戸内貯湯槽の内に設けられた凝縮器に流
れ、そこで凝縮液化して凝縮熱を発生し、それに
よつて給湯熱交換器を加熱する。
Next, the specific configuration will be explained with reference to FIG. 1. The pipes 9, 6, 7, 8 are filled with working medium R12, and when the compressor 1 is in operation, the low pressure R12 vapor in the pipe 7 is compressed by the compressor 1 and converted into high pressure vapor. It is then discharged into the pipe line 8. The high-pressure R12 steam in pipe 8 is passed through pipes 14 and 24, and plugs 15 and 2.
8, the water is condensed and liquefied in condensers 16 and 29, and heats hot water heat exchangers 19 and 34. In other words, heat is supplied from the heat pump unit to the hot water storage tank of each dwelling unit by the vapor phase of the heat pump cycle working medium, and the high pressure working medium vapor released from the compressor in the heat pump unit is supplied by its own pressure difference. The water flows into a condenser installed in each hot water storage tank, where it is condensed and liquefied to generate heat of condensation, which heats the hot water heat exchanger.

なお、1住戸当たりに換算するとヒートポンプ
ユニツトの容量、貯湯槽は小さいが、凝縮器とそ
れによつて加熱される給湯熱交換器は瞬間加熱を
可能にするため個別式ヒートポンプ給湯機の凝縮
器および給湯熱交換器の数倍の容量を有する。
Although the capacity of the heat pump unit and the hot water storage tank are small when calculated per dwelling unit, the condenser and hot water heat exchanger heated by it enable instant heating, so the condenser and hot water supply of an individual heat pump water heater are small. It has several times the capacity of a heat exchanger.

液化した作用媒体R12は管路10,25を通つ
て管路9に入り、膨張弁3を通つて低圧状態で蒸
発熱交換器2に入り、管路4から入つて管路5に
出て行く熱源水から熱を受けて蒸発して低圧蒸気
になる。貯湯槽18,31には貯湯温度、約60℃
の温水が貯えられている。湯栓21,35を開く
と管路13,36から市水が供給され、蓄熱槽1
8,31の低部に滞溜する。ポンプ11,26を
稼働すると、前記低部に滞溜する低温の水は蓄熱
槽18,31の低部出口12,27を通つて給湯
熱交換器19,34に送られ、そこで瞬間的に貯
湯温度まで加熱され、蓄熱槽18,31の上端1
7,30から蓄熱槽18,31に戻る。貯湯槽1
8,31には槽内の中位の高さ、および低位置に
温度検知器22,23,32,33が取付けら
れ、周囲の水温を測定可能にしてある。
The liquefied working medium R12 enters line 9 through lines 10, 25, enters the evaporative heat exchanger 2 at low pressure through the expansion valve 3, enters through line 4 and exits in line 5. It receives heat from the heat source water and evaporates into low-pressure steam. The hot water storage temperature in the hot water tanks 18 and 31 is approximately 60℃.
hot water is stored. When the hot water faucets 21 and 35 are opened, city water is supplied from the pipes 13 and 36, and the heat storage tank 1
It accumulates in the lower part of 8,31. When the pumps 11 and 26 are operated, the low-temperature water accumulated in the lower part is sent to the hot water heat exchangers 19 and 34 through the lower part outlets 12 and 27 of the heat storage tanks 18 and 31, where it is instantaneously stored. The upper end 1 of the heat storage tank 18, 31 is heated to the temperature
7, 30 and returns to the heat storage tanks 18, 31. Hot water tank 1
Temperature sensors 22, 23, 32, and 33 are attached to the tanks 8 and 31 at intermediate heights and low positions in the tank, making it possible to measure the surrounding water temperature.

第2図に、第1図に示した装置を運転制御する
アルゴリズムの一例を示す。湯栓21を開くと温
水が放出されるが、放出量に見合う市水が管路1
3より供給される。市水は低温で密度が大きいの
で貯湯槽18の低部に滞溜し温度検知器23の指
示値は低くなる。複数箇の貯湯槽の何れかの低位
置の温度検知器の指示値が所定の温度以下になる
と直ちに圧縮機1は稼働される。今それが貯湯槽
18に相当するとすれば、圧縮機1が稼働し始め
るとポンプ11が稼働され始め、貯湯槽18の低
部に滞溜する低温の水を汲み上げて給湯熱交換器
19に送り、瞬間加熱的に貯湯槽温度近くまで加
熱し、貯湯槽18上部の入口17に送り込む。先
の項で説明したように本給湯機では、各住戸の貯
湯槽は小容量であるが、給湯熱交換器は大きいの
で、湯栓21からは、元来貯湯されていた温水と
瞬間加熱される温水が共に放出されるので、日毎
に稼働する給湯需要を充分満たす事ができる。上
記の状態でさらに温度検知器33の指示値が、温
度検知器23の次に低い指示値になれば、閉塞栓
28を開栓し、ポンプ26を稼働する。上記のよ
うにして、各貯湯槽の低位置の温度指示通りの低
い順に閉塞栓を開栓して行くが、各凝縮器は並列
に接続されているので、各住戸に配分される加熱
量はほぼ均等であり、開栓状態の住戸の数が増加
すると、1戸当たりの加熱量は減少し、各住戸の
給湯使用量に追い付けなくなる場合が生じる。こ
の解決のために、第2図に示す、アルゴリズムの
〜と〜の2ステツプが設けられている。
FIG. 2 shows an example of an algorithm for controlling the operation of the device shown in FIG. 1. When the hot water faucet 21 is opened, hot water is released, but the city water corresponding to the amount released is piped into the pipe 1.
Supplied from 3. Since city water has a low temperature and a high density, it accumulates in the lower part of the hot water storage tank 18, and the indicated value of the temperature sensor 23 becomes low. The compressor 1 is operated immediately when the indicated value of the temperature sensor at the lower position of any one of the plurality of hot water storage tanks becomes a predetermined temperature or less. If this corresponds to the hot water storage tank 18, when the compressor 1 starts operating, the pump 11 starts operating, pumps up the low-temperature water accumulated in the lower part of the hot water storage tank 18, and sends it to the hot water heat exchanger 19. The hot water is instantaneously heated to near the temperature of the hot water storage tank, and is sent to the inlet 17 at the top of the hot water storage tank 18. As explained in the previous section, in this water heater, the hot water storage tank in each dwelling unit has a small capacity, but the hot water heat exchanger is large, so the hot water from the hot water faucet 21 is instantly heated together with the originally stored hot water. Since hot water is discharged at the same time, it is possible to fully meet the daily demand for hot water supply. In the above state, when the indicated value of the temperature sensor 33 becomes the next lowest indicated value of the temperature sensor 23, the blocking plug 28 is opened and the pump 26 is operated. As described above, the blockage valves are opened in descending order of temperature according to the temperature indication at the low position of each hot water storage tank, but since each condenser is connected in parallel, the amount of heating distributed to each dwelling unit is As the number of households with open water taps increases, the amount of heating per household decreases, and it may not be possible to keep up with the amount of hot water used by each household. To solve this problem, two steps of the algorithm shown in FIG. 2 are provided.

以下の説明を明確にするために、ヒートポンプ
ユニツト、各戸貯湯槽、凝縮器およびそれによつ
て加熱される給湯熱交換器の能力、並列に接続そ
れる住戸数、即ち貯湯槽数を実施例の具体的数値
すなわち、ヒートポンプユニツトの能力;
15000Kcal/時、貯湯槽;200、凝縮器および
それによつて加熱される給湯熱交換器:
10000Kcal/時、並列住戸数:5軒とする。
In order to clarify the following explanation, the heat pump unit, the hot water storage tank for each house, the capacity of the condenser and the hot water heat exchanger heated by it, the number of residential units connected in parallel, that is, the number of hot water storage tanks are explained in detail in the example. In other words, the capacity of the heat pump unit;
15000Kcal/hour, hot water storage tank; 200, condenser and hot water heat exchanger heated by it:
10000Kcal/hour, number of parallel residences: 5.

第2図に示すフロー図で制御のアルゴリズムは
明らかであるが、なお説明を加えると、既に述べ
たように湯栓21が開栓されると貯湯槽18の低
位置の温度検知器23の指示値が所定の温度(本
例では55℃)以下になるとヒートポンプユニツト
の圧縮機1、該当貯湯槽18に付属するポンプ1
1、を運転し、閉塞栓15を開き管路13から入
つて来る市水を瞬間的に60℃まで加熱して貯湯槽
18上部の入口17に送る。湯栓21が閉じられ
ると市水の供給が断たれるので、貯湯槽18低部
の低温水は加熱されて上部入口に送られ、貯湯槽
内高温部位置が低下し低位置温度検知器23の指
示値が上昇し、所定の値(本例では58℃)になる
と圧縮機1、ポンプ11を停止し、閉塞栓15を
閉栓する。次に低位置温度検知器23の指示値が
58℃に達しない状態で第2の貯湯槽の低位置温度
検知器の指示値が55℃以下になつた場合は、上と
同様該当貯湯槽付属のポンプを運転し閉塞栓を開
栓する。この同時加熱状態にする貯湯槽の数は実
際の住宅で一度に放出される給湯量によつて決ま
るが、本例ではその数を3個にした時最も好都合
であつた。この制御を第2図ステツプに示す。
次に加熱を要求する貯湯槽の数が3を越えた時
は、全貯湯槽の中位置の温度検知器の指示値をサ
ーチして所定の温度(本例では55℃)以下の貯湯
槽の加熱を優先し、先に加熱状態であつた貯湯槽
のうち3個と優先貯湯槽数の差だけの貯湯槽は、
低位置温度検知器の指示値の低い順に加熱状態に
する。これを〜ステツプに示す。本発明のポ
イントの1つは、中位置の温度検知器の指示値が
55℃以下の貯湯槽を優先加熱することによつて、
各住戸の給湯使用量に追い付き、全戸の要求を満
足させることができる。
The control algorithm is clear from the flowchart shown in FIG. When the temperature falls below a predetermined temperature (55°C in this example), compressor 1 of the heat pump unit and pump 1 attached to the corresponding hot water tank 18 are activated.
1, the blockage valve 15 is opened, and the city water coming in from the pipe 13 is instantaneously heated to 60°C and sent to the inlet 17 at the top of the hot water storage tank 18. When the hot water faucet 21 is closed, the supply of city water is cut off, so the low temperature water in the lower part of the hot water storage tank 18 is heated and sent to the upper inlet, lowering the position of the high temperature part in the hot water tank and detecting the low temperature sensor 23. When the indicated value increases and reaches a predetermined value (58° C. in this example), the compressor 1 and pump 11 are stopped, and the occlusion plug 15 is closed. Next, the indicated value of the low position temperature detector 23 is
If the reading on the low-position temperature sensor of the second hot water storage tank falls below 55°C before the temperature reaches 58°C, operate the pump attached to the corresponding hot water tank and open the blockage valve in the same way as above. The number of hot water storage tanks to be heated simultaneously is determined by the amount of hot water that is supplied at one time in an actual house, but in this example, it was most convenient to set the number to three. This control is shown in the steps in FIG.
Next, when the number of hot water storage tanks that require heating exceeds 3, search the indicated value of the temperature sensor located in the middle of all the hot water storage tanks, and find the temperature of the hot water storage tank below a predetermined temperature (55℃ in this example). Priority is given to heating, and the number of hot water storage tanks that are only the number of prioritized hot water storage tanks is the same as the three that were heated first.
The heating state is set in the order of the lowest reading of the low position temperature sensor. This is shown in steps. One of the points of the present invention is that the indicated value of the temperature sensor at the middle position is
By preferentially heating the hot water tank below 55℃,
It is possible to catch up with the amount of hot water used by each dwelling unit and satisfy the demands of all units.

第3図と第4図に、ある集合住宅5戸の実給湯
負荷に対し、本発明によるマルチヒートポンプ給
湯機を適用した場合の各住戸の出湯温度について
数値実験した結果を示す。第3図の結果は、第2
図制御フローのステツプ、を適用した場合で
No.4、5の住戸の22時から24時の間に激しい出湯
温度低下が見られ、実用に問題がある。但し、両
住戸とも、1日の給湯使用量は700〜800に達
している。これに対し、第4図の結果は第2図制
御フローの、ステツプ〜を適用した場合で、
全戸にわたり約45℃以上の給湯が保証されている
ことがわかる。
FIGS. 3 and 4 show the results of a numerical experiment regarding the hot water temperature of each residential unit when the multi-heat pump water heater according to the present invention is applied to the actual hot water supply load of five residential units. The results in Figure 3 are
If you apply the control flow steps in the diagram
A drastic drop in hot water temperature was observed between 10pm and 11pm in units No. 4 and 5, posing a practical problem. However, the amount of hot water used per day for both residences reaches 700 to 800 units. On the other hand, the results shown in Fig. 4 are obtained when steps ~ of the control flow shown in Fig. 2 are applied.
It can be seen that hot water supply of approximately 45℃ or higher is guaranteed for all units.

発明の効果 本発明の給油装置は、複数の住戸に共通のヒー
トポンプを用い、さらに同時使用率が1以下とな
る概念を利用してその能力を小型化し、しかも1
住戸の最大給湯量の1/4程度の小さい貯湯槽を用
いながら、各貯湯槽の槽内高さの中位置と低位置
に温度検知器設けたものである。加熱要求が貯湯
槽の適正数(実施例では3)を超えると、中位置
の温度検知器の指示値をサーチして所定の温度以
下の貯湯槽の加熱を優先し、先に加熱状態であつ
た貯湯槽のうち3個と優先貯湯槽の差の貯湯槽
は、低位置の温度検知器の指示値の低い順に加熱
状態にされるため、給湯使用量の多い住戸(貯湯
槽内の湯の少ない住戸)が優先的に加熱されると
いう新規な制御を加えることによつて、全住戸の
給湯要求量を限度なく賄うことができるもので、
経済性と利便性を同時に解決したものである。
Effects of the Invention The refueling system of the present invention uses a common heat pump for multiple dwelling units, further utilizes the concept that the simultaneous usage rate is 1 or less, reduces its capacity, and furthermore,
This system uses small hot water storage tanks with a capacity of about 1/4 of the maximum amount of hot water supplied to a dwelling unit, and temperature detectors are installed at the middle and lower positions of each tank. When the heating request exceeds the appropriate number of hot water storage tanks (3 in the example), the indicated value of the temperature sensor in the middle position is searched, priority is given to heating the hot water storage tanks below a predetermined temperature, and the hot water tanks that are in the heating state are first heated. The hot water tanks that are the difference between the three hot water storage tanks and the priority hot water storage tank are heated in descending order of the indicated value of the temperature sensor located at the lowest position. By adding a new control system that preferentially heats units (with a small number of units), the hot water demand for all units can be met without limit.
This solution is both economical and convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の給湯装置のブロツ
ク構成図、第2図は同装置における制御アルゴリ
ズムのフロー図、第3図および第4図は同装置の
特性図である。 1……圧縮機、2……蒸発熱交換器、16,2
9……凝縮機、19,34……給湯熱交換器、1
8,31……貯湯槽、22,23,32,33…
温度検知器、15,28……閉塞栓。
FIG. 1 is a block diagram of a water heater according to an embodiment of the present invention, FIG. 2 is a flow diagram of a control algorithm in the same device, and FIGS. 3 and 4 are characteristic diagrams of the same device. 1... Compressor, 2... Evaporative heat exchanger, 16,2
9... Condenser, 19, 34... Hot water heat exchanger, 1
8, 31... hot water tank, 22, 23, 32, 33...
Temperature detector, 15, 28...occlusion valve.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機と、蒸発器と、各住戸に並列接続され
た複数の凝縮器、およびそれらに作用媒体を流す
ための並列接続された管路と、それらの管路中に
設けられ、各住戸に対応する複数の閉塞栓と、前
記凝縮器と熱交換可能な、各住戸に設けられた複
数の貯湯槽と、それぞれの貯湯槽の槽内高さの中
位置と低位置にそれぞれ設けられた温度検知器か
らなり、前記低位置の温度検知器の指示値が所定
値以下になつた場合は、その貯湯槽に対応する閉
塞栓を開栓し、さらに、所定値以下になつた温度
検知器を有する貯湯槽の数が所定数を超えた場合
は、中位置の温度検知器の指示値が所定値以下に
なつた貯湯槽に対応する閉塞栓を、低位置の温度
検知器の指示値の低い順に開栓することを特徴と
する給油装置。
1 A compressor, an evaporator, a plurality of condensers connected in parallel to each dwelling unit, pipes connected in parallel for flowing a working medium to them, and pipes installed in those pipes and connected to each dwelling unit. A plurality of corresponding plugs, a plurality of hot water storage tanks provided in each dwelling unit that can exchange heat with the condenser, and temperatures provided at middle and low positions of the internal height of each hot water storage tank, respectively. If the indicated value of the low-position temperature sensor falls below a predetermined value, the blockage plug corresponding to the hot water storage tank is opened, and the temperature sensor whose temperature has fallen below the predetermined value is removed. If the number of hot water storage tanks in your possession exceeds a predetermined number, close the plugs corresponding to the hot water storage tanks for which the reading of the temperature sensor in the middle position has fallen below the prescribed value, or A refueling device characterized by opening the taps in sequence.
JP61249745A 1986-10-22 1986-10-22 Hot water supply system Granted JPS63105354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249745A JPS63105354A (en) 1986-10-22 1986-10-22 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249745A JPS63105354A (en) 1986-10-22 1986-10-22 Hot water supply system

Publications (2)

Publication Number Publication Date
JPS63105354A JPS63105354A (en) 1988-05-10
JPH0463986B2 true JPH0463986B2 (en) 1992-10-13

Family

ID=17197583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249745A Granted JPS63105354A (en) 1986-10-22 1986-10-22 Hot water supply system

Country Status (1)

Country Link
JP (1) JPS63105354A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889438B2 (en) * 2006-08-31 2012-03-07 大阪瓦斯株式会社 Heat supply system
DK179208B9 (en) * 2016-09-12 2018-04-16 Danfoss As Fluid supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895141A (en) * 1981-12-01 1983-06-06 Matsushita Electric Ind Co Ltd Hot water supply machine
JPS58130936A (en) * 1982-01-29 1983-08-04 Mitsubishi Electric Corp Control device for hot-water reserving type water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895141A (en) * 1981-12-01 1983-06-06 Matsushita Electric Ind Co Ltd Hot water supply machine
JPS58130936A (en) * 1982-01-29 1983-08-04 Mitsubishi Electric Corp Control device for hot-water reserving type water heater

Also Published As

Publication number Publication date
JPS63105354A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
US5305614A (en) Ancillary heat pump apparatus for producing domestic hot water
US8600563B2 (en) Hybrid heating system
US5351502A (en) Combination ancillary heat pump for producing domestic hot h20 with multimodal dehumidification apparatus
US9127866B2 (en) Hybrid heating system
US20030213245A1 (en) Organic rankine cycle micro combined heat and power system
US20030213248A1 (en) Condenser staging and circuiting for a micro combined heat and power system
US20150267923A1 (en) Solar heating and central air conditioning with heat recovery system
NO140079B (en) HEATING SYSTEM INCLUDING A FUEL-HEATED BOILER, A HEAT PUMP AND A RADIATOR CIRCUIT
CA2833449C (en) Domestic hot water delivery system
US4513585A (en) Hot water system using a compressor
EP1899653A1 (en) Control device
KR101168551B1 (en) Method for supplying heat and preventing over heat in the solar thermal energy hot water system equipped heat storage tank in apartment
JPH0463986B2 (en)
US20110259006A1 (en) Versatile thermal solar system for producing hot water up to high temperatures
RU2319078C2 (en) System of air conditioning for spaces
GB2534941A (en) Service supply systems
JP2009281712A (en) Underground water heat source heat pump water heater
EP1983267A2 (en) Heating system with solar energy and heating method carried out by means of the same
JPH01273930A (en) Multiple hot water supply system
CN110056934A (en) Heat step by step complementary floor heating, two alliance of hot water heat pump system and control method
WO2022118063A1 (en) Complete system for cooling and heating of residential houses or commercial units regionally without energy consumption and water wastage
JP2543776B2 (en) Heating and hot water supply system using heat pump
SU1548624A1 (en) Heat-pump installation for air heating, cooling and hot-water supply with heat recuperation and accumulation
PL181754B1 (en) Method of and unit for generating refrigerating and heating power
EP3974746A1 (en) A heat pump system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term