JPH0463986A - Screw compressor - Google Patents

Screw compressor

Info

Publication number
JPH0463986A
JPH0463986A JP17420490A JP17420490A JPH0463986A JP H0463986 A JPH0463986 A JP H0463986A JP 17420490 A JP17420490 A JP 17420490A JP 17420490 A JP17420490 A JP 17420490A JP H0463986 A JPH0463986 A JP H0463986A
Authority
JP
Japan
Prior art keywords
volume ratio
internal volume
inlet
flow path
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17420490A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17420490A priority Critical patent/JPH0463986A/en
Publication of JPH0463986A publication Critical patent/JPH0463986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To improve durability of the seal part of a piston in a driving cylinder by providing outflow and inflow ports for pressure oil on both ends of a cylinder for driving an internal volume ratio adjusting valve. CONSTITUTION:In a compressor main body S, the interior of a cylinder 12 fixed on a casing 3 is divided with a partition wall 7 into a first chamber 8 and a second chamber 9, and pistons 14,15 are slidably provided in the respective chambers. In the first chamber 8 outflow and inflow ports 10X, 10Y for pressure oil are provided. Through holes 21-23 can be selectively communicated through a groove 20 formed on an internal volume ratio adjusting valve 5. Hereby, the through holes 21-23 are selectively communicated to communicate the outflow and inflow ports 10X, 10Y to a low pressure flow passage or a high pressure flow passage, and three stages of internal volume ratio can be adjusted. In this way, the outflow and inflow ports 10X, 10Y are provided on both end parts of the cylinder 12, hence an 0-ring 19 for seal is not injured at operation of the piston 14, and durability of the seal part can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低、中、高内部容積比の3段階に調節する内
部容積比調節弁を備えたスクリュ圧縮機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a screw compressor equipped with an internal volume ratio control valve that adjusts the internal volume ratio in three stages: low, medium, and high.

(従来の技術) 従来、低、中、高の3段階に調節する内部容積比調節弁
を備えたスクリュ圧縮機は公知である。
(Prior Art) Conventionally, a screw compressor is known which is equipped with an internal volume ratio control valve that adjusts the volume ratio in three stages: low, medium, and high.

第5図は、このスクリュ圧縮機の内部容積比調節弁31
およびその駆動部を示し、シリンダ32内に摺動可能に
設けたピストン33によりピストンロッド34を介して
進退可能に内部容積比調節弁31が設けである。シリン
ダ32には圧油用として両端に第1流出入口35X、第
2流出入口35Y、中央部に第3流出入口35Zを設け
るとともに、ピストン33の周囲にはシール用のOリン
グ36が嵌挿しである。
FIG. 5 shows the internal volume ratio control valve 31 of this screw compressor.
A piston 33 is slidably provided in a cylinder 32, and an internal volume ratio adjusting valve 31 is provided so as to be movable forward and backward via a piston rod 34. The cylinder 32 is provided with a first outflow port 35X, a second outflow port 35Y at both ends, and a third outflow port 35Z in the center for pressure oil, and an O-ring 36 for sealing is fitted around the piston 33. be.

ところで、スクリュ圧縮機において、内部容積比をV 
i(−V l/ V o 、 V + ;閉込み後の理
論最大容積、vo;吐出直前の理論最小容積)、比熱比
をに、外部圧縮比をPd/Ps(Pd;吐出圧力、 P
s;吸込圧力)と表わすと、 ViK=Pd/Ps となる場合に、断熱効率が最大となる。
By the way, in a screw compressor, the internal volume ratio is V
i (-V l/V o , V + ; theoretical maximum volume after confinement, vo : theoretical minimum volume just before discharge), specific heat ratio as Pd/Ps (Pd; discharge pressure, P
s: suction pressure), the adiabatic efficiency is maximized when ViK=Pd/Ps.

そこで、この最大効率の状態にするために、圧縮機の内
部容積比を小さくした低内部容積比時には、第1流出入
口35Xを高圧流路に、第2流出入口35Yを低圧流路
に連通させるとともに第3流出入口35Zを閉じて、第
5図中実線にて示す状態とするようになっている。これ
に対して中内部容積比時には、第1流出入口35X、第
2流出入口35Yを高圧流路に連通させ、第3流出入口
35Zを低圧流路に連通させて、第5図中2点鎖線で示
す状態とし、高内部容積比時には、第1流出入口35X
を低圧流路に、第2流出入口35Yを高圧流路に連通さ
せ、第3流出入口35Zを閉じて、第5図中破線で示す
状態とするようになっている。
Therefore, in order to achieve this maximum efficiency, when the internal volume ratio of the compressor is reduced to a low internal volume ratio, the first inlet 35X is communicated with the high pressure channel, and the second inlet 35Y is communicated with the low pressure channel. At the same time, the third inlet/outlet 35Z is closed, resulting in the state shown by the solid line in FIG. On the other hand, when the internal volume ratio is medium, the first outflow port 35X and the second outflow port 35Y are communicated with the high-pressure flow path, the third outflow port 35Z is communicated with the low-pressure flow path, and the two-dot chain line in FIG. In the state shown in , when the internal volume ratio is high, the first inlet/outlet 35X
is connected to the low-pressure flow path, the second outflow port 35Y is connected to the high-pressure flow path, and the third outflow port 35Z is closed to create the state shown by the broken line in FIG.

(発明が解決しようとする課題) 上記従来の圧縮機では内部容積比調節弁を駆動するため
のシリンダ32に両端部の他に中央部に、即ちピストン
ローフ内に第3流出入口35Zが設けである。このため
、この第3流出入口35Zをピストン33が通過する度
に、0リング36がこすられて傷つき、この結果切断し
易く、耐久性に欠けるという問題がある。
(Problems to be Solved by the Invention) In the conventional compressor described above, the cylinder 32 for driving the internal volume ratio control valve is provided with a third inlet 35Z in the center of the cylinder 32 in addition to both ends, that is, in the piston loaf. be. For this reason, each time the piston 33 passes through the third outflow port 35Z, the O-ring 36 is rubbed and damaged, resulting in a problem that it is easily cut and lacks durability.

本発明は、上記従来の問題点を課題としてなされたもの
で、3段階に内部容積比調節する内部容積比調節弁の駆
動用シリンダ内のピストンのシール部の耐久性の向上を
可能にしたスクリュ圧縮機を提供しようとするものであ
る。
The present invention has been made to address the above-mentioned conventional problems, and provides a screw that makes it possible to improve the durability of the seal portion of the piston in the driving cylinder of an internal volume ratio control valve that adjusts the internal volume ratio in three stages. The aim is to provide a compressor.

(課題を解決するための手段) 上記課題を解決するために、本発明は、互いに噛み合う
雌雄一対のスクリュロータを回転可能にケーシング内に
収納するとともに、上記スクリュロータとケーシングと
の間で、内部容積比調節弁駆動シリンダにより進退可能
に内部容積比調節弁を設けたスクリュ圧縮機において、
上記内部容積比調節弁に溝と、上記ケーシングに上記内
部容積比調節弁の進退方向に対して垂直な同一平面上に
中心軸を位置させ、かつ上記溝と連通可能な位置に形成
した第1.第2.第3貫通孔と、上記駆動シリンダのピ
ストン作動空間のロータ側端部に圧力流体用第1流比入
口、反ロータ側に圧力流体用第2流出入口とを設けて、
低内部容積比時には上記第1流出入口を高圧流路に、第
2流出入口を低圧流路に連通させるとともに、上記第1
.第3貫通孔を上記溝を介して連通状態とし、かつ別個
の絞り手段を介して低圧流路と連通状態とし、高内部容
積比時には上記第1流出入口を低圧流路に、第2流出入
口を高圧流路に連通させるとともに、上記第1.第3貫
通孔を上記溝を介して連通状態とし、かつ別個の絞り手
段を介して低圧流路と連通状態とする一方、中内部容積
比時には上記第1流出入口と第3貫通孔と、上記第2流
出入口と第1貫通孔とを連通状態とし、上記第2貫通孔
は高圧流路と連通状態とし、この第1.第2.第3貫通
孔同志は互いに非連通状態或は上記溝を介して互いに連
通状態とし、上記第1.第2流出入口を別個の絞り手段
を介して低圧流路と連通状態として、上記内部容積比調
節弁が中内部容積比位置より低内部容積比位置側にある
ときは上記第1.第2貫通孔同志が上記溝を介して連通
状態となり、上記内部容積比調節弁が中内部容積比位置
より高内部容積比位置側にあるときは上記第2.第3貫
通孔同志が上記溝を介して連通状態となるように形成し
た。
(Means for Solving the Problems) In order to solve the above problems, the present invention rotatably accommodates a pair of male and female screw rotors that mesh with each other in a casing, and provides internal space between the screw rotors and the casing. In a screw compressor equipped with an internal volume ratio adjustment valve that can be moved forward and backward by a volume ratio adjustment valve drive cylinder,
A first groove is formed in the internal volume ratio adjusting valve, and a first groove is formed in the casing, the center axis of which is located on the same plane perpendicular to the advancing and retracting direction of the internal volume ratio adjusting valve, and in a position where it can communicate with the groove. .. Second. a third through hole, a first flow ratio inlet for pressure fluid at the rotor side end of the piston working space of the drive cylinder, and a second flow ratio inlet for pressure fluid at the side opposite to the rotor;
When the internal volume ratio is low, the first inlet is communicated with the high-pressure flow path, the second inlet is communicated with the low-pressure flow path, and the first inlet is communicated with the low-pressure flow path.
.. The third through hole is brought into communication through the groove and with the low pressure flow path through a separate restricting means, and when the internal volume ratio is high, the first inlet is connected to the low pressure flow path and the second outflow inlet is connected to the low pressure flow path. is communicated with the high pressure flow path, and the above-mentioned 1. The third through hole is brought into communication via the groove and with the low-pressure flow path through a separate restricting means, while when the internal volume ratio is medium, the first inlet and third through hole are connected to the third through hole. The second inlet/outlet and the first through hole are in communication, the second through hole is in communication with the high pressure flow path, and the first through hole is in communication with the high pressure flow path. Second. The third through holes are in a non-communicating state with each other or in a communicating state with each other via the groove, and the third through holes are in a non-communicating state with each other or in a communicating state with each other via the groove. The second inlet/outlet is placed in communication with the low-pressure flow path via a separate throttle means, and when the internal volume ratio control valve is located closer to the low internal volume ratio position than the middle internal volume ratio position, the second inlet/outlet is placed in communication with the low pressure flow path through a separate throttle means. When the second through holes are in communication via the groove and the internal volume ratio control valve is located closer to the high internal volume ratio position than the middle internal volume ratio position, the second through hole is in communication with the second through hole. The third through holes were formed so as to communicate with each other through the groove.

(作用) 上記のように形成することにより、内部容積比調節弁の
駆動用シリンダに圧油の流出入口を上記シリンダの両端
部の2箇所に設けるだけで3段階の内部容積比調節が可
能になり、上記シリンダのピストンのシール部を傷つけ
ることがなくなる。
(Function) By forming as described above, it is possible to adjust the internal volume ratio in three stages by simply providing the pressure oil outlet inlet at two locations on both ends of the cylinder for driving the internal volume ratio adjustment valve. This prevents damage to the seal portion of the piston of the cylinder.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図〜第3図は本発明に係るスクリュ圧縮機を示し、
図中Sは圧縮機本体を示す。この圧縮機本体Sは第2図
、第3図に詳細に示すように一方に吸込口Iを、他方に
吐出口2を有するケーシング3内に互いに噛み合う雌雄
一対のスクリュロータ4を回転可能に収納するとともに
、ケーシング3とロータ4との間には内部容積比調節弁
5と容IM節用スライド弁6が進退可能に設けである。
1 to 3 show a screw compressor according to the present invention,
In the figure, S indicates the compressor main body. As shown in detail in FIGS. 2 and 3, this compressor main body S rotatably houses a pair of male and female screw rotors 4 that mesh with each other in a casing 3 that has a suction port I on one side and a discharge port 2 on the other side. At the same time, an internal volume ratio adjustment valve 5 and a volume IM adjustment slide valve 6 are provided between the casing 3 and the rotor 4 so as to be movable forward and backward.

また、ケーシング3には内部を仕切り壁7によりロータ
側の第1室8と反ロータ側の第2室9に分け、この第1
室8.第2室9に圧油用の第1流出入口10X、第2流
出入口10Y、および流出入口11X、IIYを設けた
シリンダI2が固定してあり、仕切り壁7は両側のC形
止め輪I3により固定しである。
Further, the inside of the casing 3 is divided by a partition wall 7 into a first chamber 8 on the rotor side and a second chamber 9 on the anti-rotor side.
Room 8. A cylinder I2 provided with a first outflow port 10X, a second outflow port 10Y, and outflow ports 11X and IIY for pressurized oil is fixed in the second chamber 9, and the partition wall 7 is secured by C-shaped retaining rings I3 on both sides. It is fixed.

ロータ側の第1室8内には摺動可能に第1ピストン14
を、反ロータ側の第2室9内には摺動可能に第2ピスト
ン15を設け、第1ピストンI4により第1ピストンロ
ツドI6を介して上記内部容積比調節弁5を上記ロータ
4とケーシング3、の内壁との間で進退させる一方、第
2ピストン15により第2ピストンロツド17を介して
上記スライド弁6を上記ロータ4とケーシング3の内壁
との間で進退させるように形成しである。また、内部容
積比調節弁5の後退位置規制はケーシング3の一部をな
すストッパ18により行っている。さらに、第2ピスト
ンロツド17は第1ピストンロツド16内を相対移動可
能に貫通しており、スライド弁6は内部容積比調節弁5
の作動空間、或はその延長空間内を作動し、スライド弁
6の後退位置規制を内部容積比調節弁5jこより行うよ
うに形成しである。なお、第1ピストン14.第2ピス
トン15の周囲にはシール用の0リング19が嵌挿しで
ある。
A first piston 14 is slidably disposed within the first chamber 8 on the rotor side.
A second piston 15 is slidably provided in the second chamber 9 on the side opposite to the rotor, and the first piston I4 connects the internal volume ratio control valve 5 to the rotor 4 and the casing 3 via the first piston rod I6. The second piston 15 moves the slide valve 6 back and forth between the rotor 4 and the inner wall of the casing 3 via the second piston rod 17. Further, the retreat position of the internal volume ratio control valve 5 is restricted by a stopper 18 that is a part of the casing 3. Further, the second piston rod 17 passes through the first piston rod 16 so as to be relatively movable, and the slide valve 6 is connected to the internal volume ratio control valve 5.
The internal volume ratio control valve 5j is configured to operate within the operating space of the internal volume ratio control valve 5j or an extension space thereof, and to regulate the retreating position of the slide valve 6 through the internal volume ratio control valve 5j. Note that the first piston 14. An O-ring 19 for sealing is fitted around the second piston 15.

また、内部容積比調節弁5には、二つの矩形を角部同志
を重複させるようにして弁の進退方向に位置をずらせた
形の溝20を形成するとともに、ケーシング3には、内
部容積比調節弁5の進退方向に対して垂直で、かつ上記
溝20と交差する同一平面P(第3図参照)上に中心軸
を位置させた第1、第2.第3貫通孔21,22.23
が穿設しである。そして、内部容積比調節弁5が左方に
移動した低内部容積比の状態りにあるときには溝20を
介して第鳳第2貫通孔21.22が連通し、内部容積比
調節弁5が中間位置で、中白部容積比の状態Mにあると
きには溝20を介して第1.第2.第3貫通孔21,2
2.23が連通し、内部容積比調節弁5が右方に移動し
た高内部容積比の状態Hにあるときには溝20を介して
第2.第3貫通孔22.23が連通ずるように形成しで
ある。なお、第2.第3貫通孔22.23は第1図、第
2図において第1貫通孔2Iと重複して表われるため、
便宜上その参照番号を括弧を付して第1貫通孔21の横
に併記して表わしである。
In addition, the internal volume ratio adjusting valve 5 is formed with a groove 20 in the form of two rectangular shapes whose corners overlap each other and whose positions are shifted in the forward and backward directions of the valve. The first, second, . Third through hole 21, 22.23
is perforated. When the internal volume ratio regulating valve 5 is in a low internal volume ratio state where the internal volume ratio regulating valve 5 is moved to the left, the second through holes 21 and 22 communicate with each other through the groove 20, and the internal volume ratio regulating valve 5 is in the middle state. position, when the middle white part volume ratio is in the state M, the first. Second. Third through hole 21, 2
2.23 is in communication, and when the internal volume ratio control valve 5 is in the state H of high internal volume ratio in which it has moved to the right, the second. The third through holes 22 and 23 are formed so as to communicate with each other. In addition, the second. Since the third through hole 22.23 appears overlapping with the first through hole 2I in FIGS. 1 and 2,
For convenience, the reference number is shown in parentheses next to the first through hole 21.

一方、圧縮機本体Sの吸込側には吸込流路24が、吐出
側には吐出流路25が接続してあり、吐出流路25には
吐出ガス中の油を分離1回収して循環使用させる油分離
回収器26が設けである。
On the other hand, a suction passage 24 is connected to the suction side of the compressor main body S, and a discharge passage 25 is connected to the discharge side, and the oil in the discharge gas is separated and collected in the discharge passage 25 for circulation use. An oil separation and recovery device 26 is provided.

この油分離回収器26の下部の油溜め部27は、開閉弁
aを備えた流路Aにより第1流出入口10X、開閉弁す
を備えた流路Bにより第2流出入口10Y、開閉弁Cを
備えた流路Cにより第2貫通孔22のそれぞれに連通可
能となっている。また、第1貫通孔21は開閉弁dを備
えた流路りにより第2流出入口JOYと、第3貫通孔2
3は開閉弁eを備えた流路Eにより第1流出入口lOX
と連通可能となっている。さらに、第1流出入口10X
は開閉弁rを備えた流路Fにより、第2流出入口10Y
は開閉弁gを備えた流路Gにより、それぞれ吸込流路2
4に連通可能となっており、第1貫通孔21は絞り手段
Vを備えた流路Vにより、第2貫通孔22は絞り手段W
を備えた流路Wにより、吸込流路24と連通させである
。なお、本実施例では、流路Fと流路G、流路Vと流路
Wは吸込流路24側にてそれぞれ一本の流路に合流させ
である。
The oil reservoir section 27 at the lower part of the oil separation and recovery device 26 is connected to a first inlet 10X by a flow path A equipped with an on-off valve a, a second outflow inlet 10Y connected to a flow path B equipped with an on-off valve A, and a second outflow inlet 10Y connected to an on-off valve C. It is possible to communicate with each of the second through-holes 22 through a flow path C provided with a flow path C. In addition, the first through hole 21 is connected to the second inlet/outlet JOY and the third through hole 2 by a flow path equipped with an on-off valve d.
3 is a first inlet/outlet lOX through a flow path E equipped with an on-off valve e.
It is possible to communicate with. Furthermore, the first inlet/outlet 10X
is connected to the second inlet/outlet 10Y by a flow path F equipped with an on-off valve r.
are connected to the suction flow path 2 by a flow path G equipped with an on-off valve g.
4, the first through hole 21 is connected to a flow path V equipped with a restricting means V, and the second through hole 22 is connected to a restricting means W.
It is communicated with the suction flow path 24 by a flow path W provided with. In this embodiment, the flow path F and the flow path G, and the flow path V and the flow path W are each merged into one flow path on the suction flow path 24 side.

そして、次の表1に示すように、開閉弁a”−gの開閉
切換え操作を行うことにより、スクリュ圧縮機を低内部
容積比11中内部容積比■、高内部容積比■の状態にす
ることが可能になっている。なお、表中開閉弁が開の状
態をO1閉の状態をCで表わしである。
Then, as shown in Table 1 below, by opening and closing the on-off valves a''-g, the screw compressor is brought into a state with a low internal volume ratio of 11, a medium internal volume ratio ■, and a high internal volume ratio ■. In the table, the open state of the on-off valve and the closed state of O1 are represented by C.

(以下余白) 表1 この表についてさらに詳述すれば、低内部容積比Iの時
には開閉弁a劃を開、開閉弁す、c、d、e、fを閉と
して、第2図中第1ピストン14の左方を低圧、右方を
高圧にして内部容積比調節弁5を左進させる。また、高
内部容積比■の時には開閉弁す。
(Leaving space below) Table 1 To explain this table in more detail, when the internal volume ratio I is low, on-off valve a is opened, on-off valves c, d, e, and f are closed. The left side of the piston 14 is set to low pressure and the right side is set to high pressure to move the internal volume ratio control valve 5 to the left. Also, when the internal volume ratio is high, the valve opens and closes.

fを開、開閉弁a、c、d、e、gを閉として第1ピス
トン14の左方を高圧、右方を低圧にして内部容積比調
節弁5を右進させる。
f is opened, on-off valves a, c, d, e, and g are closed to make the left side of the first piston 14 a high pressure and the right side a low pressure, and move the internal volume ratio control valve 5 to the right.

これに対して、中肉部容積比■の時には、開閉弁c、d
、eを開、開閉弁a、b、f、gを閉とする。そして、
第3図に示すように内部容積比調節弁5が低内部容積比
の状態りにあるときには第1.第2貫通孔2122が溝
20を介して連通し、さらに流路りを介して第1ピスト
ン14の左方が高圧の流路Cにも連通する。流路りは低
圧の吸込流路24にも連通しているが、絞り手段Wによ
り流量制限されているため、第1ピストンI4の左方は
高圧に保たれる一方、この右方は吸込流路24にだけ連
通して低圧状態にある故、第1ピストン14は右方、即
ち中肉部容積比の状態Mの側に動く。この場合、流路V
中の流量は絞り手段Vにより制限されているため、第1
ピストン14は急激に右方に作動することはなく、ハン
チングが生じないようになっている。これに対して、内
部容積比調節弁5が高内部容積比の状態Hにあるときに
は、第2゜第3貫通孔22.23が溝20を介して連通
し、さらに流路Eを介して第1ピストン14の右方が高
圧の流路Cにも連通する。この結果、上記低内部容積比
の状態りにある場合と同様に絞り手段V。
On the other hand, when the volume ratio of the middle part is ■, the on-off valves c, d
, e are opened, and on-off valves a, b, f, and g are closed. and,
As shown in FIG. 3, when the internal volume ratio control valve 5 is in a low internal volume ratio state, the first. The second through hole 2122 communicates with the groove 20, and the left side of the first piston 14 also communicates with the high-pressure flow path C via the flow path. The flow path also communicates with the low-pressure suction flow path 24, but since the flow rate is restricted by the restricting means W, the left side of the first piston I4 is kept at high pressure, while the right side is connected to the suction flow. Since it communicates only with the passage 24 and is in a low pressure state, the first piston 14 moves to the right, that is, to the side of the state M of the medium volume ratio. In this case, the flow path V
Since the flow rate inside is restricted by the restricting means V, the first
The piston 14 does not move suddenly to the right, so that hunting does not occur. On the other hand, when the internal volume ratio control valve 5 is in the high internal volume ratio state H, the second and third through holes 22 and 23 communicate through the groove 20, and the second through hole 22 and the third through hole 22,23 communicate with each other through the channel E. The right side of the first piston 14 also communicates with the high pressure flow path C. As a result, the throttling means V is reduced in the same manner as in the case of the low internal volume ratio.

Wの作用により、第1ピストン14の右方が高圧に保た
れ、その左方から徐々に圧油が吸込流路24側に流れて
、第1ピストン14は左方、即ち中肉部容積比の状態M
の側に動く。
Due to the action of W, the right side of the first piston 14 is maintained at a high pressure, and the pressure oil gradually flows from the left side to the suction channel 24 side, and the first piston 14 is moved to the left side, that is, the middle part volume ratio state M
move to the side.

一方、内部容積比調節弁5が中肉部容積比の状態Mにあ
るときには、第1.第2.第3貫通孔21゜22.23
が溝20を介して連通し、第1ピストン14の左方、右
方がともに高圧の流路Cにも連通ずる。そして、絞り手
段v、wの作用により第1ピストン14はその左方およ
び右方が等しく高圧になり、中肉部容積比の状態Mを維
持する。
On the other hand, when the internal volume ratio control valve 5 is in the state M of the middle part volume ratio, the first. Second. Third through hole 21°22.23
are in communication via the groove 20, and both the left and right sides of the first piston 14 are also in communication with a high-pressure flow path C. Then, due to the action of the throttle means v and w, the first piston 14 has equally high pressure on its left and right sides, and maintains the state M of the volume ratio of the middle part.

即ち、表1の■の列に示す開閉弁a−gの開閉状態にす
ることにより、内部容積比調節弁5が低。
That is, by opening and closing the on-off valves a to g shown in the column (■) of Table 1, the internal volume ratio control valve 5 is set to a low level.

高内部容積比の状態り、Hのいずれにあっても中肉部容
積比の状態Mの側に移動して、この状態に保たれること
になる。
Regardless of whether it is in the state of high internal volume ratio or H, it will move to state M of medium volume ratio and remain in this state.

また以上の内部容積比調節とは別に、全負荷運転する場
合には第2図に示すように第2ピストン15を左端に位
置させることにより、スライド弁6を内部容積比調節弁
5に当接させて、両弁間に隙間を設けない状態にして吸
込口1.より吸込んだガスを全量圧縮して吐出口2へ吐
出する一方、部分負荷或は無負荷運転の場合には第2図
において第2ピストン15を右方に作動させることによ
り、スライド弁6だけを右進させて、これと内部容積比
調節弁5との間に隙間を生じさせて、吸込口1より吸込
んだガスを一部、或は全量圧縮することなく上記隙間よ
り吸込口2に逃がせるようになっている。
In addition to the internal volume ratio adjustment described above, when operating at full load, the slide valve 6 is brought into contact with the internal volume ratio adjustment valve 5 by positioning the second piston 15 at the left end as shown in FIG. Then, with no gap between the two valves, open the suction port 1. While the gas sucked in is compressed in its entirety and discharged to the discharge port 2, in the case of partial load or no-load operation, only the slide valve 6 is operated by operating the second piston 15 to the right in FIG. Move it to the right to create a gap between this and the internal volume ratio control valve 5, and allow some or all of the gas sucked in from the suction port 1 to escape from the gap to the suction port 2 without being compressed. It looks like this.

第4図は本発明の第2実施例に係るスクリュ圧縮機の内
部容積比調節弁5、第1.第2.第3貫通孔21.22
.23の部分のみを示したもので、これ以外の部分は第
1実施例と実質的に同一であり、説明を省略する。
FIG. 4 shows an internal volume ratio control valve 5, a first . Second. Third through hole 21.22
.. Only the portion 23 is shown, and the other portions are substantially the same as the first embodiment, and their explanation will be omitted.

この第2実施例では、矩形の二つの溝20a、20bを
、弁の進退方向およびこれに垂直な方向に位置をずらせ
て、互いに重複させずに形成するとともに、第1.第2
.第3貫通孔21,22.23は第1実施例の場合と同
様に穿設しである。
In this second embodiment, two rectangular grooves 20a and 20b are formed at different positions in the valve advancing and retracting direction and in a direction perpendicular thereto, so that they do not overlap with each other, and the first and second rectangular grooves 20a and 20b are formed at different positions in the valve advancing and retracting direction and in a direction perpendicular thereto. Second
.. The third through holes 21, 22, and 23 are drilled in the same manner as in the first embodiment.

そして、中肉部容積比時における第4図中のし。4 at the time of the volume ratio of the middle part.

Hの状態は第1実施例の場合と変わらないが、Mの状態
のときには第1.第2.第3貫通孔21.22.23は
それぞれお互いに非連通状態となり、第1ピストン14
の左方および右方を低圧状態とすることにより、Hの位
置を保つようになっている。
The state of H is the same as in the first embodiment, but in the state of M, the first . Second. The third through holes 21, 22, 23 are in a non-communicating state with each other, and the first piston 14
The H position is maintained by creating a low pressure state on the left and right sides of.

(発明の効果) 以上の説明より明らかなように、本発明によれば、内部
容積比調節弁駆動用シリンダの両端部に圧油用流出入口
を設けるだけで、低、中、高の3段階に内部容積比調節
が可能となり、このシリンダのピストンの作動時にその
シール部を傷つけることがなくなり、装置の耐久性を向
上させることができるという効果を奏する。
(Effects of the Invention) As is clear from the above description, according to the present invention, by simply providing pressure oil inlets at both ends of the cylinder for driving the internal volume ratio control valve, three levels of low, medium, and high can be achieved. This makes it possible to adjust the internal volume ratio, and the sealing portion of the piston of this cylinder is not damaged when it is operated, resulting in an effect that the durability of the device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係るスクリュ圧縮機の全
体構成図、第2図は第1図中の圧縮機本体の断面図、第
3図は第2図に示す圧縮機本体における内部容積比調節
弁の低、中、高内部容積比状態を示す図、第4図は本発
明の第2実施例において第3図と同様の位置関係を示す
図、第5図は従来のスクリュ圧縮機の内部容積比調節弁
およびその駆動部を示す概念図である。 3・・・ケーシング、4・・・スクリュロータ、5・・
内部容積比調節弁、IOX、Y・・・流出入口、12・
・・シリンダ、14・・・第1ピストン、21・・・第
1貫通孔、22・・・第2貫通孔、23・・・第3貫通
孔、24・・・吸込流路、25・・・吐出流路、26・
・・油分離回収器、S・・・圧縮機本体、P・・・垂直
平面、v、w・・・絞り手段。 第1図
Fig. 1 is an overall configuration diagram of a screw compressor according to a first embodiment of the present invention, Fig. 2 is a sectional view of the compressor main body in Fig. 1, and Fig. 3 is a cross-sectional view of the compressor main body shown in Fig. 2. 4 shows the same positional relationship as FIG. 3 in the second embodiment of the present invention. FIG. 5 shows the conventional screw FIG. 2 is a conceptual diagram showing an internal volume ratio control valve of the compressor and a driving section thereof. 3...Casing, 4...Screw rotor, 5...
Internal volume ratio control valve, IOX, Y... Outflow inlet, 12.
... Cylinder, 14... First piston, 21... First through hole, 22... Second through hole, 23... Third through hole, 24... Suction channel, 25...・Discharge channel, 26・
... Oil separation and recovery device, S ... Compressor body, P ... Vertical plane, v, w ... Throttle means. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)互いに噛み合う雌雄一対のスクリュロータを回転
可能にケーシング内に収納するとともに、上記スクリュ
ロータとケーシングとの間で、内部容積比調節弁駆動シ
リンダにより進退可能に内部容積比調節弁を設けたスク
リュ圧縮機において、上記内部容積比調節弁に溝と、上
記ケーシングに上記内部容積比調節弁の進退方向に対し
て垂直な同一平面上に中心軸を位置させ、かつ上記溝と
連通可能な位置に形成した第1、第2、第3貫通孔と、
上記駆動シリンダのピストン作動空間のロータ側端部に
圧力流体用第1流出入口、反ロータ側に圧力流体用第2
流出入口とを設けて、低内部容積比時には上記第1流出
入口を高圧流路に、第2流出入口を低圧流路に連通させ
るとともに、上記第1、第3貫通孔を上記溝を介して連
通状態とし、かつ別個の絞り手段を介して低圧流路と連
通状態とし、高内部容積比時には上記第1流出入口を低
圧流路に、第2流出入口を高圧流路に連通させるととも
に、上記第1、第3貫通孔を上記溝を介して連通状態と
し、かつ別個の絞り手段を介して低圧流路と連通状態と
する一方、中内部容積比時には上記第1流出入口と第3
貫通孔と、上記第2流出入口と第1貫通孔とを連通状態
とし、上記第2貫通孔は高圧流路と連通状態とし、この
第1、第2、第3貫通孔同志は互いに非連通状態或は上
記溝を介して互いに連通状態とし、上記第1、第2流出
入口を別個の絞り手段を介して低圧流路と連通状態とし
て、上記内部容積比調節弁が中内部容積比位置より低内
部容積比位置側にあるときは上記第1、第2貫通孔同志
が上記溝を介して連通状態となり、上記内部容積比調節
弁が中内部容積比位置より高内部容積比位置側にあると
きは上記第2、第3貫通孔同志が上記溝を介して連通状
態となるように形成したことを特徴とするスクリュ圧縮
機。
(1) A pair of male and female screw rotors that mesh with each other are rotatably housed in a casing, and an internal volume ratio adjustment valve is provided between the screw rotor and the casing so as to be movable forward and backward by an internal volume ratio adjustment valve drive cylinder. In the screw compressor, the internal volume ratio regulating valve has a groove, and the casing has a central axis located on the same plane perpendicular to the advancing and retreating direction of the internal volume ratio regulating valve, and at a position where it can communicate with the groove. first, second, and third through holes formed in;
A first inlet for pressure fluid is provided at the rotor side end of the piston operating space of the drive cylinder, and a second inlet for pressure fluid is provided on the side opposite to the rotor.
an inlet and an inlet, and when the internal volume ratio is low, the first inlet and the second inlet are connected to the high-pressure flow path and the second inlet and outflow to the low-pressure flow path, and the first and third through holes are connected to each other through the groove. and communicate with the low-pressure channel through a separate restricting means, and when the internal volume ratio is high, the first inlet is communicated with the low-pressure channel, the second inlet is communicated with the high-pressure channel, and the The first and third through holes are brought into communication via the groove and the low pressure flow path through a separate throttle means, while when the internal volume ratio is medium, the first inlet and the third through hole are in communication with each other through the groove.
The through hole, the second inlet and outlet, and the first through hole are in communication, the second through hole is in communication with the high pressure flow path, and the first, second, and third through holes are not in communication with each other. state or in communication with each other via the groove, and the first and second inlets are in communication with the low pressure flow path through separate throttling means, and the internal volume ratio control valve is set from the middle internal volume ratio position. When in the low internal volume ratio position, the first and second through holes are in communication via the groove, and the internal volume ratio control valve is in the high internal volume ratio position rather than the middle internal volume ratio position. The screw compressor is characterized in that the second and third through holes are formed so as to be in communication with each other via the groove.
JP17420490A 1990-06-30 1990-06-30 Screw compressor Pending JPH0463986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17420490A JPH0463986A (en) 1990-06-30 1990-06-30 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17420490A JPH0463986A (en) 1990-06-30 1990-06-30 Screw compressor

Publications (1)

Publication Number Publication Date
JPH0463986A true JPH0463986A (en) 1992-02-28

Family

ID=15974544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17420490A Pending JPH0463986A (en) 1990-06-30 1990-06-30 Screw compressor

Country Status (1)

Country Link
JP (1) JPH0463986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080240939A1 (en) * 2007-03-29 2008-10-02 Jean Louis Picouet Compressor Having a High Pressure Slide Valve Assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080240939A1 (en) * 2007-03-29 2008-10-02 Jean Louis Picouet Compressor Having a High Pressure Slide Valve Assembly
US8202060B2 (en) * 2007-03-29 2012-06-19 Vilter Manufactring LLC Compressor having a high pressure slide valve assembly

Similar Documents

Publication Publication Date Title
KR0137879B1 (en) Common compression zone access ports for positive displacement compressor
JP2904572B2 (en) Multi-cylinder rotary compressor
CA2089783A1 (en) Scroll type compressor with variable displacement mechanism
CA2050693A1 (en) Scroll type compressor
KR870003316A (en) Variable capacity vane compressor
JPH04276196A (en) Screw compressor
JPH0463988A (en) Screw compressor
JPH0463986A (en) Screw compressor
JPH0463987A (en) Screw compressor
JPH0456158B2 (en)
JPS5862387A (en) Variable delivery unit of compressor
JPH01318777A (en) Variable capacity type scroll compressor
JPH03145587A (en) Variable capacity type scroll compressor
JP2636579B2 (en) Capacity control device for screw type two-stage compressor
JPS5853691A (en) Vane compressor
JPH03194188A (en) Scroll type compressor with variable capacity
JPH0357896A (en) Variable capacity type and vane type compressor
JP2605521Y2 (en) Diaphragm pump
JPH01247791A (en) Variable capacity compressor
JPH08548Y2 (en) Rotary compressor capacity controller
JPH0562675B2 (en)
JPS6235987Y2 (en)
JPH029105Y2 (en)
JPH02119687A (en) Vibration reducing mechanism in piston-type compressor
JP3467738B2 (en) Air intensifier