JPH046345B2 - - Google Patents

Info

Publication number
JPH046345B2
JPH046345B2 JP18238087A JP18238087A JPH046345B2 JP H046345 B2 JPH046345 B2 JP H046345B2 JP 18238087 A JP18238087 A JP 18238087A JP 18238087 A JP18238087 A JP 18238087A JP H046345 B2 JPH046345 B2 JP H046345B2
Authority
JP
Japan
Prior art keywords
cationic polymer
bacterial cells
cationic
flocculant
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18238087A
Other languages
Japanese (ja)
Other versions
JPS6427463A (en
Inventor
Tooru Myajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIMO KK
Original Assignee
HAIMO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIMO KK filed Critical HAIMO KK
Priority to JP18238087A priority Critical patent/JPS6427463A/en
Publication of JPS6427463A publication Critical patent/JPS6427463A/en
Publication of JPH046345B2 publication Critical patent/JPH046345B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は微生物を培養して医薬、農薬、工業用
薬品等を製造する工程中で菌体分離を効率良く行
う為の凝集処理方法に関するものである。 従来の技術 微生物の生産する抗生物質、ホルモン、酵素素
等を利用する目的で微生物を培養する発酵工業は
数多い。これら発酵工業における培養方法は、各
種の栄養を含む培養液中に微生物を浮遊させて行
う方法が一般的である。培養が終了した段階で加
熱やPH調整を行つた後、デカンターやプリコート
フイルター等により微生物菌体と培養液を分離す
る。 従来の技術の問題点 上記培養液中の微生物は過性が悪い為、多量
の硅藻土を過助剤やプリコート剤として使用す
るが、これら硅藻土の混入した菌体は焼却もでき
ず投棄する他はなかつた。菌体が必要な場合はデ
カンターを用いるが、微生物菌体の沈降性は悪
く、処理能力が低い上、菌体ケーキの含水率も高
かつた。 問題点を解決する方法 菌体を凝集させる事により分離効率は大幅に高
まる。 しかし、鉄塩やアルミニウム塩の如き無機凝集
剤を添加すると液や菌体を汚染する。廃水処理の
一分野である生物処理法においては、微生物の集
合体である汚泥の脱水に有機高分子凝集剤を使つ
ている。しかし、これら汚泥中の微生物は自己凝
集能を持ち、集合体を形造つているのに対し、培
養液中の微生物は集合する事なく分散している為
か有機高分子凝集剤を添加しても凝集しない。 本発明者は種々検討の結果、菌体分散液のPHを
2.0〜4.5望ましくは2.5〜4.0に調整しポリカルボ
ン酸塩を添加混合する事によつて菌体に被凝集能
を付与し、カチオン系有機高分子凝集剤を添加す
る事により菌体を凝集せしめ、効率良く液と分離
する事に成功した。 本発明に用いるポリカルボン酸塩としては
CMC、アルギン酸塩、ポリアクリル酸塩、ポリ
アクリルアミド加水分解物、ポリアクリロニトリ
ル加水分解物、ポリアクリル酸エステル加水分解
物等があげられ、対イオンとしてナトリウム、カ
リウム、アンモニウム等1価のカチオンを有する
水溶性高分子が使用される。 ポリカルボン酸塩の添加はPH調整の前後任意の
時点で行う事ができ、PH調整と同時に行う事もで
きる。 本発明に用いるポリカルボン酸塩はPH7.0にお
ける1規定食塩水中の極限粘度が1dl/g以上望
ましくは2dl/g以上の高分子が使用され、菌体
乾物当り0.1%〜2%添加混合する。ポリカルボ
ン酸塩の添加混合後、カチオン性有機高分子凝集
剤を添加する事により菌体を凝集させる。 本発明に使用される有機高分子凝集剤としては
アクリル系カチオンモノマーとアクリルアミドの
共重合体の中で1.5meq/g〜4.5meq/gのカチ
オン当量を持つものが有効であり、望ましくは
2meq/g〜4meq/gのカチオン当量を持つもの
が特に効果的である。分子量は高い程凝集力が強
く1規定食塩水中における極限粘度5dl/g以上
のものが使用される。 本カチオン性凝集剤製造に供されるアクリル系
カチオンモノマーとしてはジアルキルアミノアル
キル(メタ)アクリルアミド、ジアルキルアミノ
アルキル(メタ)アクリレート及びこれらをハロ
ゲン化アルキル、ハロゲン化ベンジル、ジアルキ
ル硫酸等で四級化したカチオンモノマーがあげら
れ、これら2種類以上を共重合させる事が可能で
ある。上記カチオンモノマー中のアルキル基は通
常メチル基又はエチル基等の低級アルキル基から
選ばれる。 本目的に使用するカチオン性高分子凝集剤は、
カチオン性高分子凝集剤相互は勿論、若干量のア
ニオン性又はノニオン性の高分子凝集剤を混合す
る事も可能である。 かかるカチオン性高分子凝集剤は菌体乾物に対
し少なくとも0.2%以上望ましくは0.5%以上の添
加を必要とする。 作 用 微生物菌体表面にはカルボキシル基とアミノ基
が共存し、等電点以上のPHでは負に帯電し、以下
では正に帯電する。 等電点は約4〜5付近のPHであり、本発明の適
用範囲では菌体は正に帯電している。この為、液
中のポリカルボン酸は菌体表面に吸着する事によ
つて菌体相互を結合し、集合体をつくる事により
被凝集能を持つと考えられる。 実施例 1 グルコース、酵母エキス、栄養塩からなる培養
液にてaspergillusを培養した菌体濃度1%の液
を試験に供した。 本培養液200mlを容量500mlのガラスビーカーに
所定量の高分子水溶液を添加後、先端に直径5mm
長さ20mmの丸棒を3本付した撹拌棒を用いて
1000rpmで20秒間撹拌した。ポリカルボン酸塩は
0.1%水溶液として添加し上記の撹拌を行い、塩
酸にてPH調整をした後、カチオン性高分子を0.2
%水溶液として添加し再度同様に撹拌し凝集を行
つた。 凝集液を面積38cm2の40メツシユ・ナイロンスク
リーンにて重力過を行つた後、圧力4Kg/cm2
て30秒間プレスして得たケーキの含水率を測定し
た。 ポリカルボン酸塩とカチオン性高分子の添加量
は培養液に対して各100ppmであり、含水率測定
条件は105℃15時間である。下記表中、「100ml
過時間」とは重力過において初期液100mlが
流出するまでに要する時間である。 供試凝集剤 Γポリカルボン酸塩 アルギン酸ソーダ[η]=3.1dl/g Γカチオン性高分子 メタクリロイロキシエチルトリメチル アンモニウムクロライド・アクリルアミド 共重合物 [η]=8.0dl/g カチオン当量値=3.3meq/g 試験結果
INDUSTRIAL APPLICATION FIELD The present invention relates to a flocculation treatment method for efficiently separating microbial cells during the process of culturing microorganisms to produce pharmaceuticals, agricultural chemicals, industrial chemicals, etc. BACKGROUND ART There are many fermentation industries that cultivate microorganisms for the purpose of utilizing the antibiotics, hormones, enzyme elements, etc. produced by microorganisms. The culture method used in the fermentation industry is generally carried out by suspending microorganisms in a culture solution containing various nutrients. After the culture is completed, heating and pH adjustment are performed, and then the microbial cells and the culture solution are separated using a decanter, precoat filter, etc. Problems with the conventional technology Since the microorganisms in the culture solution mentioned above have poor permanence, a large amount of diatomaceous earth is used as a super-assistant or pre-coating agent, but the microorganisms contaminated with these diatomaceous earths cannot be incinerated. I had no choice but to dump it. When bacterial cells are needed, a decanter is used, but the sedimentation of microbial cells is poor, the treatment capacity is low, and the moisture content of the bacterial cake is high. How to solve the problem Separation efficiency can be greatly increased by aggregating bacterial cells. However, adding inorganic flocculants such as iron salts and aluminum salts contaminates the liquid and bacterial cells. In biological treatment, which is a field of wastewater treatment, organic polymer flocculants are used to dehydrate sludge, which is a collection of microorganisms. However, the microorganisms in these sludges have the ability to self-flocculate and form aggregates, whereas the microorganisms in the culture solution do not aggregate but are dispersed. It also does not aggregate. As a result of various studies, the present inventor determined that the pH of the bacterial dispersion was
2.0 to 4.5, desirably 2.5 to 4.0, and add and mix polycarboxylate to give bacterial cells the ability to agglutinate, and add a cationic organic polymer flocculant to flocculate bacterial cells. succeeded in efficiently separating it from the liquid. As the polycarboxylate salt used in the present invention,
CMC, alginates, polyacrylates, polyacrylamide hydrolysates, polyacrylonitrile hydrolysates, polyacrylic acid ester hydrolysates, etc., and are water-soluble with monovalent cations such as sodium, potassium, and ammonium as counterions. polymers are used. The polycarboxylate salt can be added at any time before or after adjusting the pH, or can be added at the same time as adjusting the pH. The polycarboxylic acid salt used in the present invention is a polymer having an intrinsic viscosity of 1 dl/g or more, preferably 2 dl/g or more in 1N saline at pH 7.0, and is added and mixed in an amount of 0.1% to 2% per dry matter of the bacterial cells. . After adding and mixing the polycarboxylate, a cationic organic polymer flocculant is added to flocculate the bacterial cells. As the organic polymer flocculant used in the present invention, a copolymer of acrylic cationic monomer and acrylamide having a cation equivalent of 1.5 meq/g to 4.5 meq/g is effective, and preferably
Particularly effective are those with cation equivalents of 2 meq/g to 4 meq/g. The higher the molecular weight, the stronger the cohesive force, and those having an intrinsic viscosity of 5 dl/g or more in 1N saline are used. The acrylic cationic monomers used in the production of this cationic flocculant include dialkylaminoalkyl (meth)acrylamide, dialkylaminoalkyl (meth)acrylate, and those quaternized with alkyl halides, benzyl halides, dialkyl sulfates, etc. Examples include cationic monomers, and it is possible to copolymerize two or more of these monomers. The alkyl group in the cationic monomer is usually selected from lower alkyl groups such as methyl or ethyl. The cationic polymer flocculant used for this purpose is
It is of course possible to mix not only cationic polymer flocculants but also a small amount of anionic or nonionic polymer flocculant. Such a cationic polymer flocculant needs to be added in an amount of at least 0.2% or more, preferably 0.5% or more, based on the dry matter of the bacterial cells. Effects Carboxyl groups and amino groups coexist on the surface of microbial cells, which become negatively charged at a pH above the isoelectric point and positively charged below. The isoelectric point is a pH of about 4 to 5, and the bacterial cells are positively charged within the scope of the present invention. For this reason, it is thought that the polycarboxylic acid in the liquid has the ability to agglutinate by adsorbing to the surface of the bacterial cells, binding the bacterial cells to each other, and forming aggregates. Example 1 Aspergillus was cultured in a culture solution containing glucose, yeast extract, and nutrient salts, and a solution having a bacterial cell concentration of 1% was subjected to a test. After adding 200ml of the main culture solution to a glass beaker with a capacity of 500ml and adding the specified amount of polymer aqueous solution, add the tip with a diameter of 5mm.
Using a stirring rod with three round rods of 20 mm in length.
Stir for 20 seconds at 1000 rpm. Polycarboxylate is
Add the cationic polymer as a 0.1% aqueous solution, stir as described above, adjust the pH with hydrochloric acid, and then add the cationic polymer to 0.2%.
% aqueous solution and stirred again in the same manner to perform aggregation. The flocculated liquid was filtered by gravity through a 40-mesh nylon screen with an area of 38 cm 2 , and then pressed at a pressure of 4 kg/cm 2 for 30 seconds, and the moisture content of the resulting cake was measured. The amount of polycarboxylate and cationic polymer added was 100 ppm each to the culture solution, and the water content measurement conditions were 105°C for 15 hours. In the table below, "100ml
``Time required'' is the time required for 100 ml of the initial liquid to flow out under gravity. Test flocculant Γ polycarboxylate Sodium alginate [η] = 3.1 dl/g Γ Cationic polymer methacryloyloxyethyl trimethyl ammonium chloride/acrylamide copolymer [η] = 8.0 dl/g Cation equivalent value = 3.3 meq /g test results

【表】 実施例 2 実施例1と同一の菌体培養液を塩酸にてPH3.5
に調整し試験に供した。PH調整を事前に行う以外
は実施例1と同様の操作を、表2に記載の凝集剤
添加量にて、実施例1と同様の重力過試験を行
つた。 試験結果
[Table] Example 2 The same bacterial culture solution as in Example 1 was diluted with hydrochloric acid to pH 3.5.
It was adjusted to be suitable for testing. The same gravity overload test as in Example 1 was conducted using the same operations as in Example 1 except that the pH was adjusted in advance, and with the amount of flocculant added as shown in Table 2. Test results

【表】 実施例 3 グルコース、酵母エキス、栄養塩から成る培養
液にてStreptmycesを培養した菌体濃度1%の液
のPHを塩酸にて3.0に調整し試験に供した。 下記の凝集剤を用いて実施例1と同様の操作に
より重力過試験を行つた。 供試凝集剤
[Table] Example 3 Streptomyces was cultured in a culture solution containing glucose, yeast extract, and nutrients, and the pH of the solution was adjusted to 3.0 with hydrochloric acid, and the solution was subjected to a test. A gravity overload test was conducted in the same manner as in Example 1 using the flocculant shown below. Test flocculant

【表】【table】

【表】 試験結果【table】 Test results

【表】【table】

【表】 効 果 本発明により微生物菌体は容易に凝集し、母液
と菌体の分離効率は大幅に向上する。 その為、過助剤として従来使われてきた多量
の硅藻土が不要になる為、菌体を焼却処理する事
も可能になる。 洗浄が容易になる為、有価物の回収率も向上す
る等の利点がある。
[Table] Effects According to the present invention, microbial cells are easily aggregated, and the efficiency of separating the mother liquor and the cells is greatly improved. Therefore, a large amount of diatomaceous earth, which has been conventionally used as a super-aiding agent, is no longer necessary, and it is also possible to incinerate the bacterial cells. Since cleaning becomes easier, there are advantages such as improving the recovery rate of valuable materials.

Claims (1)

【特許請求の範囲】 1 発酵液中の微生物菌体をカチオン性高分子凝
集剤を用いて凝集させる前処理として、発酵液の
PHを2.0〜4.5に調整する事、及び、1規定食塩水
中における極限粘度が1dl/g以上のポリカルボ
ン酸塩を添加する事の2点を必須用件とする微生
物菌体の凝集分離方法。 2 カチオン性高分子凝集剤のイオン当量値が
1.5〜4.5meq/gであり、且つ1規定食塩水中に
おける極限粘度が5dl/g以上である事を特徴と
する特許請求の範囲第1項に記載する微生物菌体
の凝集分離方法。
[Claims] 1. As a pretreatment for flocculating microbial cells in the fermentation liquid using a cationic polymer flocculant,
A method for coagulating and separating microbial cells, which requires two essential requirements: adjusting the pH to 2.0 to 4.5, and adding a polycarboxylic acid salt having an intrinsic viscosity of 1 dl/g or more in 1N saline. 2 The ion equivalent value of the cationic polymer flocculant is
1.5 to 4.5 meq/g and a limiting viscosity of 5 dl/g or more in 1 normal saline.
JP18238087A 1987-07-23 1987-07-23 Separation of cell Granted JPS6427463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18238087A JPS6427463A (en) 1987-07-23 1987-07-23 Separation of cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18238087A JPS6427463A (en) 1987-07-23 1987-07-23 Separation of cell

Publications (2)

Publication Number Publication Date
JPS6427463A JPS6427463A (en) 1989-01-30
JPH046345B2 true JPH046345B2 (en) 1992-02-05

Family

ID=16117300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18238087A Granted JPS6427463A (en) 1987-07-23 1987-07-23 Separation of cell

Country Status (1)

Country Link
JP (1) JPS6427463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230073A1 (en) * 2010-11-25 2013-09-05 Carl Zeiss Smt Gmbh Method and arrangement for determining the heating condition of a mirror in an optical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138744A (en) 1999-11-18 2001-05-22 Aisin Seiki Co Ltd Sunshade for vehicle sunroof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230073A1 (en) * 2010-11-25 2013-09-05 Carl Zeiss Smt Gmbh Method and arrangement for determining the heating condition of a mirror in an optical system

Also Published As

Publication number Publication date
JPS6427463A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US6967085B1 (en) Flocculation of cell material
EP0160527B1 (en) Flocculants and processes for their preparation
US5112500A (en) Purification of aqueous liquor
US5552316A (en) Clarifying E. coli fermentation broths with a combination of anionic and cationic flocculants
CA2248479A1 (en) Starch/cationic polymer combinations as coagulants for the mining industry
CN104130351A (en) Grafted copolymerized cationic polysaccharide bioflocculant and preparation method thereof
CN104556331B (en) PAC (polyaluminium chloride)-modified sodium alginate inorganic-organic composite flocculant and preparation method thereof
EP0728705A2 (en) Method for using novel high solids polymer compositions as flocculation acids
CN102642900B (en) Method for preparing inorganic-organic composite flocculant made of polymeric aluminum and modified compound biological flocculant
JPH046345B2 (en)
JP2001129310A (en) Flocculant and sludge treatment method
CN114874445A (en) Preparation method and application of dextran-polyaspartic acid anion flocculant
JPS6144559B2 (en)
JPH0278499A (en) Treatment of sludge
JP2558185B2 (en) Solid-liquid separation method for microbial culture
JP2002177709A (en) High molecular flocculating agent and method of dehydrating sludge
WO1998058072A1 (en) Flocculation of biological material from organic acid-containing systems
JP2002177706A (en) Amphoteric high molecular flocculating agent and method of dehydrating sludge
JP6443228B2 (en) Sludge dewatering method
CN110921753B (en) Ternary graft copolymerization modified spirulina protein water quality clarifying agent and preparation method thereof
JPH0364103B2 (en)
Maa et al. The effects of dissolved and bound extracellular organic matter on polyaluminum chloride and chitosan flocculation during algae harvesting or removal
JP4781598B2 (en) Solid-liquid separation method for strongly acidic suspension
JP6600574B2 (en) Polymer flocculant, method and apparatus for dewatering sludge using polymer flocculant
CN116987217A (en) Preparation method of polyacrylamide, polyacrylamide and application