JPH0463442B2 - - Google Patents

Info

Publication number
JPH0463442B2
JPH0463442B2 JP10306383A JP10306383A JPH0463442B2 JP H0463442 B2 JPH0463442 B2 JP H0463442B2 JP 10306383 A JP10306383 A JP 10306383A JP 10306383 A JP10306383 A JP 10306383A JP H0463442 B2 JPH0463442 B2 JP H0463442B2
Authority
JP
Japan
Prior art keywords
waveform
reproduction
nωt
amplitude
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10306383A
Other languages
Japanese (ja)
Other versions
JPS59229712A (en
Inventor
Masanobu Sakaguchi
Atsushi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10306383A priority Critical patent/JPS59229712A/en
Publication of JPS59229712A publication Critical patent/JPS59229712A/en
Publication of JPH0463442B2 publication Critical patent/JPH0463442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Digital Magnetic Recording (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデジタル信号が垂直磁化記録された磁
気記録媒体をリング形磁気ヘツドを用いて再生す
る様にした磁気再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic reproducing apparatus which uses a ring-shaped magnetic head to reproduce a magnetic recording medium on which digital signals are recorded with perpendicular magnetization.

背景技術とその問題点 垂直磁化記録方式は、磁気記録媒体の磁性層の
厚み方向に磁化することによつて信号を記録する
方式であり、高密度記録が可能なことから、デジ
タル記憶への適用が注目されている。
Background technology and its problems The perpendicular magnetization recording method is a method of recording signals by magnetizing the magnetic layer of a magnetic recording medium in the thickness direction, and since high-density recording is possible, it has been applied to digital storage. is attracting attention.

垂直磁化記録方式によつて信号の記録された磁
気記録体の再生は、通常リング形磁気ヘツドを用
いて行なわれるのが普通である。これはリング形
磁気ヘツドによる再生は効率が良いからである。
Reproduction of a magnetic recording medium on which signals have been recorded using the perpendicular magnetization recording method is normally carried out using a ring-shaped magnetic head. This is because reproduction by a ring-shaped magnetic head is efficient.

さて、第1図及び第2図の夫々A、Bに、かか
る垂直磁化記録・再生方式による、比較的周波数
の低いデジタル信号及び例えば3ビツトのデジタ
ル信号の夫々記録電流波形及び再生信号波形を示
す。尚、第1図Bの波形を孤立再生波形という。
Now, A and B in FIGS. 1 and 2 respectively show recording current waveforms and reproduction signal waveforms of a relatively low frequency digital signal and, for example, a 3-bit digital signal, respectively, by the perpendicular magnetization recording/reproducing method. . The waveform shown in FIG. 1B is referred to as an isolated reproduced waveform.

第1図BNC孤立再生波形は、立上りは急崚で
あるが、その半値幅は比較的広く、しかも波形の
対称性はあまり良くない。
The BNC isolated reproduction waveform in FIG. 1 has a steep rise, but its half-width is relatively wide, and the symmetry of the waveform is not very good.

この第1図Bの孤立再生波形の振幅及び群遅延
量の周波数特性は、夫々第3図の曲線Sa1、Sgd1
に示す通りで、低域における振幅及び群遅延量の
増大並びに振幅の高域側への延びが見られる。
The frequency characteristics of the amplitude and group delay amount of the isolated reproduced waveform in FIG. 1B are the curves S a1 and S gd1 in FIG. 3, respectively.
As shown in , an increase in the amplitude and group delay amount in the low frequency range and an extension of the amplitude toward the high frequency side can be seen.

又、第2図Bに示す再生波形では、次のような
波形上の問題がある。
Furthermore, the reproduced waveform shown in FIG. 2B has the following waveform problem.

(a) 近接したパルスの相互干渉によりピーク・シ
フトが発生する。
(a) Peak shift occurs due to mutual interference of adjacent pulses.

(b) 硬化反転が3回連続した場合に、中央の磁化
反転に対応するピーク値が低下する。即ち、ピ
ーク値の不揃いが生じる。
(b) When hardening reversal occurs three times in a row, the peak value corresponding to the central magnetization reversal decreases. That is, peak values become uneven.

(c) 磁化の反転しない期間が長い場合、振幅が徐
徐に減少する。
(c) When the period without magnetization reversal is long, the amplitude gradually decreases.

かかる再生波形の波形上の問題は、時間軸変
動、ノイズ、再生磁化ヘツド及び磁気記録媒体間
の間隔の変動に伴う振幅の変動と共に、垂直磁化
記録・再生方式に於けるデジタル信号の高精度の
再生・検出及び記録の高密度化に対する障害とな
つている。
Problems with the waveform of such reproduced waveforms include amplitude fluctuations due to time axis fluctuations, noise, and changes in the spacing between the reproducing magnetized head and the magnetic recording medium, as well as problems with the high precision of digital signals in the perpendicular magnetization recording/reproducing method. This has become an obstacle to high-density reproduction, detection, and recording.

発明の目的 かかる点に鑑み、本発明はデジタル信号が垂直
磁化記録された磁気記録媒体をリング形磁気ヘツ
ドを用いて再生するようにした磁気再生装置に於
いて、デジタル信号の高精度の再生・検出及び記
録の高密度化を可能にした装置を提案しようとす
るものである。
Purpose of the Invention In view of the above, the present invention provides a magnetic reproducing apparatus that uses a ring-shaped magnetic head to reproduce a magnetic recording medium on which digital signals are perpendicularly magnetized. This paper attempts to propose a device that enables high-density detection and recording.

発明の概要 本発明による磁気再生装置は、デジタル信号が
垂直磁化記録された磁気記録媒体を再生するリン
グ形磁気ヘツドと、このリング形磁気ヘツドより
の再生出力の供給される波形等化器とを有し、こ
の波形等化器はS平面上において、 H(s)=s+a/s+b(但し、a<bかつa、b
> 0) なる伝達関数を有することを特徴とするものであ
る。
Summary of the Invention A magnetic reproducing apparatus according to the present invention includes a ring-shaped magnetic head for reproducing a magnetic recording medium on which digital signals are recorded with perpendicular magnetization, and a waveform equalizer to which the reproduction output from the ring-shaped magnetic head is supplied. This waveform equalizer has the following equation on the S plane: H(s)=s+a/s+b (where a<b and a, b
> 0).

かかる本発明によれば、デジタル信号が垂直磁
化記録された磁気記録媒体をリング形磁気ヘツド
を用いて再生するようにした磁気再生装置に於い
て、デジタル信号の高精度・再生・検出及び記録
の高密度化を可能にした装置を得ることができ
る。
According to the present invention, in a magnetic reproducing apparatus that uses a ring-shaped magnetic head to reproduce a magnetic recording medium on which digital signals are perpendicularly magnetized, high precision, reproduction, detection, and recording of digital signals can be achieved. A device that enables high density can be obtained.

実施例 先ず、第1図Bに示した孤立再生波形が、対称
且つ尖鋭となるように、これを波形等化する必要
がある。そのためには、第3図に於ける振幅及び
群遅延特性に於いて、デジタル信号の記録にとつ
て必らずしも重要でない振幅の低域成分と削り、
しかも群遅延量をできるだけ一定にする必要があ
る。
Embodiment First, it is necessary to equalize the isolated reproduction waveform shown in FIG. 1B so that it becomes symmetrical and sharp. To do this, in the amplitude and group delay characteristics shown in Figure 3, it is necessary to remove low-frequency components of the amplitude that are not necessarily important for recording digital signals.
Moreover, it is necessary to keep the group delay amount as constant as possible.

次に、波形の対称性と群遅延量の一定性との関
係について説明する。一般に、信号の波形をフー
リエ級数で表わすと、次式の如く表わされる。但
し、ωは角周波数、tは時間、ap及びan、bo
係数である。
Next, the relationship between the symmetry of the waveform and the constancy of the group delay amount will be explained. Generally, when the waveform of a signal is expressed as a Fourier series, it is expressed as shown in the following equation. However, ω is the angular frequency, t is time, and a p , an, and b o are coefficients.

E(t)=aO/2+n=1 (aocos nωt+bosin nωt)……
(1) 第4図に示すような対称な形とした孤立波E
(t)について考えると、E(t)=E(−t)であ
るから次式が成立つ。
E(t)=a O /2+ n=1 (a o cos nωt+b o sin nωt)...
(1) Solitary wave E with a symmetrical shape as shown in Figure 4
Considering (t), since E(t)=E(-t), the following equation holds true.

aO/2+n=1 {aocos nωt+bosin nωt}=aO/2+n=1 {aocos(−nωt)+bosin(−nωt)} ……(2) これを整理すると、次式のように表わされる。n=1 ao{cos(nωt)−cos(−nωt)}+n=1 bo{sin nωt−sin(−nωt)}=0 ……(3) 従つて、この(3)式から次式が得られる。a O /2+ n=1 {a o cos nωt+b o sin nωt}=a O /2+ n=1 {a o cos(−nωt)+b o sin(−nωt)} ……(2) This When rearranged, it can be expressed as the following formula. n=1 a o {cos(nωt)−cos(−nωt)}+ n=1 b o {sin nωt−sin(−nωt)}=0 ……(3) Therefore, this (3 ) gives the following equation.

n=1 2bosin nωt=0 ……(4) 即ち、定数2はn=1 の外に出せるので、n=1 bosin nωt=0 ……(5) が成り立ち、E(t)は、次式の示す如くcosの項
だけで表わされる。
n=1 2b o sin nωt=0 ……(4) That is, the constant 2 can be taken outside of n=1 , so n=1 b o sin nωt=0 ……(5) Therefore, E(t) is expressed only by the cos term as shown in the following equation.

E(t)=ap/2+n=1 aocos nωt ……(6) この結果から、独立波E(t)に対しτだけ遅
れた独立波E′(t)(第5図参照)は次式のように
表される。
E(t)=a p /2+ n=1 a o cos nωt ...(6) From this result, the independent wave E'(t) delayed by τ with respect to the independent wave E(t) (Fig. 5 reference) is expressed as the following equation.

E′(t)=ap/2+n=1 aocos nω(t−τ)……(7) この(7)式を次式のように表わすと、 E′(t)=ap/2+n=1 aocos(nωt+φo) ……(8) 位相はφoは次式のように表わされる。E′(t)=a p /2+ n=1 a o cos nω(t−τ)……(7) Expressing this equation (7) as the following equation, E′(t)=a p /2+ n=1 a o cos (nωt+φ o )...(8) The phase φ o is expressed as the following equation.

φo=−nωτ……(9) 第6図に示すように位相φoは角周波数nωに比
例し、比例係数は−τである。即ち、時間領域で
対称な独立波は直線的な位相一周波数特性を有す
ると言うことができる。更に、群遅延量は位相一
周波数特性の勾配として表わされることから、時
間領域で対称な独立波は一定の群遅延量を有する
ことが分かる。
φ o =−nωτ (9) As shown in FIG. 6, the phase φ o is proportional to the angular frequency nω, and the proportionality coefficient is −τ. That is, it can be said that independent waves that are symmetric in the time domain have linear phase-frequency characteristics. Furthermore, since the amount of group delay is expressed as the gradient of the phase-frequency characteristic, it can be seen that independent waves that are symmetric in the time domain have a constant amount of group delay.

しかして本発明では、第7図に示すように、垂
直磁気記録媒体としての磁気テープTPに垂直磁
化記録されたデジタル信号をリング形磁気ヘツド
1によつて再生し、この再生信号を増幅器2を介
して波形等化器3に供給し、出力端子4に波形等
化された再生信号を出力するものである。尚、こ
の波形等化器3は増幅器2内に組込むこともでき
る。
According to the present invention, as shown in FIG. The signal is supplied to the waveform equalizer 3 via the waveform equalizer 3, and the waveform-equalized reproduced signal is output to the output terminal 4. Note that this waveform equalizer 3 can also be incorporated into the amplifier 2.

この波形等化器3は、 H(s)=s+a/s+b(但し、a、b>0)……
(10) なる伝達関数を有する。この伝達関数H(s)は
第8図に示すように、s平面のRe軸に於いてRe
=−aに零点を、Re=−bに極を有する。
This waveform equalizer 3 has the following formula: H(s)=s+a/s+b (however, a, b>0)...
(10) has a transfer function of As shown in FIG. 8, this transfer function H(s) is expressed by R e
It has a zero point at =-a and a pole at R e =-b.

更に、a<bに選ばれる。Furthermore, a<b is selected.

次に、a<bに選ぶと好ましい理由を述べる。
波形等化器が安定となるためには、極はs平面の
左平面になくてはならないことが知られている。
従つて、b>0となる。又、等化前と独立再生波
の群遅延特性をみると、低域が遅れていることが
分かる。そこで、低域を進ませる必要があり、こ
のためには−b−a/ab<0にする必要がある。従 つて、a、b>0よりa<bを得る。
Next, the reason why it is preferable to select a<b will be described.
It is known that for a waveform equalizer to be stable, the pole must be in the left plane of the s-plane.
Therefore, b>0. Furthermore, when looking at the group delay characteristics of the independent reproduction wave before equalization, it can be seen that the low range is delayed. Therefore, it is necessary to advance the low frequency range, and for this purpose, it is necessary to set -ba/ab<0. Therefore, a<b is obtained from a, b>0.

実際の独立再生波について検討した結果、a、
bは夫々106〜108ラジアン/secの範囲にあり、
bはaに対して数倍〜数10倍程度の大きい値であ
る。尚、a、bの単位は角周波数と同じラジア
ン/secである。
As a result of considering actual independent reproduction waves, a,
b is in the range of 10 6 to 10 8 rad/sec, respectively;
b is a value several times to several ten times larger than a. Note that the unit of a and b is radian/sec, which is the same as the angular frequency.

第9図にかかる波形等化器3の一具体例(単調
減少形等化器)を示す。t11、t12は入力端子、t21
t22は出力端子で、端子t12、t22は共通端子として
直結されている。入出力端子t11、t21間にコンデ
ンサ(容量をcとする)5、抵抗器(抵抗値をr
とする)6及び直列接続された抵抗器(抵抗値を
1<正規化されている>とする)7,8から成る
並列回路9が接続される。更に、抵抗器7,8の
接続中点と共通端子t12、t22との間に、抵抗器
(抵抗値をr′とする)10及びインダクタンス
(インダクタンスをlとする)11から成る直列
回路12が接続される。
A specific example (monotonic decreasing equalizer) of the waveform equalizer 3 shown in FIG. 9 is shown. t 11 , t 12 are input terminals, t 21 ,
t 22 is an output terminal, and terminals t 12 and t 22 are directly connected as a common terminal. Between the input and output terminals t11 and t21 , there is a capacitor (capacitance is c)5, a resistor (resistance value is r)
A parallel circuit 9 is connected, which consists of a resistor 7, 8 (assuming the resistance value is 1<normalized>) connected in series. Furthermore, a series circuit consisting of a resistor (resistance value is r') 10 and an inductance (inductance is l) 11 is connected between the connection midpoint of the resistors 7 and 8 and the common terminals t 12 and t 22 . 12 are connected.

次に、上述の(10)式に示した伝達関数の諸特性に
ついて説明する。先ず、(10)式の伝達関数を、その
sをjωに置換えて示すと、次式の如く表わされ
る。
Next, various characteristics of the transfer function shown in equation (10) above will be explained. First, when the transfer function in equation (10) is shown by replacing s with jω, it is expressed as in the following equation.

H(jω)=jω+a/jω+b ……(11) 又、この伝達関数H(jω)の振幅|H(jω)|、
位相φ(ω)及び群遅延量D(ω)は夫々次の各式
に示す通りである。
H(jω)=jω+a/jω+b...(11) Also, the amplitude of this transfer function H(jω) |H(jω)|,
The phase φ(ω) and the group delay amount D(ω) are as shown in the following equations, respectively.

φ(ω)=tan-1(b−a)ω/ω2.+ab ……(13) D(ω)=(b−a)・ω2−ab/(ω2+a2)(ω2
+b2)…… (14) 第10に(12)式の振幅|H(jω)|の角周波
数特性をグラフにて表わす。第10図では、ω<
aのときと振幅はω>の振幅のa/b倍になつてい る。これは孤立再生波の低域成分を減らし、パル
ス幅を狭くすることに対応する。
φ(ω)=tan -1 (b-a)ω/ ω2 .+ab...(13) D(ω)=(b-a)・ω2 - ab/( ω2 + a2 )( ω2
+b 2 )... (14) Tenthly, the angular frequency characteristic of the amplitude |H(jω)| in equation (12) is expressed in a graph. In Figure 10, ω<
When a, the amplitude is a/b times the amplitude of ω>. This corresponds to reducing the low frequency components of the isolated reproduction wave and narrowing the pulse width.

第11図に(14)式の群遅延量D(ω)の角周
波数特性をグラフにて表わす。第11図では、ω
>√のときの群遅延量に対応するω<√の
ときの遅延量の差を略−b−a/abにする。これは 孤立再生波の低域成分をb−a/abだけ時間的に進 ませることを意味する。
FIG. 11 shows a graph of the angular frequency characteristic of the group delay amount D(ω) in equation (14). In Figure 11, ω
The difference in the delay amount when ω<√, which corresponds to the group delay amount when >√, is set to approximately −ba/ab. This means that the low frequency component of the isolated reproduction wave is advanced in time by b-a/ab.

次に、第9図に示した波形等化器3の設計例を
説明する。
Next, a design example of the waveform equalizer 3 shown in FIG. 9 will be explained.

a、bの値として a=8.7702×106 b=7.4924×107 が得られたとする。かくすると、伝達関数H(s)
は次式のように表わされる。
Assume that a=8.7702×10 6 b=7.4924×10 7 are obtained as the values of a and b. Thus, the transfer function H(s)
is expressed as the following equation.

H(s)s+8.7702×106/s+7.4924×107……(
15) この伝達関数H(s)は第9図の回路で実現で
きる。この第9図の回路の伝達関数H′(s)は次
式のように表わされる。
H(s)s+8.7702×10 6 /s+7.4924×10 7 ……(
15) This transfer function H(s) can be realized by the circuit shown in FIG. The transfer function H'(s) of the circuit shown in FIG. 9 is expressed as follows.

H′(s)=s+(1−α)ω0/s+(1+α)ω0
……(16) かくして、第9図の各定数c、r、r′、lは
夫々次の式のように表わされる。
H'(s)=s+(1-α)ω 0 /s+(1+α)ω 0
...(16) Thus, each of the constants c, r, r', and l in FIG. 9 can be expressed as the following equations.

c=1/2αω0 ……(17) r=2α/1−α ……(18) r′=1/r ……(19) l=1/2αω0 ……(20) (15)〜(20)式から、c、r、r′、lは夫々
次の値を採る。
c=1/2αω 0 …(17) r=2α/1−α …(18) r′=1/r …(19) l=1/2αω 0 …(20) (15)~( 20) From the formula, c, r, r', and l each take the following values.

c=1.51×10-8、r=7.54 r′=0.133、l=1.51×10-8 従つて、第9図の抵抗値が1の抵抗器7,8の
抵抗を現実的な値50Ωにとれば、c、r、r′、l
は夫々次のような値になる。
c = 1.51 x 10 -8 , r = 7.54 r' = 0.133, l = 1.51 x 10 -8 Therefore, the resistance of resistors 7 and 8 with a resistance value of 1 in Fig. 9 should be set to a realistic value of 50Ω. If, c, r, r', l
have the following values:

c=1.51×10-8/50=302(pF) r=7.54×50=377(Ω) r′=0.133×50=6.65(Ω) l=1.51×10-8×50=0.755(μH) 上述せる波形等化器3によつて、第1図Bの孤
立再生波形を波形等化すると、第12図に示す如
く、対称且つ細くすることができる。第12図に
於いて、Paが等化前の孤立再生波形を、Pbが等
化後の孤立再生波形を夫々示す。
c = 1.51 x 10 -8 /50 = 302 (pF) r = 7.54 x 50 = 377 (Ω) r' = 0.133 x 50 = 6.65 (Ω) l = 1.51 x 10 -8 x 50 = 0.755 (μH) Above When the isolated reproduced waveform shown in FIG. 1B is equalized by the waveform equalizer 3, it can be made symmetrical and thin as shown in FIG. In FIG. 12, P a indicates an isolated reproduced waveform before equalization, and P b indicates an isolated reproduced waveform after equalization.

又、この等化後の孤立再生波形の振幅及び群遅
延量と周波数特性は、夫々第13図の曲線Sa2
Sgd2に示す通りで、低域における振幅及び群遅延
量の低下が実現される。
Also, the amplitude, group delay amount, and frequency characteristics of the isolated reproduced waveform after equalization are shown by the curves S a2 and F a2 in FIG. 13, respectively.
As shown in S gd2 , the amplitude and group delay amount in the low frequency range are reduced.

又、上述せる波形等化器3によつて、第2図B
の3ビツトのデジタル信号の再生波形を波形等化
すると、 (a)′ 近接したパルスの相互干渉によるピークシ
フト量が減少する。
Furthermore, by the waveform equalizer 3 described above, the waveform equalizer 3 shown in FIG.
When the reproduced waveform of the 3-bit digital signal is waveform-equalized, (a)' the amount of peak shift due to mutual interference of adjacent pulses is reduced.

(b)′ 磁化反転が連続しても、波形のピーク値が
互いに等しくなる。
(b)′ Even if magnetization reversals occur continuously, the peak values of the waveforms are equal to each other.

(c)′ 磁化の反転しない期間の出力は零になる。
即ち、一定となる。
(c)′ During the period when magnetization does not reverse, the output becomes zero.
In other words, it remains constant.

発明の効果 上述せる本発明によれば、デジタル信号が垂直
磁化記録された磁気記録媒体をリング形磁気ヘツ
ドを用いて再生するようにした磁気再生装置に於
いて、デジタル信号の高精度の再生・検出及び記
録の高密度化を可能にした装置を得ることができ
る。
Effects of the Invention According to the present invention described above, in a magnetic reproducing apparatus that uses a ring-shaped magnetic head to reproduce a magnetic recording medium on which digital signals are recorded with perpendicular magnetization, highly accurate reproduction and reproduction of digital signals can be achieved. A device that enables high-density detection and recording can be obtained.

かくして、本発明によれば、近接したパルスの
相互干渉によるピークシフト量が減少し、磁化反
転が連続しても、波形のピーク値が互いに等しく
なり、磁化の反転しない期間の出力が零、即ち一
定になる再生波信号を得ることができる。
Thus, according to the present invention, the amount of peak shift due to mutual interference of adjacent pulses is reduced, and even if magnetization reversal occurs continuously, the peak values of the waveforms become equal to each other, and the output during the period in which magnetization is not reversed is zero, i.e. A constant reproduced wave signal can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々従来の磁気再生装置の
説明に供する波形図、第3図は従来の磁気再生装
置の説明に供する特性曲線図、第4図及び第5図
は夫々本発明の説明に供する波形図、第6図は本
発明の説明に供する特性曲線図、第7図は本発明
による磁気再生装置の一実施例を示すブロツク線
図、第8図は第7図の磁気再生装置の波形等化器
の伝達関数の説明のためのグラフ、第9図は第7
図の磁気再生装置の波形等化器の一例を示す回路
図、第10図及び第11図は夫々本発明の説明に
供する特性曲線図、第12図は本発明の説明に供
する波形図、第13図は本発明の説明に供する特
性曲線図、第14図は本発明の説明に供する波形
図である。 1はリング形磁気ヘツド、3は波形等化器であ
る。
1 and 2 are waveform diagrams for explaining the conventional magnetic reproducing device, FIG. 3 is a characteristic curve diagram for explaining the conventional magnetic reproducing device, and FIG. 4 and 5 are for explaining the conventional magnetic reproducing device, respectively. FIG. 6 is a waveform diagram for explanation, FIG. 6 is a characteristic curve diagram for explanation of the present invention, FIG. 7 is a block diagram showing an embodiment of the magnetic reproducing device according to the present invention, and FIG. 8 is a magnetic reproduction diagram of FIG. 7. A graph for explaining the transfer function of the waveform equalizer of the device, FIG.
FIGS. 10 and 11 are characteristic curve diagrams for explaining the present invention, respectively. FIG. 12 is a waveform diagram for explaining the present invention, and FIG. FIG. 13 is a characteristic curve diagram for explaining the present invention, and FIG. 14 is a waveform diagram for explaining the present invention. 1 is a ring-shaped magnetic head, and 3 is a waveform equalizer.

Claims (1)

【特許請求の範囲】 1 デジタル信号が垂直磁化記録された磁気記録
媒体を再生するリング形磁気ヘツドと、該リング
形磁気ヘツドよりの再生出力の供給される波形等
化器とを有し、該波形等化器は、s平面上におい
て、 H(s)=s+a/s+b(但し、a<bかつa、b
> 0) なる伝達関数を有することを特徴とする磁気再生
装置。
[Scope of Claims] 1. A ring-shaped magnetic head for reproducing a magnetic recording medium on which a digital signal is recorded with perpendicular magnetization, and a waveform equalizer to which the reproduction output from the ring-shaped magnetic head is supplied; The waveform equalizer has the following equation on the s plane: H(s)=s+a/s+b (where a<b and a, b
> 0) A magnetic reproducing device characterized in that it has a transfer function.
JP10306383A 1983-06-09 1983-06-09 Magnetic reproducer Granted JPS59229712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10306383A JPS59229712A (en) 1983-06-09 1983-06-09 Magnetic reproducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10306383A JPS59229712A (en) 1983-06-09 1983-06-09 Magnetic reproducer

Publications (2)

Publication Number Publication Date
JPS59229712A JPS59229712A (en) 1984-12-24
JPH0463442B2 true JPH0463442B2 (en) 1992-10-09

Family

ID=14344207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10306383A Granted JPS59229712A (en) 1983-06-09 1983-06-09 Magnetic reproducer

Country Status (1)

Country Link
JP (1) JPS59229712A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358664A (en) * 1986-08-29 1988-03-14 Sony Corp Digital magnetic reproducer

Also Published As

Publication number Publication date
JPS59229712A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
EP0081240A2 (en) Thin film magnetic head
US5504633A (en) Apparatus, having a variable equalizer, for reproducing a digital signal from a record carrier
JPH0443349B2 (en)
EP0535737B1 (en) Arrangement for reproducing a digital signal from a track on a magnetic record carrier using a read head with a MR element
US4264935A (en) Balanced tapped delay line spectral shaping differentiation circuit for signal detection
US4973915A (en) Feed forward differential equalizer for narrowing the signal pulses of magnetic heads
US4319288A (en) Current injection tapped delay line spectral shaping equalizer and differentiator
JPH079683B2 (en) Waveform equalizer
US4635143A (en) Waveform equalizer for signal reproduced from magnetic recording medium
US4755891A (en) Circuit for processing waveform of reproduced signal in magnetic reproducing apparatus
US4644424A (en) Equalizer used for magnetic storage device
US4875112A (en) Compound pulse dimming circuitry for conditioning readback signals
JPH0463442B2 (en)
KR100210542B1 (en) Data recording apparatus
Langland Phase equalization for perpendicular recording
JPH0228924B2 (en)
JP3167311B2 (en) Multi-signal conversion element and recording / reproducing device
JPS6199906A (en) Waveform equalizing circuit
JP2609686B2 (en) Digital magnetic recording / reproducing device
JPH0142559B2 (en)
JP2650278B2 (en) Waveform shaping circuit
JP2612317B2 (en) Magnetic recording / reproducing device
EP0585991B1 (en) Arrangement for reproducing a digital signal from a record carrier, comprising a variable equalizer
JPS5863218A (en) Equalizer
JPS61289505A (en) Digital magnetic reproducing circuit