JPH0463415A - Positioning mark and formation thereof - Google Patents
Positioning mark and formation thereofInfo
- Publication number
- JPH0463415A JPH0463415A JP2175878A JP17587890A JPH0463415A JP H0463415 A JPH0463415 A JP H0463415A JP 2175878 A JP2175878 A JP 2175878A JP 17587890 A JP17587890 A JP 17587890A JP H0463415 A JPH0463415 A JP H0463415A
- Authority
- JP
- Japan
- Prior art keywords
- mark
- wafer
- mask
- film
- metal film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title description 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 39
- 239000010409 thin film Substances 0.000 abstract description 6
- 238000002310 reflectometry Methods 0.000 abstract 2
- 235000012431 wafers Nutrition 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 229910008940 W(CO)6 Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、X線マスクとウェハとの相対位置合わせに用
いる、ウェハ上に形成される位置合わせマーク(以下、
マークという)及びその形成方法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to alignment marks (hereinafter referred to as
mark) and its formation method.
LSIの高密度化に従ってウェハ上に形成されるICパ
ターンはサブミクロン領域に達しており、ウェハ上にパ
ターン転写される際に用いられる露光用光源も従来のg
線、i線から更に短波長領域のdeepUV或いはX線
か検討されている。このようなICパターンの微細化に
伴ってX線マスクパターンとウェハパターンとの相対位
置合わせ精度もますます高精度化が要求され、ウェハ上
に形成されるマークも、高精度の相対位置合わせが実現
できるように特別な工夫が必要になってきている。As the density of LSI increases, the IC patterns formed on wafers have reached the submicron range, and the exposure light source used to transfer the patterns onto the wafers has also changed from the conventional g
Deep UV or X-rays in a shorter wavelength region than the i-rays and i-rays are being considered. With the miniaturization of IC patterns, the relative positioning accuracy between the X-ray mask pattern and the wafer pattern is also required to be increasingly precise, and the marks formed on the wafer are also required to have high-precision relative positioning. Special efforts are needed to make this a reality.
X線マスクとウェハとの相対位置合わせを行なう場合、
X線マスク上にリニア・フレネル・ゾーン・プレーh
(LFZP)を形成する一方、ウェハに線状回折格子(
マーク)を形成し、レーザ光をX線マスクのLFZPに
当ててウエノ1上の回折格子(マーク)に集光させ、回
折格子(マーク)による反射回折光を検出することによ
ってLFZPと回折格子(マーク)との相対位置ずれ(
つまり、X線マスクとウェハとの相対位置ずれ)を検出
している。このようなLFZPを用いた位置合わせ方法
は、例えば、1日経マイクロデバイス11986年4月
号第123頁〜第127頁、特開平1−106427号
公報等に示されている。When performing relative positioning between the X-ray mask and the wafer,
Linear Fresnel zone play on x-ray mask
(LFZP), while forming a linear diffraction grating (LFZP) on the wafer.
The laser beam is applied to the LFZP of the X-ray mask, focused on the diffraction grating (mark) on Ueno 1, and the reflected diffraction light from the diffraction grating (mark) is detected. mark) and relative positional deviation (
In other words, the relative positional deviation between the X-ray mask and the wafer is detected. Such a positioning method using LFZP is shown in, for example, Nikkei Microdevice, April 11986 issue, pages 123 to 127, and Japanese Patent Application Laid-open No. 1-106427.
第3図はLFZPを用いてアライメント信号(位置合わ
せ用信号)を得る様子を示す図である。FIG. 3 is a diagram showing how an alignment signal (positioning signal) is obtained using LFZP.
X線マスクlには吸収体等の不透過部と透過部とにてL
FZP2が形成されており、一方、ウェハ3には例えば
酸化シリコンや窒化シリコン等にて線状回折格子(マー
ク)4が形成されており、LFZP2に平行レーザ光5
を照射する。ここで、LFZP2に入射したレーザ光5
はウニl−3表面で集魚を結び、スリット状の像を作る
。この結像したスリット像と回折格子(マーク)4とか
一直線上に重なるとレーザ光5は回折して再びLFZP
2を通って平行光となり、デテクタ(図示せず)にてア
ライメント信号を取出すことかできる。The X-ray mask L has an opaque part such as an absorber and a transparent part.
On the other hand, a linear diffraction grating (mark) 4 is formed on the wafer 3 using, for example, silicon oxide or silicon nitride, and a parallel laser beam 5 is formed on the LFZP2.
irradiate. Here, the laser beam 5 incident on LFZP2
connects the fish on the surface of the sea urchin L-3, creating a slit-shaped image. When the formed slit image and the diffraction grating (mark) 4 overlap in a straight line, the laser beam 5 is diffracted and returns to the LFZP.
2, the light becomes parallel light, and an alignment signal can be extracted by a detector (not shown).
このようなLFZP2及び回折格子(マーク)4は夫々
マスクl、ウェハ3に3個所ずつ設けられており、これ
ら4個所から得られるアライメント信号を解析すること
によってマスク1とウェハ3との相対位置ずれを検出し
、これによってこれらの相対位置合わせを行なう。The LFZP 2 and the diffraction grating (mark) 4 are provided at 3 locations on the mask 1 and the wafer 3, respectively, and by analyzing the alignment signals obtained from these 4 locations, the relative positional deviation between the mask 1 and the wafer 3 can be determined. , and thereby perform their relative positioning.
従来の回折格子(マーク)4は酸化シリコン又は窒化シ
リコン等にて形成されており、その膜厚と反射光強度と
の関係は第4図に示す如くであり、回折格子(マーク)
4の膜厚とレーザ光5の波長とにより生じる定在液によ
る反射光強度にはかなりの変動があることがわかる。従
って、反射光強度か最大に得られる膜厚に正確に形成し
ないとアライメント信号を十分に得られないことになる
。The conventional diffraction grating (mark) 4 is made of silicon oxide or silicon nitride, and the relationship between its film thickness and reflected light intensity is as shown in FIG.
It can be seen that there is considerable variation in the intensity of light reflected by the standing liquid depending on the film thickness of 4 and the wavelength of laser light 5. Therefore, unless the film is formed accurately to a thickness that maximizes the intensity of reflected light, a sufficient alignment signal cannot be obtained.
又、回折格子(マーク)4の材料の屈折率とこれを被覆
するレジスト膜(図示せず)の材料の屈折率とが略等し
い場合には反射光強度が低下し、この場合にもアライメ
ント信号を十分に得られない。Further, when the refractive index of the material of the diffraction grating (mark) 4 and the refractive index of the material of the resist film (not shown) covering it are approximately equal, the intensity of the reflected light decreases, and in this case as well, the alignment signal I can't get enough of it.
このように、回折格子(マーク)4の膜厚を正確に形成
できなかった場合や回折格子(マーク)4の屈折率がレ
ジスト膜のそれと同じである場合には十分なアライメン
ト信号を得ることができず、LFZP2と回折格子(マ
ーク)4との位置合わせに誤差を生じることになり、そ
の結果としてマスク1とウェハ3との相対位置合わせを
正確に行なうことができない問題点があった。In this way, if the film thickness of the diffraction grating (mark) 4 cannot be formed accurately or if the refractive index of the diffraction grating (mark) 4 is the same as that of the resist film, it is difficult to obtain a sufficient alignment signal. This results in an error in the alignment between the LFZP 2 and the diffraction grating (mark) 4, and as a result, there is a problem in that the relative alignment between the mask 1 and the wafer 3 cannot be performed accurately.
本発明は、反射光強度を十分に得てSN比の高いアライ
メント信号を得ることができる位置合わせマークを提供
することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an alignment mark that can obtain a sufficient reflected light intensity and an alignment signal with a high signal-to-noise ratio.
第1図は本発明の原理説明図を示す。同図中、13は回
折格子(マーク)で、高反射率を有する金属膜で形成さ
れている。その製造に際し、基板10上にマークを形成
するためのレジストパターン(図示せず)を形成する工
程と、このレジストパターン(図示せず)に高反射率を
有する金属膜を被着し、このレジストパターンをリフト
オフして高反射率金属膜のマーク13を得る工程とを含
む。FIG. 1 shows a diagram explaining the principle of the present invention. In the figure, 13 is a diffraction grating (mark), which is made of a metal film with high reflectance. The manufacturing process includes a step of forming a resist pattern (not shown) for forming a mark on the substrate 10, and a step of coating this resist pattern (not shown) with a metal film having a high reflectance. The method includes a step of lifting off the pattern to obtain marks 13 of a high reflectance metal film.
本発明では、回折格子(マーク)13を高反射率金属膜
にて形成したため、膜厚に依存することなく十分に高い
反射光強度を得ることができ、十分な大きさのアライメ
ント信号を得ることができ、マーク13部分の反射光強
度と薄膜11部分の反射光強度との差を十分にとること
ができ、マスクとウェハとの相対位置合わせを高精度に
行なうことができる。又、マーク及びこれを被覆するレ
ジスト膜14の夫々屈折率を考慮に入れる必要がなく、
十分な大きさのアライメント信号を得ることができる。In the present invention, since the diffraction grating (mark) 13 is formed of a high reflectance metal film, it is possible to obtain a sufficiently high reflected light intensity without depending on the film thickness, and to obtain a sufficiently large alignment signal. This allows a sufficient difference between the intensity of the reflected light at the mark 13 portion and the intensity of the reflected light at the thin film 11 portion to be maintained, allowing for highly accurate relative alignment between the mask and the wafer. Further, there is no need to take into account the refractive index of the mark and the resist film 14 covering it.
An alignment signal of sufficient size can be obtained.
第2図は本発明の一実施例を製造する際の製造工程図を
示す。同図(A)において、シリコン基板10上に例え
ば酸化シリコンやPSG等の薄膜11を被着する。次に
同図(B)において、表面にレジスト膜12を形成し、
後でマークを形成するためにレジスト膜12の所定個所
に孔12aを形成する。これは、g線やi線、又は電子
ビーム、又はX線等を用いた転写によって形成される。FIG. 2 shows a manufacturing process diagram for manufacturing an embodiment of the present invention. In FIG. 1A, a thin film 11 of silicon oxide, PSG, or the like is deposited on a silicon substrate 10. As shown in FIG. Next, in the same figure (B), a resist film 12 is formed on the surface,
Holes 12a are formed at predetermined locations in the resist film 12 in order to form marks later. This is formed by transfer using g-rays, i-rays, electron beams, X-rays, or the like.
次に同図(C)に示す如く、レジスト膜(レジストパタ
ーン)12をマスクにして薄膜11をエツチングする。Next, as shown in FIG. 2C, the thin film 11 is etched using the resist film (resist pattern) 12 as a mask.
以上の同図(A)〜(C)の工程は、このウェハ上にお
いてICパターン(図示せず)を形成するのと同時に行
なわれる。The above steps (A) to (C) in the same figure are performed at the same time as forming an IC pattern (not shown) on this wafer.
続いて同図(D)において、孔12aの周辺に例えばタ
ングステン等の高反射金属膜13aを被着する。この高
反射金属膜13の形成は、W(CO)6ガスを用い、G
aイオンによるFIB(集束イオンビーム)成長によっ
て行なわれる。このとき、孔12aの内部の他、レジス
ト膜12の表面にも高反射金属膜13aか形成されてし
まう。Subsequently, in FIG. 1D, a highly reflective metal film 13a made of, for example, tungsten is deposited around the hole 12a. This highly reflective metal film 13 is formed using W(CO)6 gas and G
This is done by FIB (focused ion beam) growth using a-ions. At this time, a highly reflective metal film 13a is formed not only inside the hole 12a but also on the surface of the resist film 12.
次に、レジスト膜(レジストパターン)12をレジスト
剥離液にて除去し、同図(E)に示すように高反射金属
膜13(回折格子(マーク))を得る。続いて同図(F
)に示す如く、表面にまた新たなICパターン形成のた
めのレジスト膜14を形成する。Next, the resist film (resist pattern) 12 is removed using a resist stripping solution to obtain a highly reflective metal film 13 (diffraction grating (mark)) as shown in FIG. Next, the same figure (F
), a resist film 14 for forming a new IC pattern is formed on the surface.
ここで、同図(F)に示す如く、回折格子(マーク)を
高反射金属膜13にて形成したため、高反射金属膜13
の部分におけるビーム光5の反射光強度は、高反射金属
膜13がある程度以上の膜厚を有していればその膜厚に
依存することなく十分高く得られ、十分な大きさのSN
比の高いアライメント信号を得ることができる。これに
より、高反射金属膜13の部分における反射光強度と薄
膜11の部分における反射光強度との差を十分にとるこ
とができ、マスクとウェハとの相対位置合わせを高精度
に行なうことができる。又、回折格子(マーク)13は
高反射金属膜にて形成されているため、従来例のように
回折格子(マーク)及びレジスト膜14の夫々の屈折率
を考慮に入れる必要がなく、十分な大きさのアライメン
ト信号を得ることができる。Here, as shown in FIG.
The reflected light intensity of the beam light 5 in the part can be obtained sufficiently high without depending on the film thickness if the high-reflection metal film 13 has a film thickness above a certain level, and a sufficiently large SN
It is possible to obtain an alignment signal with a high ratio. As a result, a sufficient difference can be made between the intensity of reflected light at the highly reflective metal film 13 and the intensity of reflected light at the thin film 11, and the relative alignment between the mask and the wafer can be performed with high precision. . In addition, since the diffraction grating (mark) 13 is formed of a highly reflective metal film, there is no need to take into account the respective refractive indices of the diffraction grating (mark) and the resist film 14 as in the conventional example. A magnitude alignment signal can be obtained.
以上説明した如く、本発明によれば、高反射率金属膜で
マークを形成したため、その膜厚やこれを被覆するレジ
スト膜に依存しないでSN比の高いアライメント信号を
得ることかでき、マスクとウェハとの相対位置合わせを
高精度に行なうことができる。As explained above, according to the present invention, since the mark is formed with a high reflectance metal film, it is possible to obtain an alignment signal with a high S/N ratio without depending on the film thickness or the resist film covering it. Relative positioning with the wafer can be performed with high precision.
第1図は本発明の原理説明図、
第2図は本発明の一実施例を製造する際の製造工程図、
第3図はLFZ、Pを用いてアライメント信号を得る様
子を示す図、
第4図は従来例における回折格子の厚さと反射光強度と
の関係を示す図である。
図において、
5はレーザ光、
10はシリコン基板、
11は薄膜、
12はレジスト膜(レジストパターン)、12aは孔、
13は高反射率金属膜(回折格子(マーク)13aは高
反射率金属膜、
14はレジスト膜
を示す。
特許出願人 富 士 通 株式会社
l\−11
(A)
第2
図
、10
本発明の原理説明図
第1図
LFZPを用いてアライメント信号を得る様子を示す同
第3図
回折格子の厚さ
来例における回折格子の厚さと反射光強度との関係を示
す図第4図FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a manufacturing process diagram for manufacturing an embodiment of the present invention. FIG. 3 is a diagram showing how to obtain an alignment signal using LFZ, P. FIG. 4 is a diagram showing the relationship between the thickness of a diffraction grating and the intensity of reflected light in a conventional example. In the figure, 5 is a laser beam, 10 is a silicon substrate, 11 is a thin film, 12 is a resist film (resist pattern), 12a is a hole, 13 is a high reflectance metal film (diffraction grating (mark) 13a is a high reflectance metal film) , 14 indicates a resist film. Patent applicant: Fujitsu Ltd. l\-11 (A) FIGS. 2 and 10 A diagram explaining the principle of the present invention. FIG. Figure 3 Thickness of the diffraction grating Figure 4 shows the relationship between the thickness of the diffraction grating and the reflected light intensity in the conventional example
Claims (2)
の相対位置合わせに用いる格子状の位置合わせマークに
おいて、 高反射率を有する金属膜(13)にて形成してなること
を特徴とする位置合わせマーク。(1) In the grid-like positioning mark used for relative positioning with the mask on which the Fresnel zone plate is formed, positioning is characterized by being formed of a metal film (13) having high reflectance. mark.
の相対位置合わせに用いる格子状の位置合わせマークの
形成方法において、 基板(10)上にマークを形成するためのレジストパタ
ーン(12)を形成する工程と、 該レジストパターン(12)に高反射率を有する金属膜
(13a)を被着し、該レジストパターン(12)をリ
フトオフしてマーク(13)を得る工程と を含むことを特徴とする位置合わせマークの形成方法。(2) In the method for forming a grid-like alignment mark used for relative alignment with a mask on which a Fresnel zone plate is formed, a resist pattern (12) for forming a mark is formed on a substrate (10). and a step of depositing a metal film (13a) having a high reflectance on the resist pattern (12) and lifting off the resist pattern (12) to obtain a mark (13). How to form alignment marks.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175878A JPH0463415A (en) | 1990-07-03 | 1990-07-03 | Positioning mark and formation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175878A JPH0463415A (en) | 1990-07-03 | 1990-07-03 | Positioning mark and formation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0463415A true JPH0463415A (en) | 1992-02-28 |
Family
ID=16003792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2175878A Pending JPH0463415A (en) | 1990-07-03 | 1990-07-03 | Positioning mark and formation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0463415A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7265021B2 (en) | 2004-01-21 | 2007-09-04 | Seiko Epson Corporation | Alignment method, method for manufacturing a semiconductor device, substrate for a semiconductor device, electronic equipment |
-
1990
- 1990-07-03 JP JP2175878A patent/JPH0463415A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7265021B2 (en) | 2004-01-21 | 2007-09-04 | Seiko Epson Corporation | Alignment method, method for manufacturing a semiconductor device, substrate for a semiconductor device, electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3239976B2 (en) | Alignment mark, method of manufacturing semiconductor device, and semiconductor device | |
EP1395877B1 (en) | Lithographic method of manufacturing a device | |
JPH07192997A (en) | X-ray mask structure, manufacture of x-ray mask structure, apparatus and method for x-ray exposure using this x-ray mask structure as well as semiconductor device manufactured by using this x-ray exposure method | |
KR100223325B1 (en) | Method for manufacturing fine pattern of semiconductor device | |
KR900003254B1 (en) | X-ray exposure masks | |
JP3009749B2 (en) | Semiconductor device forming method and device forming apparatus using electron beam exposure machine | |
US5334466A (en) | X-ray mask and process comprising convex-concave alignment mark with alignment reflection film | |
US5849438A (en) | Phase shift mask and method for fabricating the same | |
US5375157A (en) | X-ray mask structure and a production method thereof, an exposure method using the X-ray mask structure, and a device fabricated by using the X-ray mask structure | |
JPH0450730B2 (en) | ||
JPS6275442A (en) | Deciding method for exposure amount of photosensitive lacquer layer | |
KR20010087436A (en) | A method of forming an alignment feature in or on a multi-layered semiconductor structure | |
US6850858B1 (en) | Method and apparatus for calibrating a metrology tool | |
JPS63170917A (en) | Formation of fine pattern | |
JPS63216052A (en) | Exposing method | |
JPH0463415A (en) | Positioning mark and formation thereof | |
TWI689987B (en) | Euv patterning using photomask substrate topography | |
JP2801270B2 (en) | How to make a mask | |
JP2677011B2 (en) | Method of forming fine pattern | |
JP2622318B2 (en) | X-ray exposure mask | |
JP3166803B2 (en) | X-ray exposure mask | |
JPH05142751A (en) | Photomask and projection exposure method | |
JPH07254546A (en) | Positioning mark | |
KR100209370B1 (en) | Mask used measuring overlap and manufacturing method of overlap mark | |
JPH07130645A (en) | Mask for x-ray exposure and x-ray aligner using same |