JPH0463135A - Liquid phase synthesis of ceramics - Google Patents

Liquid phase synthesis of ceramics

Info

Publication number
JPH0463135A
JPH0463135A JP2169869A JP16986990A JPH0463135A JP H0463135 A JPH0463135 A JP H0463135A JP 2169869 A JP2169869 A JP 2169869A JP 16986990 A JP16986990 A JP 16986990A JP H0463135 A JPH0463135 A JP H0463135A
Authority
JP
Japan
Prior art keywords
fine powder
ceramic
laser light
source material
phase synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2169869A
Other languages
Japanese (ja)
Inventor
Takashi Ogawa
高志 小川
Yukie Okabe
岡部 幸恵
Hiroshi Yamaguchi
宏 山口
Tadashi Fujitani
藤谷 義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2169869A priority Critical patent/JPH0463135A/en
Publication of JPH0463135A publication Critical patent/JPH0463135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To continuously produce homogeneous ceramic fine powder in large amt. by irradiating the ceramic source material dissolved in a solvent with UV laser light. CONSTITUTION:A reaction chamber 2 such as quartz which is transparent for UV laser light is irradiated with UV laser light. The ceramic source material in a dissolved state in a liquid phase is continuously supplied from the source material supplier 1 to the reaction chamber 2 to produce a fine powder material in the chamber. The obtd, fine powder is discharged with the solvent from the reaction chamber 2 and recovered by the use of a solid--liquid separator 3 such as centrifugal filter. The unreacted source liquid separated by the solid- liquid separator 3 is again sent to the source material supplier 1. The particle size, etc., of the obtd, fine powder can be controlled by the intensity, irradiation time, wavelength, etc., of the laser light to be used for irradiation. The obtd, ceramic fine powder has 2-10mum particle size, especially 3-5mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、紫外レーザ光を液相状態にあるセラミック
ス原料に照射して、セラミックス微粉体を製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing ceramic fine powder by irradiating a ceramic raw material in a liquid phase with ultraviolet laser light.

〔従来の技術〕[Conventional technology]

従来のセラミックス微粉体の製造技術は気相合成法と液
相合成法に大別される。気相合成法は金属あるいは非金
属蒸気と反応ガスから気相でセラミックス微粉体を製造
する方法であり、ガス中蒸発法、狭義の気相合成法、気
相酸化法等がある。
Conventional techniques for producing fine ceramic powder are broadly divided into vapor phase synthesis and liquid phase synthesis. The vapor phase synthesis method is a method for producing ceramic fine powder in the vapor phase from metal or nonmetal vapor and a reaction gas, and includes evaporation in gas, vapor phase synthesis in a narrow sense, vapor phase oxidation, and the like.

気相合成法の1つであるガス中蒸発法においては、密閉
系の反応装置内部と10−’ l−−ル以下の高真空に
排気したのち、不活性ガスと酸素、窒素またはアンモニ
ア、メタン系炭化水素等の反応ガスを数十トール導入す
る。そして、あらかじめ反応装置内にセットされた金属
あるいは非金属原料と加熱蒸発させて、反応ガスと反応
させ、微粉体を製造する。この方法によりZnO1Af
N、Si:+N4、BN、TiC等の微粉セラミックス
が得られる。狭義の気相合成法は、あらかじめ密閉反応
装置内部にセットされた揮発しやすい金属塩化物、水素
化物等を加熱蒸発させ、装置内部に導入された反応ガス
を反応させて微粉体を得る方法である。気相酸化法は揮
発物の塩化物(AjICf3、S i Cl a、T 
i Cl a、FeC1x等)の蒸気を酸素で酸化する
ことによって1!、0.、Stow、T i Oz、F
ezO=等の微粉体を得る方法である(「粉体と工業」
1985年10月号、P25〜32、(社)日本粉体工
業技術協会編)。
In the gas-in-gas evaporation method, which is one of the gas phase synthesis methods, the inside of a closed system reactor is evacuated to a high vacuum of 10-' L or less, and then an inert gas and oxygen, nitrogen or ammonia, or methane are evacuated. Several tens of torr of reactive gas such as hydrocarbons is introduced. Then, it is heated and evaporated with a metal or non-metal raw material set in a reactor in advance and reacted with a reaction gas to produce a fine powder. By this method, ZnO1Af
Fine powder ceramics such as N, Si: +N4, BN, TiC, etc. are obtained. Gas phase synthesis in a narrow sense is a method of heating and evaporating volatile metal chlorides, hydrides, etc. that have been placed inside a closed reaction device in advance, and reacting with the reaction gas introduced into the device to obtain fine powder. be. The gas phase oxidation method uses volatile chlorides (AjICf3, S i Cl a, T
1! by oxidizing the vapor of iCl a, FeC1x, etc.) with oxygen. , 0. , Stow, T i Oz, F.
This is a method to obtain fine powder such as ezO= ("Powder and Industry"
October 1985 issue, pages 25-32, edited by Japan Powder Technology Association).

気相合成法による微粉体製造は、いずれの方法でも金属
あるいは非金属原料を1000°C以上もの高温で蒸発
させ、反応ガスと反応させる必要がある。
Regardless of the method used to produce fine powder by vapor phase synthesis, it is necessary to evaporate a metal or nonmetal raw material at a high temperature of 1000° C. or higher and react it with a reaction gas.

加熱熱源の種類により分類すると、主なものとして燃焼
プロセス、プラズマプロセス、レーザプロセス、電気炉
加熱プロセスがある。
When classified by type of heating heat source, the main ones are combustion process, plasma process, laser process, and electric furnace heating process.

一方、液相合成法には液相において金属アルコキシドの
加水分解によって微粉体を製造するアルコキシド法があ
る(「化学装置」、1988年11月号、P24〜29
)。
On the other hand, among the liquid phase synthesis methods, there is an alkoxide method in which fine powder is produced by hydrolysis of metal alkoxide in the liquid phase ("Kagaku Kippatsu", November 1988 issue, pp. 24-29).
).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

気相合成法においては、加熱プロセスの違いによって粉
体製造条件は大きく異なるが、すべての方法において粉
体製造に先立ち、金属あるいは非金属原料を密閉反応装
置を開放して反応装置内にバッチ的にセラする必要があ
る。これはプロセスの工業化上、装置の大型化あるいは
製品の大量製造、コストダウン等に対して重大な欠点と
なる。
In the gas phase synthesis method, the powder production conditions differ greatly depending on the heating process, but in all methods, prior to powder production, metal or nonmetal raw materials are placed in a batchwise manner in a closed reactor by opening the reactor. It is necessary to clean it up. This is a serious drawback when it comes to industrializing the process, increasing the size of equipment, mass manufacturing products, and reducing costs.

さらに揮発性化合物は大気中で不安定であり、生成する
微粉体は金属あるいは非金属の加熱温度、反応混合ガス
のガス圧、流速等に強く影響される。
Further, volatile compounds are unstable in the atmosphere, and the fine powder produced is strongly influenced by the heating temperature of the metal or nonmetal, the gas pressure of the reaction mixture, the flow rate, etc.

一方、液相合成法の場合には、炭化物、窒化物などの微
粉体は高温のプロセスを必要とするためアルコキシド法
では製造できない。また、液相アルコキシド法も気相合
成法と同様、微粉体の製造過程はバッチプロセスである
On the other hand, in the case of liquid phase synthesis, fine powders such as carbides and nitrides cannot be produced using the alkoxide method because they require high-temperature processes. Further, in the liquid phase alkoxide method as well as in the gas phase synthesis method, the manufacturing process of fine powder is a batch process.

この発明は上記のような問題点を解決するためになされ
たもので、セラミック微粉体を連続的に大量に製造でき
るとともに同一反応状態を維持して均質なセラミック微
粉体を容易に製造できる方法を提供することを目的とし
ている。
This invention was made in order to solve the above-mentioned problems, and provides a method that can continuously produce large quantities of ceramic fine powder and maintain the same reaction state to easily produce homogeneous ceramic fine powder. is intended to provide.

〔課題を解決するための手段] 上記課題は、溶媒中に溶解状態にあるセラミックス原料
に紫外レーザ光を照射することを特徴とするセラミック
ス微粉体製造方法によって解決される。
[Means for Solving the Problems] The above problems are solved by a ceramic fine powder production method characterized by irradiating a ceramic raw material dissolved in a solvent with an ultraviolet laser beam.

セラミックス原料は紫外レーザ光透過性の溶媒に可溶の
ものである。このセラミックス原料には、セラミック微
粉末が、シリカの場合には各種シリケート類、例えばテ
トラエチルシリケー)(Si(oc2us)4) 、酸
化ケイ系(SiO2)、サイアロン(SiAj!ON)
 、シリカ等を使用することができる。
The ceramic raw material is soluble in a solvent that transmits ultraviolet laser light. This ceramic raw material includes fine ceramic powder, and in the case of silica, various silicates, such as tetraethyl silicate (Si(oc2us)4), silicon oxide (SiO2), and sialon (SiAj!ON).
, silica, etc. can be used.

セラミック微粉末がアルミナの場合には、セラミックス
原料としてアルミナ等を使用することができる。セラミ
ック微粉末が酸化アルミニウム(AffiZ03)又は
粉末混合試料としてA l zOs  W(h等を使用
することができる。
When the ceramic fine powder is alumina, alumina or the like can be used as the ceramic raw material. The ceramic fine powder can be aluminum oxide (AffiZ03) or the powder mixture sample can be Al zOs W (h, etc.).

溶媒は紫外レーザ光透過性で、かつ前記セラミックス原
料を溶解しうるものが選択される。例えば、メタノール
、ヘキサン、エーテル、シクロヘキサンを使用でき、テ
トラエチルシリケートにはメタノールやエーテル、Af
、O,にはメタノール、ヘキサン、シクロヘキサン等を
使用できる。
The solvent is selected to be transparent to ultraviolet laser light and capable of dissolving the ceramic raw material. For example, methanol, hexane, ether, cyclohexane can be used, and tetraethyl silicate has methanol, ether, Af
, O, may be methanol, hexane, cyclohexane, or the like.

セラミックス原料は常法により溶媒に溶解すればよく、
例えば撹拌、加熱等の手段を利用できる。
Ceramic raw materials can be dissolved in a solvent using a conventional method.
For example, means such as stirring and heating can be used.

濃度は限定されない。The concentration is not limited.

使用するレーザ光は、ArF、KrF、XeCl1等の
レーザガスを使用する紫外レーザ光(エキシマレーザ)
が適している。
The laser beam used is an ultraviolet laser beam (excimer laser) that uses laser gas such as ArF, KrF, and XeCl1.
is suitable.

レーザ光照射中に酸素、窒素またはアンモニア、メタン
系炭化水素等の反応ガスをセラミック原料と伴に同時に
反応器に供給してもよい。ガスを供給、すなわち、ガス
を調整することにより、酸化物あるいは窒化物セラミッ
クスが得られやすくなる。特に、生じる酸化物などは酸
化の程度が最も進んだ構造のものとなる。
During the laser beam irradiation, a reactive gas such as oxygen, nitrogen, ammonia, or methane-based hydrocarbons may be simultaneously supplied to the reactor together with the ceramic raw material. By supplying the gas, that is, adjusting the gas, oxide or nitride ceramics can be easily obtained. In particular, the oxides and the like that are produced have a structure in which the degree of oxidation is the most advanced.

本発明による製造プロセスの一例の概要を第1図に示す
FIG. 1 shows an outline of an example of the manufacturing process according to the present invention.

石英ガラス製等の紫外レーザ光に対して、透明な反応器
2に紫外レーザ光源4からのレーザ光を外部から照射す
る。当該反応器2に液相溶解状態のセラミックス原料を
原料供給部1から連続的に供給し、レーザ光によりそこ
で微粉体を製造する。
A transparent reactor 2 made of quartz glass or the like is irradiated with laser light from an ultraviolet laser light source 4 from the outside. Ceramic raw materials in a liquid-phase dissolved state are continuously supplied to the reactor 2 from the raw material supply section 1, and fine powder is manufactured there using laser light.

製造された微粉体は溶媒とともに反応器3から流出し、
遠心濾過等の固液分離器3によって回収される。固液分
離器3で分離された未反応の原料液は原料供給部1にリ
サイクルされる。生成する微粉体の粒径等は照射する紫
外レーザ光の光強度、照射時間、レーザ光波長などをコ
ントロールすることにより、制御することが可能である
。微粉体の製造条件としては、反応温度:常温〜300
°C1反応圧カニ常圧、レーザ出カニ100〜300 
(mJ/パルス〕、レーザ発振数:5〜100〔H2〕
、レーザ光照射時間:l〜60 (+5in)などの条
件が望ましい。
The produced fine powder flows out from the reactor 3 together with the solvent,
It is recovered by a solid-liquid separator 3 such as centrifugal filtration. The unreacted raw material liquid separated by the solid-liquid separator 3 is recycled to the raw material supply section 1. The particle size etc. of the fine powder to be produced can be controlled by controlling the light intensity, irradiation time, laser light wavelength, etc. of the ultraviolet laser light to be irradiated. The manufacturing conditions for the fine powder include reaction temperature: room temperature to 300°C.
°C1 reaction pressure normal pressure, laser output crab 100-300
(mJ/pulse), number of laser oscillations: 5 to 100 [H2]
, laser beam irradiation time: 1 to 60 (+5 inches).

尚、本発明の方法はバッチ方式にて実施することも可能
であることはいうまでもない。
It goes without saying that the method of the present invention can also be carried out in a batch manner.

本発明の方法で得られるセラミック微粉体は粒径が2〜
10n程度、特に3〜5i!m程度にすることができ、
しかも均質品を得ることができる。
The ceramic fine powder obtained by the method of the present invention has a particle size of 2 to 2
About 10n, especially 3-5i! It can be made about m,
Moreover, a homogeneous product can be obtained.

〔作用〕[Effect]

このセラミックス微粉体の製造方法は、従来の気相合成
法が熱エネルギーによって金属あるいは非金属セラミッ
クス原料を加熱蒸発させ反応させる点に比較し、紫外レ
ーザ光の持つ強力な光量子エネルギーを利用して微粉体
を合成している。
This method of producing fine ceramic powder uses the powerful photon energy of ultraviolet laser light to produce fine powder, unlike the conventional vapor phase synthesis method, which uses thermal energy to heat and evaporate metal or non-metallic ceramic raw materials to react. Synthesizing the body.

液相状態にあるセラミックス原料を100″C前後に加
熱し紫外レーザ光を照射することで紫外レーザ光の非常
に強い量子エネルギーを得て、例えば5t−Hなどの結
合が切断され微粉末を得ることができる。
By heating the ceramic raw material in the liquid phase to around 100"C and irradiating it with ultraviolet laser light, the extremely strong quantum energy of the ultraviolet laser light is obtained, and bonds such as 5t-H are severed to obtain fine powder. be able to.

〔実施例〕〔Example〕

第1図に示す装置を用いた。 The apparatus shown in FIG. 1 was used.

フッ化水素酸70〜90容量部とクロロベンゼン30〜
10容量部の混合液100重量部を溶媒として、シリカ
10重量部およびアルミナ10重量部をセラミックス原
料として溶解させた原料液に、KrFレーザ(レーザ光
波長248n■)を照射し、シリカを主成分としたセラ
ミックス微粉体を製造した。実験条件を以下に示す。
70-90 parts by volume of hydrofluoric acid and 30-90 parts by volume of chlorobenzene
A raw material solution prepared by dissolving 10 parts by weight of a mixed solution of 10 parts by volume as a solvent and 10 parts by weight of silica and 10 parts by weight of alumina as ceramic raw materials is irradiated with a KrF laser (laser light wavelength 248 nm) to dissolve silica as the main component. A fine ceramic powder was produced. The experimental conditions are shown below.

実験条件 反応器2は紫外レーザ光に対して透明な石英ガラス製反
応器を使用した。
Experimental Conditions Reactor 2 was a quartz glass reactor transparent to ultraviolet laser light.

実験結果 セラミック微粉体組成(%) 第2図にレーザ光発振数と微粉体生成量、第3図に反応
器加熱温度と微粉体生成量の関係、そして第4図に微粉
体の粒径分布を示す。
Experimental results Ceramic fine powder composition (%) Figure 2 shows the relationship between the number of laser beam oscillations and the amount of fine powder produced, Figure 3 shows the relationship between the reactor heating temperature and the amount of fine powder produced, and Figure 4 shows the particle size distribution of the fine powder. shows.

尚、第2図の記号は下記の条件を示している。Note that the symbols in FIG. 2 indicate the following conditions.

〔発明の効果] 以上のように、この発明によれば均質なセラミックス微
粉体を大量に連続的に製造することができる。
[Effects of the Invention] As described above, according to the present invention, homogeneous ceramic fine powder can be continuously produced in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に利用される装置の一例を
ブロックフローダイヤグラムで表わしたものである。第
2図、第3図は実施例による微粉末生成量とレーザ光発
振数、反応器加熱温度の関係を示したグラフである。第
4図は実施例で製造された微粉体の粒径分布を示したグ
ラフである。
FIG. 1 is a block flow diagram illustrating an example of an apparatus utilized in carrying out the method of the present invention. FIGS. 2 and 3 are graphs showing the relationship between the amount of fine powder produced, the number of laser beam oscillations, and the reactor heating temperature according to Examples. FIG. 4 is a graph showing the particle size distribution of the fine powder produced in Examples.

Claims (2)

【特許請求の範囲】[Claims] (1)溶媒中に溶解状態にあるセラミックス原料に紫外
レーザ光を照射することを特徴とするセラミックス微粉
体製造方法。
(1) A method for producing fine ceramic powder, which comprises irradiating a ceramic raw material dissolved in a solvent with ultraviolet laser light.
(2)紫外レーザ光を照射している製造装置に溶解状態
のセラミックス原料を連続的に供給することを特徴とす
る請求項(1)記載のセラミックス微粉体製造方法。
(2) The method for manufacturing fine ceramic powder according to claim (1), characterized in that the ceramic raw material in a molten state is continuously supplied to a manufacturing device that is irradiating ultraviolet laser light.
JP2169869A 1990-06-29 1990-06-29 Liquid phase synthesis of ceramics Pending JPH0463135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169869A JPH0463135A (en) 1990-06-29 1990-06-29 Liquid phase synthesis of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169869A JPH0463135A (en) 1990-06-29 1990-06-29 Liquid phase synthesis of ceramics

Publications (1)

Publication Number Publication Date
JPH0463135A true JPH0463135A (en) 1992-02-28

Family

ID=15894462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169869A Pending JPH0463135A (en) 1990-06-29 1990-06-29 Liquid phase synthesis of ceramics

Country Status (1)

Country Link
JP (1) JPH0463135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049213A1 (en) * 2003-11-20 2005-06-02 Hamamatsu Photonics K.K. Microparticle, process for producing microparticle and production apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049213A1 (en) * 2003-11-20 2005-06-02 Hamamatsu Photonics K.K. Microparticle, process for producing microparticle and production apparatus
JPWO2005049213A1 (en) * 2003-11-20 2007-11-29 浜松ホトニクス株式会社 Fine particles, method for producing fine particles, and production apparatus
CN100423847C (en) * 2003-11-20 2008-10-08 浜松光子学株式会社 Microparticle, process for producing microparticle and production apparatus
JP4545690B2 (en) * 2003-11-20 2010-09-15 浜松ホトニクス株式会社 Fine particle production method and production apparatus
US7938344B2 (en) 2003-11-20 2011-05-10 Hamamatsu Photonics K.K. Microparticles, microparticle production method, and microparticle production apparatus

Similar Documents

Publication Publication Date Title
JP2005504701A (en) Aluminum oxide powder
US4289952A (en) Process for controlling powder size with optical energy
Gitzhofer Induction plasma synthesis of ultrafine SiC
EP1215174B1 (en) Highly white zinc oxide fine particles and method for preparation thereof
US3023115A (en) Refractory material
JPH07138761A (en) Method and apparatus for producing thin film
JPH0463135A (en) Liquid phase synthesis of ceramics
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JP2007537128A (en) Heat treatment of silicon carbide
JPS62265198A (en) Method for synthesizing diamond
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
JPS58150427A (en) Preparation of fine powder of metal compound
JPS62121643A (en) Preparation of powder using laser
RU2349548C1 (en) Method of producing ultrafine gallium oxide
JPH035310A (en) Method and continuous furnace for production of aluminium nitride
JPH02212330A (en) Device and method for purifying reagent
JPS6197126A (en) Manufacture of fine particle of silicon carbide
JPH04292463A (en) Ultra-fine powder composite material and its production
Zyatkevich et al. Manufacture of fine aluminum nitride powder
JPS62121642A (en) Apparatus for preparing powder using laser
JPH0526537B2 (en)
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPS60251928A (en) Preparation of ultra-fine metal compound particle
RU2647075C1 (en) Method of obtaining nanopowder of aluminum oxinitride
JPH0479975B2 (en)