JPH0462983A - Electrostrictive type actuator - Google Patents
Electrostrictive type actuatorInfo
- Publication number
- JPH0462983A JPH0462983A JP2174104A JP17410490A JPH0462983A JP H0462983 A JPH0462983 A JP H0462983A JP 2174104 A JP2174104 A JP 2174104A JP 17410490 A JP17410490 A JP 17410490A JP H0462983 A JPH0462983 A JP H0462983A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- giant magnetostrictive
- electromagnetic coil
- alloy
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims description 64
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 abstract description 46
- 239000000956 alloy Substances 0.000 abstract description 46
- 230000004044 response Effects 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 15
- 238000003825 pressing Methods 0.000 description 5
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Fuel-Injection Apparatus (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電歪式アクチュエータの改良に関し、特にその
動作の制御精度の向上対策に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in electrostrictive actuators, and particularly to measures to improve control accuracy of their operations.
(従来の技術)
従来より、電歪式アクチュエータとして、例えば特開昭
60−104762号公報に開示されるように、電圧の
印加により歪変位するピエゾ圧電素子よりなる電歪素子
を有し、該電歪素子の歪変位を外部に伝達する構成とす
るとともに、上記電歪索子の外周に冷却用の媒体を循環
させることにより、該電歪索子を冷却して、その温度変
化に伴う歪変位量の変化を抑制するようにしたものが知
られている。また、上記の電歪素子の歪変位の温度補正
を行う手段として、他に、電歪素子の側部に該電歪素子
を押圧する形状記憶合金よりなる押圧部材を配置し、電
歪素子付近の温度が変化した場合には、形状記憶合金の
形状変化によりその電歪素子に対、する押圧力を変化さ
せて、電歪素子の伸縮量を調整するようにしたもの、又
は電歪素子の側部に小容積の他の電歪素子を追設し、該
他の電歪素子により電歪素子の歪変位量を検出して、電
歪素子に印加する電圧を補正するようにしたものがある
。(Prior Art) Conventionally, as an electrostrictive actuator, as disclosed in JP-A-60-104762, for example, an electrostrictive actuator has an electrostrictive element made of a piezoelectric element that undergoes strain displacement when a voltage is applied. In addition to transmitting the strain displacement of the electrostrictive element to the outside, by circulating a cooling medium around the outer periphery of the electrostrictive element, the electrostrictive element is cooled and the strain caused by the temperature change is reduced. There are known devices that suppress changes in the amount of displacement. In addition, as a means for temperature-correcting the strain displacement of the electrostrictive element, a pressing member made of a shape memory alloy for pressing the electrostrictive element is arranged on the side of the electrostrictive element, and a pressing member is arranged near the electrostrictive element. When the temperature of the shape memory alloy changes, the pressing force applied to the electrostrictive element is changed by changing the shape of the shape memory alloy, and the amount of expansion and contraction of the electrostrictive element is adjusted. Another electrostrictive element with a small volume is additionally installed on the side, and the amount of strain displacement of the electrostrictive element is detected by the other electrostrictive element, and the voltage applied to the electrostrictive element is corrected. be.
(発明が解決しようとする課題)
しかしながら、歪変位の温度補正について、上記従来の
ように冷却用媒体を循環させても電歪素子の温度を一定
保持することは困難であるし、構造も複雑になる。また
、形状記憶合金を用いる場合には該合金が微細な温度変
化に良好に追随しては変化しない。更に、小容積の電歪
素子を追設する場合には、小容積ゆえに電歪索子の歪変
位を正確に検出できない。つまり、上記従来のものは何
れも歪変位を正確に温度補正できない欠点がある。(Problem to be Solved by the Invention) However, regarding temperature correction of strain displacement, it is difficult to maintain a constant temperature of the electrostrictive element even if the cooling medium is circulated as in the above conventional method, and the structure is also complicated. become. Furthermore, when a shape memory alloy is used, the alloy follows fine temperature changes well and does not change. Furthermore, when an electrostrictive element with a small volume is additionally installed, the strain displacement of the electrostrictive cable cannot be accurately detected due to the small volume. In other words, all of the above-mentioned conventional devices have the disadvantage that strain displacement cannot be accurately corrected for temperature.
さらに、ピエゾ圧電素子を用いる場合には、これから直
接リード線を取り出す必要があるため、結線部の剥離や
リード線取り出し部のシール性の点で問題があると共に
、その積層構造ゆえに脆く、耐久性、信頼性が低い欠点
もある。Furthermore, when using a piezoelectric element, it is necessary to take out the lead wire directly from it, which causes problems in terms of peeling of the connection part and sealing of the lead wire take-out part, and its laminated structure makes it brittle and has poor durability. , it also has the disadvantage of low reliability.
本発明は斯かる点に鑑みてなされたものであり、その目
的は、簡易な構成でもって温度変化に拘らず歪変位を正
確に温度補正して、精度良い動作を行い得る電歪アクチ
ュエータを提供することにある。The present invention has been made in view of the above, and an object of the present invention is to provide an electrostrictive actuator that has a simple configuration, can accurately correct temperature for strain displacement regardless of temperature changes, and can operate with high precision. It's about doing.
(課題を解決するための手段)
上記の目的を達成するため、本発明では、ピエゾ圧電素
子等の電歪素子に代えて、超磁歪体を使用し、その付近
温度に応じて、超磁歪体を歪変位させる磁場の磁界の強
さを補正する。(Means for Solving the Problems) In order to achieve the above object, in the present invention, a giant magnetostrictive body is used instead of an electrostrictive element such as a piezoelectric element, and the super magnetostrictive body is Corrects the strength of the magnetic field that causes distortion and displacement.
つまり、本発明の具体的な構成は、磁場を発生させる電
磁コイルと、該電磁コイルにより発生した磁場の変化で
伸縮する超磁歪体とを設ける。さらに、上記超磁歪体付
近の温度を検出する温度検出手段と、該温度検出手段に
より検出した超磁歪体付近の温度の変化に応じて上記電
磁コイルに通電する電流量を補正する補正手段とを設け
る構成としている。That is, a specific configuration of the present invention includes an electromagnetic coil that generates a magnetic field and a giant magnetostrictive body that expands and contracts due to changes in the magnetic field generated by the electromagnetic coil. Furthermore, a temperature detection means for detecting the temperature near the giant magnetostrictive body, and a correction means for correcting the amount of current flowing through the electromagnetic coil according to a change in the temperature near the giant magnetostrictive body detected by the temperature detection means. The configuration is such that it is provided.
(作用)
上記の構成により、本発明の電歪式アクチュエータでは
、電磁コイルにより形成される磁場の磁界の強さによっ
て該磁場内の超磁歪体が歪変位すると共に、その磁界の
強さの変化によって、その歪変位の量が変化する。(Function) With the above configuration, in the electrostrictive actuator of the present invention, the strength of the magnetic field formed by the electromagnetic coil causes strain displacement of the giant magnetostrictive body within the magnetic field, and a change in the strength of the magnetic field. Accordingly, the amount of strain displacement changes.
さらに、超磁歪体付近の温度が変化すると、電磁コイル
への通電々流量が補正手段によって補正されるので、超
磁歪体付近の温度変化に拘らず、超磁歪体の歪変位量は
目標値となって、温度補正されることになる。Furthermore, when the temperature near the giant magnetostrictive body changes, the amount of current applied to the electromagnetic coil is corrected by the correction means, so the amount of strain displacement of the giant magnetostrictive body remains at the target value regardless of the temperature change near the giant magnetostrictive body. Therefore, the temperature will be corrected.
ここに、歪変位量の温度補正は、電磁コイルへの通電々
流量を補正することによって行われるので、簡易な構成
にできると共に、温度変化に応じて歪変位を微細に補正
でき、温度変化に拘らず精度良い動作を行うことができ
る。Temperature correction of the amount of strain displacement is performed by correcting the current flow rate to the electromagnetic coil, so it is possible to have a simple configuration, and the strain displacement can be finely corrected according to temperature changes, making it possible to compensate for temperature changes. It is possible to perform accurate movements regardless of the situation.
(発明の効果)
以上説明したように、本発明の電歪式アクチュエータに
よれば、歪変位する素子として超磁歪体を使用し、これ
を歪変位させる電磁コイルの通電々流量を超磁歪体付近
の温度変化に応じて補正したので、簡易な構成でもって
、歪変位量を温度変化に応じて微細に補正でき、精度良
い動作を行うことができる。(Effects of the Invention) As explained above, according to the electrostrictive actuator of the present invention, a giant magnetostrictive body is used as an element to be strain-displaced, and the current flow rate of the electromagnetic coil for strain-displacing this body is adjusted near the giant magnetostrictive body. Since the correction is made in accordance with the temperature change, the amount of strain displacement can be finely corrected in accordance with the temperature change with a simple configuration, and highly accurate operation can be performed.
(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図はディーゼルエンジンに使用する分配型の燃料噴
射ポンプに適用した第1の実施例を示し、1は燃料圧送
用のプランジャであって、該プランジャーには、燃料室
2内の燃料を吸入する吸入ホト1aと、該吸入ポート1
aに連通し軸方向に形成された縦孔1bと、該縦孔1b
に連通し燃料を複数の燃料噴射ノズルに分配するための
分配ホト1cとを有する。FIG. 1 shows a first embodiment applied to a distribution type fuel injection pump used in a diesel engine, and 1 is a plunger for pumping fuel, and the plunger is used to inject fuel in a fuel chamber 2. A suction port 1a for inhaling and the suction port 1
a vertical hole 1b formed in the axial direction and communicating with the vertical hole 1b;
The fuel injection nozzle 1c has a distribution port 1c that communicates with the fuel injection nozzle and distributes the fuel to the plurality of fuel injection nozzles.
上記プランジャ1の図中左方には、エンジンと同期回転
するフェイスカム5が接続固定され、該フェイスカム5
のカム面5aにはカム6が係合している。一方、プラン
ジャ1の図中右方には、吸入油室7が形成されている。A face cam 5 that rotates in synchronization with the engine is connected and fixed to the left side of the plunger 1 in the figure.
A cam 6 is engaged with the cam surface 5a. On the other hand, a suction oil chamber 7 is formed on the right side of the plunger 1 in the drawing.
そして、フェイスカム5の回転動作によりプランジャ1
を回転させながら、フェイスカム5のカム6との係合に
よってプランジャ1に図中左右方向の往復動作を与えて
、その後退勤作詩には、燃料室2内の燃料を吸入ポート
1aから吸入油室7に吸入し、その前進動作時には、吸
入ポートlaを閉じると共に吸入油室7内の燃料を縦孔
1bから分配ポート1cに供給して、該分配ポート1c
から対応する燃料噴射ノズルに圧送する構成である。尚
、図中、8は燃料の圧送量を調整するスピルリング、9
は燃料噴射ノズルからの噴射後の残り燃料を吸い戻すデ
リバリパルプである。The plunger 1 is then rotated by the rotational action of the face cam 5.
While rotating, the engagement of the face cam 5 with the cam 6 gives the plunger 1 a reciprocating motion in the left-right direction in the figure. 7, and during its forward movement, the suction port la is closed and the fuel in the suction oil chamber 7 is supplied from the vertical hole 1b to the distribution port 1c.
The configuration is such that the fuel is pumped from the fuel injection nozzle to the corresponding fuel injection nozzle. In the figure, 8 is a spill ring that adjusts the amount of fuel pumped, and 9 is a spill ring that adjusts the amount of fuel pumped.
is a delivery pulp that sucks back the remaining fuel after being injected from the fuel injection nozzle.
また、上記吸入油室7は、本発明の特徴として、その図
中右端面が超磁歪体としての超磁歪合金10で形成され
、該超磁歪合金10の外方には電磁コイル11が配置さ
れ、該電磁コイル11は、内部にCPU等を有するコン
トローラ12から給電される。よって、電磁コイル11
の通電時には、超磁歪合金10を含む空間に、その通電
量に応じた磁界の強さの磁場を発生させて、超磁歪合金
10をその磁場の磁界の強さにより伸長させることによ
り、吸入油室7の容積を可変として、プランジャ1の分
配ポート1cから燃料噴射ノズルに圧送する燃料の圧力
を調整する構成である。Further, as a feature of the present invention, the suction oil chamber 7 has a right end surface in the drawing formed of a giant magnetostrictive alloy 10 as a giant magnetostrictive body, and an electromagnetic coil 11 is disposed outside the giant magnetostrictive alloy 10. The electromagnetic coil 11 is supplied with power from a controller 12 having a CPU and the like therein. Therefore, the electromagnetic coil 11
When energizing, a magnetic field with a strength corresponding to the amount of energization is generated in the space containing the giant magnetostrictive alloy 10, and the giant magnetostrictive alloy 10 is expanded by the strength of the magnetic field. The configuration is such that the volume of the chamber 7 is made variable to adjust the pressure of the fuel that is force-fed from the distribution port 1c of the plunger 1 to the fuel injection nozzle.
そして、上記超磁歪合金10の図中上端部及び左端部に
は、各々、超磁歪合金10付近の温度を検出する温度検
出手段としての熱電対13. 14が配置され、その温
度信号は上記コントローラ12に入力される。上記2つ
の熱電対を設けるのは、超磁歪合金10内部で温度が異
なるので、その内部の温度分布に合った精度良い温度補
正をするためである。At the upper and left ends of the giant magnetostrictive alloy 10 in the figure, respectively, there are thermocouples 13 as temperature detection means for detecting the temperature in the vicinity of the giant magnetostrictive alloy 10. 14 is arranged, and its temperature signal is input to the controller 12. The reason why the two thermocouples are provided is to perform temperature correction with high accuracy in accordance with the temperature distribution inside the giant magnetostrictive alloy 10 since the temperature varies inside the giant magnetostrictive alloy 10.
上記コントローラ12は、第2図に示すように、熱電対
13.14により検出した温度が高いほど電磁コイル1
1への通電々流量を増大補正するように制御して、超磁
歪合金10の温度が高温度になるほどその伸長量が小さ
くなる温度特性を補償する。As shown in FIG. 2, the controller 12 controls the electromagnetic coil 1 as the temperature detected by the thermocouple 13.14 increases.
The temperature characteristic in which the amount of elongation of the giant magnetostrictive alloy 10 becomes smaller as the temperature of the giant magnetostrictive alloy 10 becomes higher is compensated for by increasing the current flow rate to the super magnetostrictive alloy 10.
よって、上記コントローラ12により、2つの熱電対1
3.14により検出した超磁歪合金10付近の温度の変
化に応じて、その温度が高いほど電磁コイル11に通電
する電流量を増大補正する補正手段15を構成している
。Therefore, the controller 12 controls the two thermocouples 1
According to the change in temperature near the giant magnetostrictive alloy 10 detected in step 3.14, the correction means 15 is configured to increase the amount of current supplied to the electromagnetic coil 11 as the temperature increases.
したがって、上記実施例においては、例えばエンジンが
高回転・高負荷運転を行って、超磁歪合金10付近の温
度が高くなった場合には、電磁コイル11に同一量の通
電々流量を与えても、超磁歪合金10の伸長量は低温度
の場合に比べて少なくなり、このため吸入油室7の容積
がその分だけ拡大して、燃料の噴射圧力は低下する状況
である。Therefore, in the above embodiment, if the temperature near the giant magnetostrictive alloy 10 becomes high due to the engine operating at high speed and high load, for example, even if the same amount of current flow is applied to the electromagnetic coil 11. The amount of elongation of the giant magnetostrictive alloy 10 is smaller than when the temperature is low, and therefore the volume of the suction oil chamber 7 is expanded by that amount, and the fuel injection pressure is reduced.
しかし、第3図に示すように、超磁歪合金10付近の温
度が高い分、電磁コイル11への通電々流量が通常値■
よりも補正増大分1oだけ増大し、これにより超磁歪合
金10の伸長量が増大して適切量となるので、所定通り
の噴射圧力が得られることになる。However, as shown in FIG. 3, since the temperature near the giant magnetostrictive alloy 10 is high, the current flow rate to the electromagnetic coil 11 is the normal value.
The amount of elongation of the giant magnetostrictive alloy 10 increases by a correction increase amount of 1o, and the amount of elongation of the giant magnetostrictive alloy 10 increases to an appropriate amount, so that a predetermined injection pressure can be obtained.
第4図は本発明をディーゼルエンジンの燃料噴射ノズル
に適用した第2の実施例を示す。同図の燃料噴射ノズル
Aにおいて、ノズルボディ20の先端に形成した凹所2
0aには燃料通路21が開口しているとともに、摺動自
在な針弁22が着座配置されて該凹所20aを閉じてい
る。FIG. 4 shows a second embodiment in which the present invention is applied to a fuel injection nozzle for a diesel engine. In the fuel injection nozzle A in the figure, a recess 2 formed at the tip of the nozzle body 20
A fuel passage 21 is open at 0a, and a freely slidable needle valve 22 is seated to close the recess 20a.
上記針弁22の後端部は、プレッシャースプリング23
が配置され、該スプリング23の後端部に配置したその
受は皿23aの後方には、油室24が形成されている。A pressure spring 23 is attached to the rear end of the needle valve 22.
An oil chamber 24 is formed behind the tray 23a.
該油室24の後端面に配置した超磁歪合金25の外方に
は電磁コイル26が配置されている。そして、超磁歪合
金25の伸長状態では、その分、油室24の容積を小さ
くし、これにより該油室24の油圧でもってプレッシャ
スプリング23の押圧力を高めて、針弁22が離座する
燃料の圧力をその分上昇させるように構成している。ま
た、上記油室24周りには、該油室24内の燃料の温度
を検出して超磁歪合金25付近の温度を検出する温度セ
ンサ27が配置されている。尚、図中28は、油室24
とプレッシャスプリング23の配置室とを連通接続する
油路29に介設された一方向弁であって、超磁歪合金2
5の伸長時に油室24内の燃料がプレッシャスプリング
23の配置室に漏れることを防止するものである。その
他、コントローラの設置及び通電々流量の温度補正につ
いては第1実施例と同様であるので、その図示及び説明
を省略する。An electromagnetic coil 26 is disposed outside the giant magnetostrictive alloy 25 disposed on the rear end surface of the oil chamber 24 . When the giant magnetostrictive alloy 25 is in the expanded state, the volume of the oil chamber 24 is reduced accordingly, and the pressure of the pressure spring 23 is increased by the oil pressure of the oil chamber 24, so that the needle valve 22 is unseated. It is configured to increase the fuel pressure by that amount. Further, a temperature sensor 27 is arranged around the oil chamber 24 to detect the temperature of the fuel in the oil chamber 24 and to detect the temperature near the giant magnetostrictive alloy 25. In addition, 28 in the figure is the oil chamber 24.
This is a one-way valve installed in an oil passage 29 that communicates and connects the pressure spring 23 and the pressure spring 23.
This prevents the fuel in the oil chamber 24 from leaking into the chamber in which the pressure spring 23 is arranged when the pressure spring 5 is extended. Other than that, the installation of the controller and the temperature correction of the current flow rate are the same as in the first embodiment, so illustrations and explanations thereof will be omitted.
したがって、本実施例においては、電磁コイル26への
通電々流量を第5図に示すように、エンジン回転数の上
昇又はエンジン負荷の増大に応じて増大させるようにコ
ントローラで制御する場合、例えば軽負荷時で通電々流
量が少いときには、第6図(a)に示すように、超磁歪
合金25の伸長量が少く、プレッシャースプリング23
の押圧力はさほど増大せずに力F1となるので、燃料の
圧力が上記の力F1に上昇したとき、針弁22が離座し
て、この燃圧の燃料が噴射される。これに対し、高回転
時で通電々流量が多いときには、同図(b)に示すよう
に、超磁歪合金25の伸長量が多くなって、プレッシャ
ースプリング23の押圧力は大きく増大し、力F2
(>Fl )となるので、燃料は圧力F2で噴射される
。Therefore, in this embodiment, when the controller controls the flow rate of current to the electromagnetic coil 26 to increase in response to an increase in engine speed or an increase in engine load, as shown in FIG. When the current flow rate is small under load, as shown in FIG. 6(a), the amount of expansion of the giant magnetostrictive alloy 25 is small, and the pressure spring 23
The pressing force does not increase much and becomes the force F1, so when the fuel pressure rises to the above force F1, the needle valve 22 is unseated and fuel at this fuel pressure is injected. On the other hand, when the rotation is high and the current flow rate is large, the amount of elongation of the giant magnetostrictive alloy 25 increases, as shown in FIG.
(>Fl), so fuel is injected at pressure F2.
その際、超磁歪合金25付近の温度に応じて上記第1実
施例と同様に、電磁コイル26への通電々流量が温度の
高いほど増大するよう補正されるので、エンジン運転状
態によって超磁歪合金25付近の温度が高低変化しても
、その時の運転状態に合致した燃料圧力の燃料を噴射供
給することができる。尚、上記第2実施例においては、
プレッシャースプリング23の受は皿23aを超磁歪台
金で形成してもよい。At this time, as in the first embodiment, the current flow rate to the electromagnetic coil 26 is corrected so that it increases as the temperature increases, depending on the temperature near the giant magnetostrictive alloy 25, so the super magnetostrictive alloy Even if the temperature around 25 changes in height, fuel can be injected and supplied at a fuel pressure that matches the operating conditions at that time. In addition, in the above second embodiment,
The plate 23a of the receiver of the pressure spring 23 may be formed of a giant magnetostrictive base metal.
また、本発明あ電歪式アクチュエータを燃料噴射ノズル
に適用する場合には、第7図に示すように、超磁歪合金
25と電磁コイル26との間のノズルボディに加熱用ヒ
ータ30を配置する。この加熱用ヒータ30はエンジン
冷間時における超磁歪合金25を加熱し温度上昇させる
ためのものである。つまり、第8図に示すように、熱電
対により検出した超磁歪合金25付近の温度が低いエン
ジン冷間時には、運転席周りに「エンジン始動準備中」
を表示しながら、加熱用ヒータ30に通電して超磁歪合
金25の温度を上昇させ、その温度が設定値(図では0
℃)以上になった時点で、加熱用ヒータ30への通電量
を漸次減少させながら、運転席周りの表示を「始動準備
完了」に表示に切換えて、電磁コイル26への通電を開
始する。その結果、超磁歪合金25がその低温度下での
歪変位率の小さい温度特性を有していても、針弁22の
開弁圧を設定正道りにして設定燃圧の燃料を噴射でき、
良好なエンジン始動性を得ることができる。上記のヒー
タ30は第1実施例の電磁コイル11の内側に設置して
もよい。Furthermore, when the electrostrictive actuator of the present invention is applied to a fuel injection nozzle, a heater 30 is placed in the nozzle body between the giant magnetostrictive alloy 25 and the electromagnetic coil 26, as shown in FIG. . This heating heater 30 is for heating the giant magnetostrictive alloy 25 and raising its temperature when the engine is cold. In other words, as shown in Figure 8, when the engine is cold and the temperature near the giant magnetostrictive alloy 25 detected by the thermocouple is low, a message saying "Engine preparing to start" is displayed around the driver's seat.
is displayed, the heater 30 is energized to raise the temperature of the giant magnetostrictive alloy 25, and the temperature reaches the set value (0 in the figure).
℃), the amount of current applied to the heating heater 30 is gradually reduced, the display around the driver's seat is changed to "ready to start", and the electromagnetic coil 26 starts being energized. As a result, even if the giant magnetostrictive alloy 25 has a temperature characteristic with a small strain displacement rate at low temperatures, it is possible to inject fuel at the set fuel pressure while keeping the valve opening pressure of the needle valve 22 in line with the set value.
Good engine startability can be obtained. The heater 30 described above may be installed inside the electromagnetic coil 11 of the first embodiment.
第9図はディーゼルエンジンの分配型燃料噴射ポンプに
備えるデリバリ−バルブBに適用した第3実施例を示す
。同図のデリバリ−バルブBにおいて、バルブシート3
4の内部空間には、弁体36と、その下方に配置したリ
リーフ弁37とが上下に摺動自在に設けられている。上
記弁体36及びリリーフ弁37とは、上下方向に配置し
た棒状の超磁歪合金39で接続されているとともに、弁
体36には、超磁歪合金3903外周位置において電磁
コイル40が配置されている。また、バルブシート34
のリリーフ弁37外周には、該リリーフ弁37を図中上
昇動作させる電磁コイル41が配置されている。FIG. 9 shows a third embodiment applied to a delivery valve B provided in a distribution type fuel injection pump of a diesel engine. In delivery valve B in the same figure, valve seat 3
In the internal space of 4, a valve body 36 and a relief valve 37 disposed below the valve body 36 are provided so as to be vertically slidable. The valve body 36 and the relief valve 37 are connected by a rod-shaped giant magnetostrictive alloy 39 arranged in the vertical direction, and an electromagnetic coil 40 is arranged on the valve body 36 at the outer circumference of the giant magnetostrictive alloy 3903. . In addition, the valve seat 34
An electromagnetic coil 41 is disposed around the outer periphery of the relief valve 37 to move the relief valve 37 upward in the figure.
さらに、バルブシート34の内部空間の中央部分には、
該部分を半径方向に切欠いて燃料を溜め込むリーク室4
2が形成されているとともに、該リーク室42の近傍に
は、該リーク室42内の燃料の温度を検出する温度セン
サ43が配置されていて、その温度信号はコントローラ
45に入力される。Furthermore, in the central part of the internal space of the valve seat 34,
A leak chamber 4 that stores fuel by cutting out the portion in the radial direction
A temperature sensor 43 is arranged near the leak chamber 42 to detect the temperature of the fuel in the leak chamber 42, and its temperature signal is input to the controller 45.
上記コントローラ45は、第10図(a)に示すように
、エンジン回転数が高いほど燃料噴射ノズルに通じる燃
料パイプの燃料噴射終了時の圧力が上昇し、リーク室4
2に吸い戻す燃料量を多くする必要があるので、同図(
b)に示すように、リーク室42への燃料の吸い戻し量
が多いほど電磁コイル40への通電々流量を増大するよ
う制御すると共に、燃料温度が高いほど電磁コイル40
への通電々流量を増大するよう制御する機能を有する。As shown in FIG. 10(a), the controller 45 is configured such that the higher the engine speed, the higher the pressure at the end of fuel injection in the fuel pipe leading to the fuel injection nozzle.
Since it is necessary to increase the amount of fuel sucked back into 2, the same figure (
As shown in b), the larger the amount of fuel sucked back into the leak chamber 42, the greater the amount of electricity supplied to the electromagnetic coil 40, and the higher the fuel temperature, the more the electromagnetic coil 40 is controlled.
It has a control function to increase the amount of electricity supplied to the
尚、第9図において、46は弁体36を着座する方向に
付勢するスプリングである。In addition, in FIG. 9, 46 is a spring that biases the valve body 36 in the seating direction.
したがって、上記実施例においては、第11図(イ)に
示すように、電磁コイル41への通電によりリリーフ弁
37を上昇動作させて、弁体をスプリング46に抗して
離座させたときには、内部の燃料を噴射する。そして、
燃料噴射の終了時には、エンジン高回転時はど燃料パイ
プの残圧が高く、リーク室42に吸い戻す燃料量を多く
必要とする状況であるので、電磁コイル40への通電々
流量が第10図(b)に従い増大して、超磁歪合金39
が上下に伸長し、第11図(ロ)に示すように弁体36
とリリーフ弁37との間隔がglにかって、リーク室4
2の容積が拡大する。その結果、多くの燃料がリーク室
42に吸い戻されて、燃料パイプの残圧が高エンジン回
転に合った良好な圧力となる。一方、エンジンの低回転
時には、電磁コイル40への通電々流量が少なくて、超
磁歪合金39はさほど伸長しない。その結果、第11図
(ハ)に示すように弁体36とリリーフ弁37との間隔
はさほど広がらずΩ2 (くQ+)になって、リーク室
42への燃料吸い込み量はさほど増大しないので、低エ
ンジン回転に合った良好な残圧となる。Therefore, in the above embodiment, when the electromagnetic coil 41 is energized to raise the relief valve 37 and the valve body is unseated against the spring 46, as shown in FIG. 11(A), Inject the fuel inside. and,
At the end of fuel injection, when the engine is running at high speed, the residual pressure in the fuel pipe is high and a large amount of fuel is required to be sucked back into the leak chamber 42. Therefore, the current flow rate to the electromagnetic coil 40 is reduced as shown in FIG. Increasing according to (b), giant magnetostrictive alloy 39
extends vertically, and as shown in FIG. 11 (b), the valve body 36
The distance between the leak chamber 4 and the relief valve 37 is GL.
The volume of 2 increases. As a result, a large amount of fuel is sucked back into the leak chamber 42, and the residual pressure in the fuel pipe becomes a good pressure suitable for high engine rotation. On the other hand, when the engine rotates at low speeds, the amount of current supplied to the electromagnetic coil 40 is small, and the giant magnetostrictive alloy 39 does not expand much. As a result, as shown in FIG. 11(C), the distance between the valve body 36 and the relief valve 37 does not widen so much and becomes Ω2 (Q+), and the amount of fuel sucked into the leak chamber 42 does not increase significantly. Good residual pressure suitable for low engine speed.
しかも、超磁歪合金39付近の燃料温度が高いほど電磁
コイル40への通電々流量が増大されて、超磁歪合金3
9の歪変位量が、第1実施例と同様に温度補正されるの
で、エンジン運転状態に合った燃料パイプの残圧を得る
ことができ、燃料の後洩れ、キャビテーションを防止で
きるとともに、燃料噴射ノズルの耐久性の向上を図るこ
とができる。Moreover, the higher the fuel temperature near the giant magnetostrictive alloy 39, the greater the flow rate of current to the electromagnetic coil 40.
Since the strain displacement amount of 9 is corrected by temperature as in the first embodiment, it is possible to obtain a residual pressure in the fuel pipe that matches the engine operating condition, prevent fuel leakage and cavitation, and improve fuel injection. It is possible to improve the durability of the nozzle.
第12図はディーゼルエンジンの燃料噴射ノズルの針弁
の変位を検出する構成を示す。同図において、針弁50
を着座方向に付勢するプレッシャースプリング51の後
端部とその受は皿52との間に超磁歪合金53が配置さ
れているとともに、バルブボディの超磁歪合金53外周
には電磁コイル54が配置され、該電磁コイル54には
リード線55が接続されている。FIG. 12 shows a configuration for detecting displacement of a needle valve of a fuel injection nozzle of a diesel engine. In the same figure, the needle valve 50
A giant magnetostrictive alloy 53 is disposed between the rear end of a pressure spring 51 that biases the valve body in the seating direction and a plate 52 for its support, and an electromagnetic coil 54 is disposed around the outer periphery of the giant magnetostrictive alloy 53 of the valve body. A lead wire 55 is connected to the electromagnetic coil 54.
したがって、針弁50が離座し上昇動作すると、プレッ
シャースプリング51の収縮と共に、超磁歪合金53が
第13図(a)の通常時(針弁50の着座時)よりも同
図(b)に示すように幅g1がΩ2(く、C)I)に収
縮し、この変位により超磁歪合金53の性質でもってそ
の変位量に応じた磁界が発生し、その結果、電磁コイル
54には上記超磁歪合金53の歪変位の方向及び大きさ
に応じた電流が流れ(第14図参照)、この電流が9ド
線55から外部に取り出される。従って、第15図に示
すように、電磁コイル54に流れる電流を抵抗Rに流し
、その両端の電圧を電圧計56で検出すれば、針弁50
の変位量を検出することができる。Therefore, when the needle valve 50 is unseated and moves upward, the pressure spring 51 contracts and the giant magnetostrictive alloy 53 moves to the position shown in FIG. 13(b) from the normal state shown in FIG. As shown, the width g1 contracts to Ω2(C,C)I), and due to this displacement, a magnetic field corresponding to the amount of displacement is generated due to the properties of the giant magnetostrictive alloy 53, and as a result, the electromagnetic coil 54 has the above-mentioned supermagnetostrictive alloy. A current flows in accordance with the direction and magnitude of the strain displacement of the magnetostrictive alloy 53 (see FIG. 14), and this current is taken out from the nine-domain wire 55. Therefore, as shown in FIG. 15, if the current flowing through the electromagnetic coil 54 is passed through the resistor R and the voltage across it is detected by the voltmeter 56, the needle valve 50
The amount of displacement can be detected.
図面は本発明の実施例を示す。第1図ないし第3図は本
発明の第1実施例を示し、第1図は燃料噴射ポンプの要
部構成を示す図、第2図は超磁歪合金付近の温度に対す
る電磁コイルへの通電々流量特性を示す図、第3図は作
動説明図である。第4図ないし第8図は本発明の第2実
施例を示し、第4図は燃料噴射ノズルの全体構成図、第
5図はエンジン回転数及びエンジン負荷に対する通電々
流量特性を示す図、第6図は作動説明図、第7図はヒー
タを設けた場合の燃料噴射ノズルの全体構成図、第8図
はヒータ及び電磁コイルへの通電時期の説明図である。
第9図ないし第11図は本発明の第3実施例を示し、第
9図はデリバリ−バルブの全体構成図、第10図はエン
ジン回転数に対する燃料の吸い戻し量特性及び燃料吸い
戻し星に対する通電々流量特性を示す図、第11図は作
動説明図である。第12図は燃料噴射ノズルの針弁の変
位を検出する構成図、第13図及び第14図は同作動説
明図、第15図は同針弁の変位検出回路を示す図である
。
10.25.39・・・超磁歪合金(超磁歪体)、11
.26.40・・・電磁コイル、22・・・針弁、13
.14・・・熱電対(温度検出手段)、15・・・補正
手段、27.43・・・温度センサ。The drawings illustrate embodiments of the invention. 1 to 3 show a first embodiment of the present invention, FIG. 1 is a diagram showing the main part configuration of a fuel injection pump, and FIG. A diagram showing the flow rate characteristics, and FIG. 3 is an explanatory diagram of the operation. 4 to 8 show a second embodiment of the present invention, FIG. 4 is an overall configuration diagram of a fuel injection nozzle, FIG. 5 is a diagram showing current flow rate characteristics with respect to engine speed and engine load, and FIG. FIG. 6 is an explanatory diagram of the operation, FIG. 7 is an overall configuration diagram of the fuel injection nozzle when a heater is provided, and FIG. 8 is an explanatory diagram of the timing of energizing the heater and the electromagnetic coil. 9 to 11 show a third embodiment of the present invention, FIG. 9 is an overall configuration diagram of a delivery valve, and FIG. 10 is a diagram showing fuel sucking back amount characteristics with respect to engine speed and fuel sucking back stars. FIG. 11, which is a diagram showing current flow rate characteristics, is an operation explanatory diagram. FIG. 12 is a block diagram for detecting the displacement of the needle valve of the fuel injection nozzle, FIGS. 13 and 14 are explanatory diagrams of the same operation, and FIG. 15 is a diagram showing the displacement detection circuit of the needle valve. 10.25.39... Giant magnetostrictive alloy (giant magnetostrictive material), 11
.. 26.40... Electromagnetic coil, 22... Needle valve, 13
.. 14... Thermocouple (temperature detection means), 15... Correction means, 27.43... Temperature sensor.
Claims (3)
より発生した磁場の変化で伸縮する超磁歪体とを備える
とともに、上記超磁歪体付近の温度を検出する温度検出
手段と、該温度検出手段により検出した超磁歪体付近の
温度の変化に応じて上記電磁コイルに通電する電流量を
補正する補正手段とを備えたことを特徴とする電歪式ア
クチュエータ。(1) Temperature detection means that includes an electromagnetic coil that generates a magnetic field and a giant magnetostrictive body that expands and contracts with changes in the magnetic field generated by the electromagnetic coil, and that detects the temperature near the giant magnetostrictive body; An electrostrictive actuator comprising: a correction means for correcting the amount of current flowing through the electromagnetic coil in accordance with a change in temperature near the giant magnetostrictive body detected by the electrostrictive actuator.
ものである請求項(1)記載の電歪式アクチュエータ。(2) The electrostrictive actuator according to claim (1), wherein the giant magnetostrictive body operates a needle valve of a fuel injection nozzle.
料の温度を検出するものである請求項(1)記載の電歪
式アクチュエータ。(3) The electrostrictive actuator according to claim (1), wherein the temperature detection means detects the temperature of the fuel supplied to the fuel injection nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2174104A JPH0462983A (en) | 1990-06-29 | 1990-06-29 | Electrostrictive type actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2174104A JPH0462983A (en) | 1990-06-29 | 1990-06-29 | Electrostrictive type actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0462983A true JPH0462983A (en) | 1992-02-27 |
Family
ID=15972720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2174104A Pending JPH0462983A (en) | 1990-06-29 | 1990-06-29 | Electrostrictive type actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0462983A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5361053A (en) * | 1993-10-07 | 1994-11-01 | Unisia Jecs Corporation | Super magnetostriction type actuator |
JP2016513445A (en) * | 2013-02-06 | 2016-05-12 | グレート プレインズ ディーゼル テクノロジーズ,エル.シー. | Magnetostrictive actuator |
-
1990
- 1990-06-29 JP JP2174104A patent/JPH0462983A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5361053A (en) * | 1993-10-07 | 1994-11-01 | Unisia Jecs Corporation | Super magnetostriction type actuator |
JP2016513445A (en) * | 2013-02-06 | 2016-05-12 | グレート プレインズ ディーゼル テクノロジーズ,エル.シー. | Magnetostrictive actuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9970376B2 (en) | Fuel injection controller and fuel injection system | |
US6276337B1 (en) | Common-rail fuel-injection system | |
JP2617716B2 (en) | Method and apparatus for controlling fuel injection in an internal combustion engine | |
US7284712B2 (en) | Injector having structure for controlling nozzle needle | |
WO2015118854A1 (en) | Fuel injection control device | |
EP1429013B1 (en) | Common rail fuel injection control device | |
US20030106533A1 (en) | Fuel injector with feedback control | |
EP2116710B1 (en) | Fuel pressure controller and fuel pressure control system | |
US10253712B2 (en) | Method for operating a piezo servo injector | |
US7520265B2 (en) | Fuel injection controller | |
JP6810615B2 (en) | Manufacturing method of fuel injection valve | |
KR890005043B1 (en) | Fuel injection device for internal combustion engine | |
JP2018112120A (en) | Fuel injection quantity control device | |
US4427151A (en) | Fuel injector | |
JP3540095B2 (en) | Abnormality judgment device in diesel engine injection timing control device | |
JPH0462983A (en) | Electrostrictive type actuator | |
JPH06213094A (en) | Fuel injector for internal combustion engine | |
US4619238A (en) | Fuel injection pump for internal combustion engines | |
JP2004011448A (en) | Decompression regulating valve | |
US6745465B1 (en) | Method for assembling an apparatus, such as a fuel injector, using select fit of dimensional control features | |
JP2003013783A (en) | Control device of equipment loaded actuator and its adjusting method | |
JP3444120B2 (en) | Fuel injection device | |
JP2020060166A (en) | Fuel injection control method and fuel injection control device | |
JPH0633817A (en) | Fuel injection timing control device for diesel engine | |
JP3334525B2 (en) | Variable discharge high pressure pump and fuel injection device using the same |