JPH0462740B2 - - Google Patents

Info

Publication number
JPH0462740B2
JPH0462740B2 JP62161893A JP16189387A JPH0462740B2 JP H0462740 B2 JPH0462740 B2 JP H0462740B2 JP 62161893 A JP62161893 A JP 62161893A JP 16189387 A JP16189387 A JP 16189387A JP H0462740 B2 JPH0462740 B2 JP H0462740B2
Authority
JP
Japan
Prior art keywords
artificial blood
blood vessel
fibers
tube
ultrafine fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62161893A
Other languages
Japanese (ja)
Other versions
JPS645544A (en
Inventor
Koji Watanabe
Hideaki Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62161893A priority Critical patent/JPS645544A/en
Publication of JPS645544A publication Critical patent/JPS645544A/en
Priority to JP9804792A priority patent/JPH0710270B2/en
Publication of JPH0462740B2 publication Critical patent/JPH0462740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は取扱性、早期治癒性に優れた人工血管
に関し、特に柔軟にして耐キンキング性、耐ほつ
れ性に優れた人工血管の製造法に関するものであ
る。 〔従来技術〕 合成人工血管は、布製および非布製のものに大
別出来る。布製のものは、繊維状基材の内面に生
体の仮性内膜を形成し、抗血栓性を達せんとする
ものである。この場合の人工血管は、特にポリエ
ステル繊維を用いて織成、偏成などにより形成さ
れたチユーブからなるものである。繊維状のチユ
ーブを前提にしたものである。かかる人工血管で
は取り扱い性は当然として、いかに早く内面に仮
性内膜を形成するかということがポイントなる。
この仮性内膜形成性に関しては、極細繊維を用い
ることで大幅に改善できることが特開昭59−
22505号公報で見出されている。然し、極細繊維
を用いた場合、風合的に柔らかとなり過ぎ、キン
キング性に問題が生じる。このため通常の太い繊
維と組み合わせ用いるなどの工夫が必要となる。
しかし、このため組織的に複雑となり、作成上の
困難さを伴うのみならず、耐ほつれ性、取り扱い
性の点でも問題が生じる。例えば耐ほつれ性の改
善として、特開昭61−92666号公報に見られるご
とく高圧流体を吹き当て極細繊維を相互に絡ませ
るごとき付加手段が必要となる。かかる手段は極
めて有効でありそれなりの価値はある。しかし、
人工血管としての柔軟性が損なわれがちである。
またキンキング性改善としては、クリンプを付与
する手段があるが、このクリンプ形態は生体の滑
らかな状態とは異なり、血液の流れを乱し、血栓
形成を起きやすくするものとしてその弊害を指摘
されている。別の方法として、太いモノフイラメ
ントを巻きつけ外部補強するといつた手段が開発
されているが、この場合は折角の柔軟性を損なう
こととなり、また吻合部に固いフイラメント端が
加わることとなり、吻合性が極めて悪くなる。す
なわち、このキンキング性改善のための決定的解
決手段は、現在のところ見出されていないのが現
状である。 非布性人工血管についてはポリテトラフルオロ
エチレン、ポリウレタンのごときプラスチツクチ
ユーブなるものが開発もしくは検討されている。
かかるプラスチツクチユーブ人工血管の欠点は、
吻合部にパンヌスが生じやすく吻合物での閉塞が
起きやすいことである。また柔軟性に欠け、吻合
しがたく、また耐開裂性に劣り、吻合物で破れ易
いといつた欠点がある。このため繊維のメツシユ
で補強するなどの検討がなされているが、生体適
合性、取り扱い性の欠点を充分に克服しえたもの
は得られていない。 〔発明が解決すべき問題点〕 本発明は上記欠点の改善を目的とし、吻合性、
縫製柱、耐ほつれ性等の取り扱い性改善と、キン
キング性、かつ初期および長期生体適合性とを合
わせもつ人工血管を製造する方法を提供せんとす
るものである。 〔問題点を解決するための手段〕 本発明は以下の手段によつて達成される。 すなわち、本発明の人工血管の製造方法は、
0.8dtex以下の極細繊維でチユーブを形成後、高
分子弾性体を繊維重量に対し45〜3部の範囲とな
るように付与し、固化後立毛処理により少なくと
も内面に立毛を形成することを特徴とする取扱性
と治癒性に優れた人工血管の製造法である。 本発明は、極細繊維からなる人工血管におい
て、極細繊維の有する生体適合性を損なわない程
度の極めてわずかな量の弾性体を付与せしめるこ
とで、クリンプを付与しない平滑なチユーブ状で
もキンキング性が著しく改善されることを見出し
たものである。即ち極細繊維を用いた場合、その
柔軟性のため、キンキング性が劣るという欠点が
生じ、このキンキング性の改善は極めて困軟と予
測されたが、本発明は、逆に柔軟が故に僅かに弾
性体を付与することでこのキンキング性が著しく
改善されるという、正に予期せざる効果を見出し
た。さらに極細繊維の効果として極めて僅かな拘
束力を加えること、即ちわずかに弾性体を付与す
ることで繊維相互の滑りが抑えられ従つて耐ほつ
れ性がほぼ完全に解決されることをも見出した。
この僅かな付与量で改善できることの意味は極め
て重要である。この量が多いと折角の極細繊維が
有する生体適合性能を殺してしまい全く意味を成
さないのである。 以上のごとく本発明は極細繊維と弾性体との特
徴を巧みに生かすことにより、従来に無い極めて
バランスのとれた優れた人工血管を開発すること
に成功したものである。 本発明によつて人工血管を得るに当たつては、
まず0.8dtex以下好ましくは0.5dtexより好ましく
は0.1dtex以下の極細繊維を用いてチユーブを形
成する。かかる極細繊維を得る手段については
USP3531368号明細書、USP335048号明細書、特
開昭61−92666号公報等に詳述されている。また
チユーブ形成にあたつては通常の織成、編成、不
織布化、成紐、等の技術を用い形成可能である。
このチユーブ形態は、平織用のプレーンな組織か
ら多重組織、ベロアー状のものなどその目的に応
じ選宜選択可能である。 また、本発明の好ましい目安として、特にこだ
わるものでないが、1cm2当たり120mmHg圧下、1
分間の水の透過量(g数)で定義した透水率の値
が、300以上、好ましくは800以上、より好ましく
は1500以上である。かかるチユーブ形成におい
て、極細繊維単独でなしに太い繊維を組み合わせ
用いても良い。本発明はこのチユーブに、そのま
ま直接あるいは起毛処理した後、弾性体を繊維重
量に対し45部〜3部付与する。45部を越えると弾
性体の影響がでてきて折角の極細繊維の持つ生体
適合性の効果がうすれる。3部未満だと耐キンキ
ング性が不十分となり、また再現性、長期安定性
の点で問題がでてくる。本発明ではこの耐キンキ
ング性の尺度として、以下に定義する形体保持率
を用いる。この形体保持率とは、長さ20cmの人工
血管の上に、50gの荷重を3分間のせた後取りの
ぞいたときの人工血管の管径の変形度をいう。 本発明ではこの形体保持率が80%以上、好まし
くは93%以上が望ましい。本発明の弾性体の付与
率の最適値は、弾性体の付着状態により変動す
る。溶剤を蒸発させ乾固する方式では、弾性体の
繊維に対する接着力は強固であり、従つて付着率
は少量で済ますことが可能である。また柔軟な風
合が必要な場合は、いわゆる湿式凝固させる手段
が推奨できる。しかしこの場合は弾性体と繊維と
の接着力がやや弱くなり、拘束力を上げるために
は弾性体の付着率はやや高めの値が必要となる。
従つて、付着率はかかる手段との兼ね合いで適宜
決定される。全般的にみて、付着率はやや少な目
の20部以下が特に好ましい場合が多い。 弾性体の付与力が特に好ましい場合が多い。 弾性体の付与方法としては、溶液、エマルジヨ
ンのごとき状態で含浸、スプレー、コートなどの
方法で所定量を付与する。特に極細繊維の特性を
最大限生かしたい場合は、チユーブの内側に少な
く、外側部に多くなるように、コート、スプレー
等を行うことが推奨される。また別手段として、
液の粘度をやや高めに調節し、浸透速度をコント
ロールすることで所望の状態と成しうる。より確
実に行う方法は、薄いフイルムを熱融着等により
張り合わせることである。かかる方法は適宜状況
に応じ使い分けるべきである。また、より簡単な
方法は、弾性体の全体量をなるべく少なく押さ
え、しかも耐キンキング効果を最大に発揮させる
べく付与することである。かかる状態は、相対的
に少ない弾性体を、チユーブを構成する繊維組織
の交点に集中的に付け、その他の部分には相対的
に少なく付けるようにしたものである。この相対
的なる意味は、いちがいには決めかねられない
が、例えば、付着率の差として2部以上ある状態
をいう。かかる付着率の差の判定方法は、顕微鏡
下で各部を切り取り、溶媒により高分子弾性体を
抽出し、その液をガスクロマトグラフイー法を用
いて判定すれば良い。 本発明のごとく、交点に弾性体が付くことによ
り、僅かな量でも弾性体の拘束力が最大限に発揮
され、耐キンキング性を著しく高められる。また
弾性体の少ない部分では、極細繊維の持つ生体適
合性機能がそのまま生かされることになる。 本発明は特に極細繊維を用いているためチユー
ブは柔らかくそのままで耐キンキング性は悪い
が、この柔軟過ぎる欠点が、逆に、僅かの拘束力
で形態保持性が付与出来る利点になることを見出
したものである。かかる状態に弾性体を付与する
方法は、付与する液状の濃度をやや低く、且つ粘
度を低く、また液のピツクアツプ量を少なめにし
て固化することで達成できる。 本発明に使用可能な弾性体は、原則として、生
体毒性がなく、且つ生体内での機械的強度劣化が
ないものなら何でも良い。従つて、本発明はこれ
に囚われるものでないが、推奨出来る具体例とし
ては、例えば、ポリウレタン、ポリウレタン−ウ
レア、ポリウレア等のイソシアネート基とアミン
もしくは水酸基との反応によつて形成された弾性
体である。特にこのなかにあつてもソフトセグメ
ントとしてエーテル系のものが好ましい。しか
し、ソフトセグメントは単一系に限定する必要は
ない。シリコーン、フツソ、ポリエチレングリコ
ール系等との共重合系も極めて興味ある結果をし
めす。これ以外のものとしては、アクリルニトリ
ル−ブタジエン、スチレン−ブタジエン、などの
アクリル系弾性体、天然ゴム、プルロニツク系弾
性体などである。 人工血管の必要特性として耐ほつれ性がある。
この耐ほつれ性は人工血管の縫合で極めて重要で
ある。血栓が形成され易い部位は吻合部に多く、
この吻合と縫合を如何にスムーズに行うかが極め
て重要なポイントである。 特に6mm以下の細径の場合は、僅かな縫代で宿
主血管にきつちりと縫い付けなくてはならず、こ
のため縫い代を小さく取つてもほつれないものが
必要となる。また大動脈でも、多分岐している血
管部位の修復に用いる場合、太い主血管に多数の
分岐管を縫合する必要がある。このため太い主血
管に、分岐血管を取りつけるための孔を開け、そ
こに分岐血管を縫合することになる。しかし、こ
の孔の形状は楕円状で特にほつれ易い形状であ
る。本発明の人工血管では、ほつれが無いためこ
の取り付けが極めて良好に行える。 本発明は極細繊維を用いており、極細繊維同士
がずれ難い性質があるため、わずかな高分子の弾
性体(バインダー)の働きで極めて高い耐ほつれ
効果を示す。 本発明では、この耐ほつれ性の目安として以下
の耐ほつれ性値を定義する:人工血管の切断端か
ら2mmの位置に糸を通し、ループを形成し、その
ループと人工血管の他の端を引張試験機でほつれ
るまで引張り、そのときの最大荷重(g数)をも
つて耐ほつれ性とする。 本発明ではこの値が500g以上好ましくは800g
以上が良い。本発明の特徴は、一般に耐ほつれ性
が悪いとされる高透水率の、目の粗い組織のもの
であつても、かかるように良好な耐ほつれ効果を
示すのである。 かくして得られた人工血管は、そのままでも使
用可能だが、より好ましくは、少なくともその内
面が極細繊維で被覆された状態として使用するの
が良い。内面が明確に極細繊維で被覆された状態
となす手段として、単純には表面のポリウレタン
を削りされば良い。即ちポリウレタンがわずか付
いた状態のチユーブの少なくとも内面を、起毛機
あるいはバフマシンで処理し、ポリウレタンを除
去すると同時に極細繊維の立毛を形成するか、あ
るいは極細繊維がリツチな状態にすれば良い。内
面処理を機械的に連続して行うのは実質上極めて
熟練を要する。これを容易に行う1手段として、
まず裏返した状態で繊維化処理し、しかる後再度
裏返せばよい。かかる処理を強固に行うと極細繊
維の立毛形成も可能となる。この極細繊維の立毛
は生体適合性効果が顕著であり、これを形成せし
めることで極めて生体適合性に優れた人工血管と
なる。かかる手段は、弾性体の繊維把持効果のた
め、均一な極細繊維の起毛が可能となり、特に好
ましい。また弾性体の別の効果として、極めて単
純な繊維組織でも活用可能となることである。例
えば従来は丸編みによるチユーブでは僅かの力で
容易に変形し、このため変形が激しすぎ、またほ
つれも容易に起こり、そのままでは人工血管への
適用は不可能であつた。また生体細胞形成性を重
視する場合には、高い透水率の人工血管が必要と
なる。かかるものでは必然的に粗い目の繊維組織
が必要となるし、さらに生体適合性を上げるた
め、かかるものを起毛し、立毛を形成させようと
する場合、目がずれチユーブは変形し起毛は全く
できない状態であつた。しかるに本発明では僅か
な弾性体がバインダーとして働き、変形の大きい
はずの組織でもその変形は著しく軽減され、不可
能な起毛も可能となつたのである。 かくして得られた本発明品は柔軟であり、生体
適合性にすぐれ、耐キンキング性に優れたもので
ある。さらに縫合性、吻合性、耐ほつれ性に優
れ、特に適当な抗血栓処理を行うことにより、6
mm以下の細径の人工血管として有効である。また
本発明で耐キンキング性を一層改善したい場合
は、従来のクリンプ加工を付加することも可能で
あり、極めて高い効果が得られる。特に強度なク
リンプとさけたい場合にも従来に比し血流を乱さ
ないような浅いわずかなクリンプでも極めて効果
があるものも本発明品の特徴である。 〔実施例〕 実施例 1 海成分にポリスチレン10部、島成分にポリエチ
レンテレフタレート90部を用い、島数36個/フイ
ラメントの高分子配列体繊維85Dtex−24fを得
た。この繊維を用い丸編みにより6.3mmのチユー
ブを形成した。これをソーダー灰の入つたお湯に
漬け、乾燥後トリクロルエチレンに浸漬したのち
乾燥した。このチユーブの透水率は2880であつ
た。 ポリウレタンとして、ポリテトラメチレンエー
テルグリコールをソフトセグメントとし、イソシ
アネートとしてジフエニルメタンジイソシアネー
トを用いジメチルホルムアミド中でプレポリマー
を形成後、エチレングリコールで鎖伸長させエー
テル系のセグメント化ポリウレタンを得た。この
ポリウレタンの6%液に上記チユーブを浸漬し次
いで水中に漬へ凝固させた。ポリウレタンの付着
率は繊維重量に対し12.3部であつた。このチユー
ブの外面をサンドペーパーで擦り、極細繊維の立
毛を形成させた。さらにこのチユーブの内と外と
を反転させ、外側もサンドペーパーで同様に擦
り、純水で十分洗浄した後乾燥し、両面に極細繊
維の立毛を有する人工血管とした。 かくして得られた人工血管の透水率は2472と繊
維のみのときと殆ど変わらない高透水率であり、
耐ほつれ性は1042gとかかる高透水率、組織にあ
つてはきわめて高いものであつた。また形体保持
率は97.3%と耐キンキング性に優れたものであつ
た。 この人工血管をエチレンオキサイドガスで滅菌
し、十分エアレーシヨンした後プリクロツテイン
グし、2頭の犬の下行大動脈に植え込み、30日及
び79日後の経過を見た。 施術に際し吻合性、縫合性は極めて良好であつ
た。初期の治癒経過とし、すでに30日目で仮性内
膜の良好な形成がみとめられ、79日目では人工血
管全体にわたつて良好な仮性内膜が形成されてい
た。 比較実施例 1 実施例1と同一のチユーブとポリウレタンを用
い、ポリウレタンの付着率を繊維重量に対し65%
と極細繊維全体がほぼ完全にポリウレタンで被覆
される状態とした。これを同様に犬に植え込みテ
ストしたが、弾性が有りすぎ、実施例1のものに
比し吻合性に劣るものであつた。30日目でも血栓
の形成が顕著であり、79日でも仮性内膜の形成は
不十分で部分的血栓形成が認められた。 比較実施例 2 実施例1でポリウレタンを付与せずにサンドペ
ーパー擦つたが、繊維の引つ掛かりが大きく編目
がずれたり、繊維切断端が伝染しほつれ、満足の
いく立毛を形成出来なかつた。またこのままでは
わずかな力でも寸法変化が大きく、使用に耐えう
るものではなかつた。 実施例 2 高分子配列体繊維で島成分をポリエチレンテレ
フタレート、海成分をポリエチレンテレフタレー
トとスルホソジユームイソフタレートとの共重合
体とし、島数/フイラメントが16、25、36となる
口金を用い、海成分を除去した後の極細繊維が
60Dtex−86f(A)、60Dtex−200f(B)、60Dtex−720f
(C)となる繊維を準備した。また別途常法でえた
62Dtex−50f(D)のポリエチレンテレフタレート繊
維を準備した。このD繊維を経糸とし、A、B、
C、D、繊維をよこ糸として5枚繻子組織で袋織
りにより、内径が約5mmのチユーブとなるように
それぞれ織り上げた。このチユーブをカセイソー
ダーの1.5%液中で処理し、A、B、C、の水準
につき4.5mmのステンレス棒にそれぞれを通し、
これをジフエニルメタンジイソシアネートとポリ
テトラメチレンエーテルグリコールで形成された
プレポリマーをメタンビスアニリンで鎖伸長させ
ポリウレタンの重合をおこなつた。この3%ジメ
チルホルムアミド溶液をそれぞれの人工血管に付
与し乾燥した。これ等をサンドペーパーで擦り表
面は極細繊維で被われポリウレタンが殆どみとめ
られない状態とした。顕微鏡で注意深く観察する
と織り組織の交点部周辺の内部にポリウレタンが
僅かに付着していることが確認された。チユーブ
組織の交点部以外の部分を注意深く先端の鋭利な
ナイフで切り、これをそれぞれ2mg準備し、テト
ラヒドロフランでポリウレタンを抽出し、この液
をガスクロマトグラフイーにかけ、別途作成した
検量線を基に交点部以外のポリウレタン量を定量
した。さらにこれ等を裏返し人工血管としD水準
をコントロールとして実施例1と同様に評価し
た。 この結果を第1表に示した。
[Industrial Field of Application] The present invention relates to an artificial blood vessel with excellent handling properties and early healing properties, and particularly to a method for manufacturing an artificial blood vessel that is flexible and has excellent kink resistance and fraying resistance. [Prior Art] Synthetic artificial blood vessels can be broadly classified into those made of fabric and those made of non-fabric. Those made of cloth form a biological pseudointima on the inner surface of the fibrous base material and are intended to achieve antithrombotic properties. The artificial blood vessel in this case is made of a tube formed by weaving, polarizing, etc., especially using polyester fibers. This is based on a fibrous tube. In such artificial blood vessels, the important point is not only ease of handling but also how quickly the pseudointima can be formed on the inner surface.
Regarding the formation of pseudointima, it was discovered in Japanese Patent Application Laid-open No. 59-118 that it can be significantly improved by using ultrafine fibers.
It is found in Publication No. 22505. However, when ultrafine fibers are used, the texture becomes too soft, causing problems in kinkability. For this reason, it is necessary to devise measures such as using it in combination with ordinary thick fibers.
However, this makes the structure complex, which not only causes difficulties in production, but also causes problems in terms of fraying resistance and handleability. For example, in order to improve the fraying resistance, additional means such as spraying high-pressure fluid to entangle the ultrafine fibers with each other is required, as seen in Japanese Patent Application Laid-Open No. 61-92666. Such methods are extremely effective and have some value. but,
The flexibility of the artificial blood vessel tends to be impaired.
In addition, there is a method to improve kinking property by applying crimps, but this crimped form is different from the smooth state of the living body, and has been pointed out to be harmful because it disturbs blood flow and makes it easier to form blood clots. There is. Another method has been developed that involves wrapping a thick monofilament around it and reinforcing it externally, but in this case the flexibility is compromised and a hard filament end is added to the anastomosis, making the anastomosis difficult. becomes extremely bad. That is, the current situation is that no definitive solution for improving the kinking property has been found at present. Regarding non-fabric artificial blood vessels, plastic tubes such as polytetrafluoroethylene and polyurethane have been developed or studied.
The disadvantages of such plastic tube artificial blood vessels are:
Pannus is likely to occur at the anastomotic site, and obstruction with the anastomotic material is likely to occur. In addition, it lacks flexibility, is difficult to anastomose, has poor cleavage resistance, and is easily torn by anastomoses. For this reason, studies have been made to reinforce the material with a mesh of fibers, but nothing has yet been achieved that fully overcomes the drawbacks of biocompatibility and handleability. [Problems to be solved by the invention] The present invention aims to improve the above-mentioned drawbacks, and aims to improve anastomotic properties,
The object of the present invention is to provide a method for manufacturing an artificial blood vessel that has improved handling properties such as sewing pillars and fraying resistance, kinking properties, and initial and long-term biocompatibility. [Means for solving the problems] The present invention is achieved by the following means. That is, the method for manufacturing an artificial blood vessel of the present invention includes:
After forming a tube with ultrafine fibers of 0.8 dtex or less, a polymeric elastic material is applied in an amount of 45 to 3 parts based on the weight of the fiber, and after solidification, a napping treatment is performed to form at least napping on the inner surface. This is a method for manufacturing artificial blood vessels with excellent handling and healing properties. The present invention provides an artificial blood vessel made of ultrafine fibers with a very small amount of elastic material that does not impair the biocompatibility of the ultrafine fibers, thereby significantly reducing kinking even in the shape of a smooth tube without crimping. We have found that this can be improved. That is, when ultrafine fibers are used, they have the disadvantage of poor kinkability due to their flexibility, and it was predicted that it would be extremely difficult to improve this kinkability. We have found that adding a body significantly improves this kinking property, a truly unexpected effect. Furthermore, it has been found that by applying a very slight restraining force as an effect of the ultrafine fibers, that is, by imparting a slight elasticity, slippage between the fibers can be suppressed, and the fraying resistance can be almost completely solved.
The significance of being able to achieve improvement with this small amount of application is extremely important. If this amount is too large, it destroys the biocompatibility properties of ultrafine fibers and is completely meaningless. As described above, the present invention has succeeded in developing an excellent, extremely well-balanced artificial blood vessel that has never existed before by skillfully utilizing the characteristics of ultrafine fibers and elastic bodies. In obtaining an artificial blood vessel according to the present invention,
First, a tube is formed using ultrafine fibers of 0.8 dtex or less, preferably 0.5 dtex or less, preferably 0.1 dtex or less. Regarding the means for obtaining such ultrafine fibers,
It is detailed in USP 3531368, USP 335048, Japanese Patent Application Laid-Open No. 61-92666, etc. In addition, the tube can be formed using ordinary techniques such as weaving, knitting, non-woven fabric, stringing, etc.
The shape of the tube can be selected depending on the purpose, such as a plain texture for plain weaving, a multiple texture, or a velor shape. In addition, as a preferable guideline for the present invention, although it is not particularly important, a pressure of 120 mmHg per 1 cm 2 , 1
The water permeability value defined as the amount of water permeation (g) per minute is 300 or more, preferably 800 or more, and more preferably 1500 or more. In forming such a tube, ultrafine fibers may be used alone or thick fibers may be used in combination. In the present invention, 45 parts to 3 parts of an elastic body is applied to the tubes based on the weight of the fibers, either directly or after being subjected to a napping treatment. If the amount exceeds 45 parts, the effect of the elastic material will appear, and the biocompatibility effect of ultrafine fibers will be diminished. If it is less than 3 parts, kink resistance will be insufficient and problems will arise in terms of reproducibility and long-term stability. In the present invention, the shape retention rate defined below is used as a measure of this kinking resistance. This shape retention rate refers to the degree of deformation of the diameter of an artificial blood vessel when a load of 50 g is placed on a 20 cm long artificial blood vessel for 3 minutes and then removed. In the present invention, it is desirable that the shape retention rate is 80% or more, preferably 93% or more. The optimal value of the application rate of the elastic body of the present invention varies depending on the attachment state of the elastic body. In the method in which the solvent is evaporated to dryness, the adhesion of the elastic body to the fibers is strong, and therefore the adhesion rate can be reduced to a small amount. If a soft texture is required, a so-called wet coagulation method is recommended. However, in this case, the adhesive force between the elastic body and the fibers becomes a little weak, and in order to increase the binding force, the adhesion rate of the elastic body needs to be a little high.
Therefore, the adhesion rate is appropriately determined in consideration of such measures. Overall, it is often particularly preferable for the adhesion rate to be slightly lower, at 20 parts or less. The applied force of an elastic body is often particularly preferred. As a method for applying the elastic body, a predetermined amount is applied in a state such as a solution or emulsion by impregnation, spraying, coating, or the like. In particular, if you want to make the most of the characteristics of ultrafine fibers, it is recommended to coat, spray, etc. so that the amount is less on the inside of the tube and more on the outside. Also, as another means,
The desired state can be achieved by adjusting the viscosity of the liquid to a slightly higher level and controlling the rate of penetration. A more reliable method is to bond thin films together by heat-sealing or the like. Such methods should be used appropriately depending on the situation. Moreover, a simpler method is to keep the total amount of the elastic body as small as possible and to provide it so as to maximize the anti-kinking effect. In such a state, a relatively small amount of elastic material is applied intensively to the intersection points of the fiber structures constituting the tube, and a relatively small amount is applied to other parts. The relative meaning cannot be determined individually, but for example, it refers to a state in which there is a difference in adhesion rate of two or more parts. The difference in adhesion rate can be determined by cutting out each part under a microscope, extracting the polymeric elastic body with a solvent, and determining the liquid using gas chromatography. By attaching the elastic body to the intersection point as in the present invention, the restraining force of the elastic body can be maximized even with a small amount, and the kinking resistance can be significantly improved. In addition, in areas with less elastic material, the biocompatibility function of ultrafine fibers can be utilized as is. In the present invention, since ultrafine fibers are used in particular, the tube remains soft and has poor kink resistance, but it has been found that this disadvantage of being too soft can be turned into an advantage in that shape retention can be imparted with a slight restraining force. It is something. A method of applying an elastic body in such a state can be achieved by solidifying the applied liquid with a slightly lower concentration and viscosity, and a relatively small amount of liquid to be picked up. In principle, any elastic body that can be used in the present invention may be used as long as it is not biotoxic and does not deteriorate its mechanical strength in vivo. Therefore, although the present invention is not limited to this, specific examples that can be recommended include elastic bodies formed by the reaction of isocyanate groups such as polyurethane, polyurethane-urea, and polyurea with amine or hydroxyl groups. . Among these, ether-based soft segments are particularly preferred. However, the soft segment need not be limited to a single system. Copolymerization systems with silicone, fluorine, polyethylene glycol, etc. also show extremely interesting results. Other materials include acrylic elastomers such as acrylonitrile-butadiene and styrene-butadiene, natural rubber, and pluronic elastomers. A necessary characteristic of artificial blood vessels is resistance to fraying.
This fraying resistance is extremely important in suturing artificial blood vessels. The most common areas where thrombi are likely to form are anastomoses.
An extremely important point is how smoothly this anastomosis and suturing can be performed. Particularly when the diameter is 6 mm or less, it must be sewn tightly to the host blood vessel with a small seam allowance, and for this reason, a material that does not fray even if the seam allowance is small is required. Furthermore, in the case of the aorta, when it is used to repair a multi-branched vascular site, it is necessary to suture a large number of branch vessels to a large main vessel. For this reason, a hole for attaching a branch blood vessel is made in the large main blood vessel, and the branch blood vessel is sutured therein. However, the shape of this hole is elliptical and is particularly susceptible to fraying. With the artificial blood vessel of the present invention, this attachment can be performed extremely well since there is no fraying. The present invention uses ultrafine fibers, and since the ultrafine fibers have a property of not easily slipping from each other, a slight amount of polymeric elastic material (binder) provides an extremely high anti-fraying effect. In the present invention, the following fraying resistance value is defined as a guideline for this fraying resistance: Pass a thread 2 mm from the cut end of the artificial blood vessel to form a loop, and connect the loop with the other end of the artificial blood vessel. The material is pulled using a tensile tester until it frays, and the maximum load (number of grams) at that time is defined as the fraying resistance. In the present invention, this value is 500 g or more, preferably 800 g.
The above is good. A feature of the present invention is that it exhibits such good fraying resistance even if it has a high water permeability and coarse structure, which is generally considered to have poor fraying resistance. The artificial blood vessel thus obtained can be used as it is, but it is more preferable to use it with at least the inner surface coated with ultrafine fibers. To ensure that the inner surface is clearly covered with ultrafine fibers, the polyurethane on the surface may be simply shaved off. That is, at least the inner surface of the tube to which a small amount of polyurethane is attached may be treated with a napping machine or a buffing machine to remove the polyurethane and at the same time form napped microfibers, or to make the microfibers rich. Continuous mechanical treatment of the inner surface requires extremely high skill. One way to easily do this is to
First, it is necessary to perform the fiberization treatment while being turned inside out, and then turn it over again. If such a treatment is performed firmly, it becomes possible to form the nap of ultra-fine fibers. The raised microfibers have a remarkable biocompatibility effect, and by forming them, an artificial blood vessel with extremely excellent biocompatibility can be obtained. Such means is particularly preferable because it enables uniform raising of ultrafine fibers due to the fiber gripping effect of the elastic body. Another effect of the elastic body is that it can be used even with extremely simple fiber structures. For example, in the past, circularly knitted tubes were easily deformed by a small amount of force, resulting in excessive deformation and fraying, making it impossible to apply them as they were to artificial blood vessels. Furthermore, when placing importance on biogenic cell formation, an artificial blood vessel with high water permeability is required. Such a material inevitably requires a coarse fibrous structure, and if you try to raise it to form raised hair in order to further increase its biocompatibility, the eyelids will shift and the tube will be deformed, resulting in no raised hair at all. I was in a state where I couldn't do it. However, in the present invention, a small amount of elastic material acts as a binder, and even in tissues that are supposed to be highly deformed, the deformation is significantly reduced, and the impossible raising of hair becomes possible. The thus obtained product of the present invention is flexible, has excellent biocompatibility, and has excellent kink resistance. In addition, it has excellent suturing properties, anastomotic properties, and fraying resistance, and especially by performing appropriate antithrombotic treatment, 6
It is effective as an artificial blood vessel with a diameter of mm or less. Furthermore, if it is desired to further improve the kinking resistance in the present invention, it is also possible to add conventional crimp processing, and extremely high effects can be obtained. A feature of the product of the present invention is that, even when it is desired to avoid particularly strong crimping, even shallow and slight crimping that does not disturb blood flow as compared to conventional crimping is extremely effective. [Examples] Example 1 Using 10 parts of polystyrene as the sea component and 90 parts of polyethylene terephthalate as the island component, a polymer array fiber 85Dtex-24f having 36 islands/filament was obtained. Using this fiber, a 6.3 mm tube was formed by circular knitting. This was soaked in hot water containing soda ash, dried, immersed in trichlorethylene, and then dried. The water permeability of this tube was 2880. As a polyurethane, a prepolymer was formed in dimethylformamide using polytetramethylene ether glycol as a soft segment and diphenylmethane diisocyanate as an isocyanate, and then the chain was extended with ethylene glycol to obtain an ether-based segmented polyurethane. The tube was immersed in a 6% solution of polyurethane and then submerged in water to solidify. The adhesion rate of polyurethane was 12.3 parts based on the weight of the fiber. The outer surface of this tube was rubbed with sandpaper to form raised microfibers. Furthermore, the inside and outside of this tube were turned over, and the outside was similarly rubbed with sandpaper, thoroughly washed with pure water, and then dried to obtain an artificial blood vessel having microfiber naps on both sides. The water permeability of the artificial blood vessel thus obtained was 2472, which is almost the same as when using only fibers.
The fraying resistance was extremely high considering the high water permeability and texture of 1042g. In addition, the shape retention rate was 97.3%, indicating excellent kink resistance. The artificial blood vessels were sterilized with ethylene oxide gas, thoroughly aerated, and then preclotted and implanted in the descending aortas of two dogs, and their progress was observed 30 and 79 days later. During the procedure, the anastomosis and suturing properties were extremely good. This is an early healing process, and good formation of pseudointima was already observed on the 30th day, and on the 79th day, good pseudointima was formed throughout the entire artificial blood vessel. Comparative Example 1 Using the same tube and polyurethane as in Example 1, the adhesion rate of polyurethane was 65% of the fiber weight.
The entire ultrafine fiber was almost completely covered with polyurethane. This was similarly implanted in a dog and tested, but it was too elastic and had inferior anastomosis properties compared to that of Example 1. Thrombus formation was noticeable even on day 30, and formation of pseudointima was insufficient even on day 79, and partial thrombus formation was observed. Comparative Example 2 In Example 1, sandpaper was rubbed without applying polyurethane, but the fibers were caught so much that the stitches were misaligned, the cut ends of the fibers became infected and frayed, and a satisfactory nap could not be formed. In addition, if it remained as it was, even a small amount of force would cause a large dimensional change, making it unusable. Example 2 Using a polymer array fiber, the island component is polyethylene terephthalate, the sea component is a copolymer of polyethylene terephthalate and sulfosodium isophthalate, and the number of islands/filament is 16, 25, or 36 using a cap, Ultra-fine fibers after removing sea components
60Dtex−86f(A), 60Dtex−200f(B), 60Dtex−720f
The fibers shown in (C) were prepared. Also, it was obtained separately by ordinary methods.
A 62Dtex-50f(D) polyethylene terephthalate fiber was prepared. This D fiber is used as the warp, A, B,
C and D fibers were used as weft threads to form tubes with an inner diameter of about 5 mm by bag weaving with a 5-ply satin structure. This tube was treated in a 1.5% solution of caustic soda, and passed through a 4.5 mm stainless steel rod for levels A, B, and C.
Polyurethane was polymerized by chain-extending a prepolymer formed from diphenylmethane diisocyanate and polytetramethylene ether glycol with methane bisaniline. This 3% dimethylformamide solution was applied to each artificial blood vessel and dried. These were rubbed with sandpaper so that the surface was covered with ultrafine fibers and polyurethane was hardly visible. Careful observation under a microscope confirmed that a slight amount of polyurethane was attached to the interior around the intersections of the weave structures. Carefully cut the parts of the tube tissue other than the intersection points with a sharp knife, prepare 2 mg of each, extract the polyurethane with tetrahydrofuran, apply this liquid to gas chromatography, and measure the intersection points based on a separately prepared calibration curve. The amount of polyurethane other than that was quantified. Furthermore, these were turned over and used as artificial blood vessels and evaluated in the same manner as in Example 1, using the D level as a control. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明により得られる人工血管は柔軟なため、
吻合性、縫合性、耐ほつれ性といつた取扱性にお
いて極めて優れているばかりでなく、柔軟にもか
かわらず耐キンキング性にすぐれ、また生体細胞
が形成されやすく、仮性内膜の早期かつ均一な形
成が良好に行われる、極めて治癒性に優れた人工
血管である。 特にその柔軟な特徴はまさに生体の血管に近似
し、かつ耐キンキング性を有し、また縫合時も縫
い合わせ端の縫い切れがなく、この点では生体血
管よりも優れた特性さえも有する。しかも仮性内
膜の形成よりも早期に且つ良好に行われ、治癒性
にも優れたものである。このように多くの点でバ
ランスがとれており、画期的ともいえる人工血管
である。
Since the artificial blood vessel obtained by the present invention is flexible,
Not only does it have excellent handling properties such as anastomotic properties, suturing properties, and fraying resistance, but it also has excellent kinking resistance despite its flexibility, and is easy to form biological cells, allowing for early and uniform formation of pseudointima. It is an artificial blood vessel that forms well and has extremely excellent healing properties. In particular, its flexible characteristics are exactly similar to biological blood vessels, and it has kinking resistance, and there is no seam breakage at the stitched ends when suturing, and in this respect it has even better properties than biological blood vessels. Moreover, it is performed earlier and better than the formation of pseudointima, and has excellent healing properties. In this way, it is well-balanced in many respects, making it an innovative artificial blood vessel.

Claims (1)

【特許請求の範囲】[Claims] 1 0.8dtex以下の極細繊維でチユーブを形成後、
高分子弾性体を繊維重量に対し45〜3部の範囲と
なるように付与し、固化後立毛処理により少なく
とも内面に立毛を形成することを特徴とする取扱
性と治癒性に優れた人工血管の製造法。
1 After forming a tube with ultrafine fibers of 0.8 dtex or less,
An artificial blood vessel with excellent handling and healing properties characterized by applying a polymeric elastic material in an amount of 45 to 3 parts by weight based on the weight of the fibers, and forming at least the inner surface by a piloerection treatment after solidification. Manufacturing method.
JP62161893A 1987-06-29 1987-06-29 Artificial blood vessel excellent in handling property and healing property and its preparation Granted JPS645544A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62161893A JPS645544A (en) 1987-06-29 1987-06-29 Artificial blood vessel excellent in handling property and healing property and its preparation
JP9804792A JPH0710270B2 (en) 1987-06-29 1992-04-17 An artificial blood vessel that is easy to handle and cure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62161893A JPS645544A (en) 1987-06-29 1987-06-29 Artificial blood vessel excellent in handling property and healing property and its preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9804792A Division JPH0710270B2 (en) 1987-06-29 1992-04-17 An artificial blood vessel that is easy to handle and cure

Publications (2)

Publication Number Publication Date
JPS645544A JPS645544A (en) 1989-01-10
JPH0462740B2 true JPH0462740B2 (en) 1992-10-07

Family

ID=15744008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62161893A Granted JPS645544A (en) 1987-06-29 1987-06-29 Artificial blood vessel excellent in handling property and healing property and its preparation

Country Status (1)

Country Link
JP (1) JPS645544A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070292A1 (en) * 2000-03-24 2001-09-27 Yuichi Mori Artificial hollow organ
JPWO2016190202A1 (en) * 2015-05-27 2018-03-08 東レ株式会社 Tubular woven structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192666A (en) * 1984-10-15 1986-05-10 東レ株式会社 Artificial blood vessel and its production
JPS61238238A (en) * 1985-04-15 1986-10-23 鐘淵化学工業株式会社 Production of artificial blood vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192666A (en) * 1984-10-15 1986-05-10 東レ株式会社 Artificial blood vessel and its production
JPS61238238A (en) * 1985-04-15 1986-10-23 鐘淵化学工業株式会社 Production of artificial blood vessel

Also Published As

Publication number Publication date
JPS645544A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
Leidner et al. A novel process for the manufacturing of porous grafts: Process description and product evaluation
CN113518633B (en) Medical implant assembly comprising composite biological textile and method of manufacture
JP3165166B2 (en) Artificial blood vessel and method for producing the same
AU2014355478B2 (en) Vascular prosthesis
CN113490516B (en) Method for preparing composite biological textile and medical implant comprising composite biological textile
JP2023538510A (en) Polyurethane composite sheet, method for manufacturing such composite sheet and its use in the manufacture of medical indwelling devices
JPS6158190B2 (en)
JPH0462740B2 (en)
EP0903117A2 (en) Medical materials and method for the preparation of same
JP5908811B2 (en) Ultrafine fiber medical material for long-term in vivo implantation
JPH05111505A (en) Artificial blood vessel
JPH0624587B2 (en) Artificial blood vessel
JPH0459901B2 (en)
JPH0523362A (en) Preparation of artificial blood vessel
JPH0262264B2 (en)
RU2670671C2 (en) Vascular prosthesis
JPH0459899B2 (en)
JPH0636820B2 (en) Mandrill graft insertion method
JPH0459900B2 (en)
WO2001070292A1 (en) Artificial hollow organ
JPS6247363A (en) Artificial blood vessel
JP2010213827A (en) Nonwoven fabric for patch of suture section during heart surgery
JPH01107756A (en) Medical prosthesis