JPH046240Y2 - - Google Patents

Info

Publication number
JPH046240Y2
JPH046240Y2 JP1299387U JP1299387U JPH046240Y2 JP H046240 Y2 JPH046240 Y2 JP H046240Y2 JP 1299387 U JP1299387 U JP 1299387U JP 1299387 U JP1299387 U JP 1299387U JP H046240 Y2 JPH046240 Y2 JP H046240Y2
Authority
JP
Japan
Prior art keywords
heat
chamber
pipe
sealed casing
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1299387U
Other languages
Japanese (ja)
Other versions
JPS63121492U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1299387U priority Critical patent/JPH046240Y2/ja
Publication of JPS63121492U publication Critical patent/JPS63121492U/ja
Application granted granted Critical
Publication of JPH046240Y2 publication Critical patent/JPH046240Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Patch Boards (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【考案の詳細な説明】 考案の目的 [産業上の利用分野] 本考案は、偏平多孔管から形成された所謂ヒー
トパイプを使用して、例えば、制御盤等の密閉筐
体内部の冷却を行なう密閉筐体用熱交換器に関す
る。
[Detailed description of the invention] Purpose of the invention [Industrial application field] The invention uses a so-called heat pipe formed from a flat perforated tube to cool the inside of a sealed enclosure such as a control panel. Related to a heat exchanger for a closed case.

[従来の技術] 従来より、例えば各種制御盤や配電盤等の密閉
筐体内部の空気を所定温度以下に冷却する熱交換
器として、所謂ヒートパイプを利用するものが知
られている。ヒートパイプは、通常、内部に例え
ば水、あるいはメチルアルコール等の作動流体を
密封し、下側を吸熱部、上端側を排熱部として形
成され、上記熱交換器は、このようなヒートパイ
プの吸熱部を密閉筐体内部に挿入し、一方、排熱
部を密閉筐体外部に露出して構成される。この場
合、吸熱部の作動流体は、密閉筐体内部で温度上
昇した内部空気の熱を蒸発潜熱として奪いながら
蒸発してヒートパイプ内を上昇し、排熱部に至
る。これにより、内部空気は冷却される。一方、
作動流体は排熱部で外部空気により冷却されて凝
縮液化し、ヒートパイプ内を流下して再び吸熱部
に戻る。このような動作の繰り返しにより、密閉
筐体内部は所定温度以下に冷却される。
[Prior Art] Conventionally, heat exchangers that use so-called heat pipes have been known to cool the air inside a sealed casing of various control panels, switchboards, etc. to a predetermined temperature or lower. A heat pipe is usually formed with a working fluid such as water or methyl alcohol sealed inside, and a heat absorbing section on the lower side and a heat exhausting section on the upper end. The heat absorbing part is inserted inside the sealed casing, while the heat exhausting part is exposed outside the sealed casing. In this case, the working fluid in the heat absorption section evaporates while absorbing the heat of the internal air whose temperature has increased inside the sealed casing as latent heat of evaporation, rises in the heat pipe, and reaches the heat exhaust section. This cools the internal air. on the other hand,
The working fluid is cooled by external air in the heat exhaust section, condenses into liquid, flows down the heat pipe, and returns to the heat absorption section. By repeating such operations, the inside of the sealed casing is cooled to a predetermined temperature or lower.

上記のようなものとして、例えば、特開昭60−
124994号公報の「冷却装置」等に示すように、ヒ
ートパイプの長手方向に隣接して、その加熱部側
に内部電動フアンを、そしてその放熱部側に外部
電動フアンをそれぞれ配置した構成のものが提案
されている。
For example, as mentioned above,
As shown in the "Cooling device" of Publication No. 124994, etc., a heat pipe has a structure in which an internal electric fan is arranged adjacent to the heat pipe in the heating section side, and an external electric fan is arranged next to the heat radiation section side. is proposed.

[考案が解決しようとする問題点] しかしながら、上記従来技術は、以下に示す問
題点を有しており、未だ十分なものではなかつ
た。即ち、 (1) 従来技術におけるヒートパイプは複数の円管
から構成されていた。したがつて、熱効率を向
上させるためには、内部電動フアンにより送風
される内部空気あるいは外部電動フアンにより
送風される外部空気の流れ方向に対して、各円
管を例えば千鳥配列のような多段に配置する必
要があつた。このため、ヒートパイプを配列し
た部分の容積増加に伴い、熱交換器の大型化を
招くという問題点があつた。また、複数の円管
を多段に配列するので、熱交換器の構造が複雑
になるという問題点もあつた。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following problems and is still not sufficient. That is, (1) the heat pipe in the prior art was composed of a plurality of circular tubes. Therefore, in order to improve thermal efficiency, the circular pipes should be arranged in multiple stages, such as in a staggered arrangement, in the flow direction of the internal air blown by the internal electric fan or the external air blown by the external electric fan. It was necessary to place it. For this reason, there is a problem in that the heat exchanger becomes larger as the volume of the portion where the heat pipes are arranged increases. Furthermore, since a plurality of circular tubes are arranged in multiple stages, there is also the problem that the structure of the heat exchanger becomes complicated.

(2) さらに、複数の円管を多段に配列した場合
は、内部電動フアンの送風する内部空気および
外部電動フアンの送風する外部空気の流れが上
記のように配列された円管により乱れてしま
う。このため、電動フアンの送風能力増大等の
対策を実施しないと、熱交換に充分な風量が得
られず、熱効率向上の妨げになるという問題点
があつた。
(2) Furthermore, if multiple circular tubes are arranged in multiple stages, the flow of internal air blown by the internal electric fan and external air blown by the external electric fan will be disturbed by the circular tubes arranged as above. . Therefore, unless measures such as increasing the air blowing capacity of the electric fan are taken, sufficient air volume for heat exchange cannot be obtained, which poses a problem in that it impedes improvement in thermal efficiency.

(3) ヒートパイプに作動流体を密封する際にヒー
トパイプの端部を接合する必要があるが、ヒー
トパイプが複数の円管から構成されている場合
は、接合部が多くなつていまう。このため、製
造時の組立作業の効率が悪いという問題点があ
つた。また接合部が多いので、作動流体がリー
クし易いという問題点もあつた。
(3) When sealing the working fluid into the heat pipe, it is necessary to join the ends of the heat pipe, but if the heat pipe is composed of a plurality of circular tubes, there will be a large number of joints. For this reason, there was a problem that the efficiency of assembly work during manufacturing was low. Furthermore, since there are many joints, there is also the problem that the working fluid tends to leak.

本考案は、上記諸問題点に鑑みてなされたもの
で、小型で熱効率が高く、製造容易でしかもヒー
トパイプ内に封入した作動流体がリークしにくい
密閉筐体用熱交換器を提供することを目的とす
る。
The present invention was made in view of the above-mentioned problems, and aims to provide a heat exchanger for a closed casing that is small, has high thermal efficiency, is easy to manufacture, and is less likely to leak the working fluid sealed in the heat pipe. purpose.

考案の構成 [問題点を解決するための手段] 上記問題点を解決するためになされた本考案
は、 密閉筐体に設置され、該密閉筐体内部と外部と
の間の熱交換を行なう密閉筐体用熱交換器であつ
て、 上記密閉筐体内部に連通する吸熱室と、 該吸熱室の上側に設けられ、上記吸熱室と仕切
部材で遮断されて上記密閉筐体外部に開放された
排熱室と、 上記仕切部材を貫通して上記吸熱室と排熱室と
に渡つて設けられ、内部に多数の穴を有する偏平
な偏平多孔管を蛇行状に形成し、更に上記偏平多
孔管の各孔を端部および吸熱室側の屈曲部で相互
に連通して形成したヒートパイプと、 該ヒートパイプに配設されたフインと、 上記吸熱室内もしくは吸熱室と近接する位置に
配設され、上記密閉筐体内部の空気を上記ヒート
パイプの吸熱室側部分の偏平方向に沿つて送風す
る吸熱用送風機と、 上記排熱室内もしくは排熱室と近接する位置に
配設され、上記密閉筐体外部の空気を上記ヒート
パイプの排熱室側部分の偏平方向に沿つて送風す
る排熱用送風機と、 を備えたことを特徴とする密閉筐体用熱交換器を
要旨とする。
Structure of the invention [Means for solving the problems] The present invention, which was made to solve the above problems, consists of a hermetically sealed device installed in a sealed casing, which performs heat exchange between the inside of the sealed casing and the outside. A heat exchanger for a housing, comprising: an endothermic chamber communicating with the inside of the hermetically sealed casing; and an endothermic chamber provided above the endothermic chamber, separated from the endothermic chamber by a partition member, and opened to the outside of the hermetically sealed casing. a heat exhaust chamber; a flat porous tube extending through the partition member and extending between the heat absorption chamber and the heat exhaust chamber and having a large number of holes therein; a heat pipe formed by interconnecting each hole at an end portion and a bent portion on the side of the heat absorption chamber; fins disposed on the heat pipe; , a heat absorption blower that blows the air inside the sealed casing along the flat direction of the heat absorption chamber side portion of the heat pipe; The present invention provides a heat exchanger for a closed casing, comprising: a heat exhaust blower that blows air outside the body along the flat direction of the heat exhaust chamber side portion of the heat pipe;

[作用] 本考案の密閉筐体用熱交換器にあつては、吸熱
室内もしくは吸熱室と近接する位置に配設された
吸熱用送風機が、密閉筐体内部の空気をフインを
配設したヒートパイプの吸熱室側部分の偏平方向
に沿つて送風することにより、上記吸熱室側部分
に密封された作動流体が、密閉筐体内部の熱を奪
いながら蒸発してヒートパイプ内を上昇する。一
方、排熱室内もしくは排熱室と近接する位置に配
設された排熱用送風機が、密閉筐体外部の空気を
上記ヒートパイプの排熱室側部分の偏平方向に沿
つて送風することにより、上記蒸発した作動流体
を外部空気により冷却する。こうして密閉筐体内
の熱を奪うことができる。
[Function] In the heat exchanger for a sealed casing of the present invention, an endothermic blower disposed in the heat absorption chamber or in a position close to the heat absorption chamber converts the air inside the sealed casing into a heat exchanger equipped with fins. By blowing air along the flat direction of the endothermic chamber side portion of the pipe, the working fluid sealed in the endothermic chamber side portion evaporates and rises inside the heat pipe while taking away the heat inside the sealed casing. On the other hand, a heat exhaust blower installed in or near the heat exhaust chamber blows air from outside the sealed casing along the flat direction of the heat exhaust chamber side portion of the heat pipe. , the evaporated working fluid is cooled by external air. In this way, the heat inside the sealed casing can be removed.

ここでは、偏平多孔管から成るヒートパイプが
送風方向と平行に設置されているため、空気流通
時の圧力損失が少なくなり、所定の風量を比較的
容易に確保できると共に、偏平多孔管から成るヒ
ートパイプの偏平方向に沿つて空気を円滑に流通
させて、単位容積当たりの熱交換能力を向上する
ことができる。
Here, the heat pipe made of a flat perforated pipe is installed parallel to the direction of air blowing, so the pressure loss during air circulation is reduced, making it relatively easy to secure a specified air volume. By allowing air to flow smoothly along the flat direction of the pipe, the heat exchange capacity per unit volume can be improved.

またヒートパイプが、仕切部材を貫通して吸熱
室と排熱室とに渡つて設けられ、偏平多孔管を蛇
行状に形成したものであるから、接合部が両端部
の2箇所でよく、製造時の組立作業能率の向上お
よび作動流体のリーク可能性の低減を図ることが
できる。
In addition, since the heat pipe is provided to pass through the partition member and extend between the heat absorption chamber and the heat exhaustion chamber, and is made of a flat perforated tube formed in a meandering shape, there are only two joints at both ends, and the manufacturing process is easy. It is possible to improve assembly work efficiency during assembly and reduce the possibility of leakage of working fluid.

更に上記偏平多孔管の各孔を端部および吸熱室
側の屈曲部で相互に連通して形成したので、その
端部および吸熱室側の屈曲部の夫々に貯流した作
動流体の液面を偏平多孔管の各孔毎に同一位置に
保持することができ、偏平多孔管の各孔毎の熱伝
達性能を均一にして熱交換能力の安定を図れるの
である。
Furthermore, since the holes of the flat porous tube are formed to communicate with each other at the ends and the bent portions on the endothermic chamber side, the liquid level of the working fluid stored at the ends and the bent portions on the endothermic chamber side can be adjusted. Each hole of the flat porous tube can be held at the same position, and the heat transfer performance of each hole of the flat porous tube can be made uniform, thereby stabilizing the heat exchange capacity.

従つて本考案の密閉筐体用熱交換器は、偏平多
孔管の構造的特徴を利用し、小型化、熱効率の向
上、構造および製造作業の簡略化、作動流体のリ
ーク可能性の低減、さらに熱交換能力の安定を実
現するよう働く。
Therefore, the heat exchanger for a closed casing of the present invention utilizes the structural features of flat porous tubes to achieve miniaturization, improvement of thermal efficiency, simplification of structure and manufacturing work, reduction of the possibility of leakage of working fluid, and Works to stabilize heat exchange capacity.

[実施例] 次に、本考案の好適な実施例を図面に基づいて
詳細に説明する。本考案第一実施例である天井設
置型の密閉筐体用熱交換器の正面図を第1図に、
右側面図を第2図に各々示す。なお、各図毎に縮
尺は異なる。
[Example] Next, a preferred example of the present invention will be described in detail based on the drawings. FIG. 1 shows a front view of a ceiling-mounted heat exchanger for a closed case, which is the first embodiment of the present invention.
The right side views are shown in FIG. 2. Note that the scale differs for each figure.

第1図に示すように、密閉筐体用熱交換器1
は、ケーシング2内の下部に設けられた吸熱室
3、上記ケーシング2内の上部に設けられて上記
吸熱室3と仕切板4で遮断された排熱室5、蛇行
状に形成された押出偏平多孔管からなり上記仕切
板4を貫通して吸熱室3と排熱室5とに渡つて設
けられたヒートパイプ6、該ヒートパイプ6に配
設されたコルゲートフイン10、上記吸熱室3と
近接して配設され密閉筐体内部の空気をヒートパ
イプ6の吸熱室側部分の偏平方向に沿つて送風す
る吸熱用送風機11および上記排熱室3とを近接
して配設され密閉筐体外部の空気をヒートパイプ
6の排熱室側部分の偏平方向に沿つて送風する排
熱用送風機12から構成されている。仕切板4と
ヒートパイプ6との接合部およびヒートパイプ6
とコルゲートフイン10との接合部は各々真空法
またはフラツクスなしロウ付法あるいは熱伝達性
の良好な接着剤等により接合されている。なお、
仕切板4、ヒートパイプ6およびコルゲートフイ
ン10の材質は、いずれも純アルミニウムもしく
はアルミニウム合金である。
As shown in Fig. 1, a heat exchanger 1 for a closed case
A heat absorption chamber 3 provided in the lower part of the casing 2, a heat exhaust chamber 5 provided in the upper part of the casing 2 and separated from the heat absorption chamber 3 by a partition plate 4, and an extruded flattened part formed in a meandering shape. A heat pipe 6 made of a porous pipe and provided across the heat absorption chamber 3 and the heat exhaust chamber 5 by penetrating the partition plate 4, a corrugated fin 10 disposed on the heat pipe 6, and a corrugated fin 10 disposed in the vicinity of the heat absorption chamber 3. A heat-absorbing blower 11 that is arranged to blow the air inside the sealed casing along the flat direction of the heat absorption chamber side portion of the heat pipe 6 and the heat exhaust chamber 3 are arranged in close proximity to the outside of the sealed casing. The exhaust heat blower 12 blows air along the flat direction of the heat exhaust chamber side portion of the heat pipe 6. The joint between the partition plate 4 and the heat pipe 6 and the heat pipe 6
The joints between the corrugated fins 10 and the corrugated fins 10 are each joined by a vacuum method, a fluxless brazing method, an adhesive having good heat transfer properties, or the like. In addition,
The materials of the partition plate 4, heat pipe 6, and corrugated fin 10 are all pure aluminum or aluminum alloy.

次に、ヒートパイプ6の構造を説明する。ヒー
トパイプ6は、押出偏平多孔管を蛇行形状に加工
して成り、一端側はヘツダ管部13を、一方、他
端側は封止部14を形成している。該ヒートパイ
プ6の内部は、第3図の第1図におけるX−X線
断面図に示すように、中仕切壁31a,31b,
31c,31d,31e,31fにより7個の管
32a,32b,32c,32d,32e,32
f,32gに分割されている。そして該ヒートパ
イプ6の吸熱室3側の屈曲部35には、第4図の
第1図におけるY−Y線断面図に示すように、そ
の偏平方向に連通孔36を有し、7個の管32
a,32b,32c,32d,32e,32f,
32gが相互に連通している。なお連通孔36
は、ヒートパイプ6の偏平方向にドリルで、一表
面壁6a、中仕切壁31a,31b,31c,3
1d,31e,31fに孔をあけて、その後、一
表面壁6a上の孔を封止部37で埋めることによ
り形成されている。
Next, the structure of the heat pipe 6 will be explained. The heat pipe 6 is formed by processing an extruded flat porous tube into a meandering shape, and has a header tube portion 13 formed at one end and a sealing portion 14 formed at the other end. The inside of the heat pipe 6 includes partition walls 31a, 31b,
7 pipes 32a, 32b, 32c, 32d, 32e, 32 by 31c, 31d, 31e, 31f
It is divided into f and 32g. The bent portion 35 of the heat pipe 6 on the side of the heat absorption chamber 3 has a communication hole 36 in its flat direction, as shown in the cross-sectional view taken along the Y-Y line in FIG. 1 of FIG. tube 32
a, 32b, 32c, 32d, 32e, 32f,
32g are in communication with each other. Note that the communication hole 36
is a drill in the flat direction of the heat pipe 6, one surface wall 6a, middle partition walls 31a, 31b, 31c, 3
1d, 31e, and 31f, and then fill the holes on one surface wall 6a with the sealing portion 37.

また、ヘツダ管部13は、第5図の縦断面図に
示すように、ヒートパイプ6の端部にヘツダ管4
1を接続し、作動流体の液溜りを形成している。
ヘツダ管部41には、注入管42が接続され、該
注入管42からフレオンもしくはアルコール等の
作動流体がヒートパイプ6内部に注入される。作
動流体注入後に、注入管42の開口部はカシメ封
止される。なお、ヒートパイプ6とヘツダ管41
との接合部43,44およびヘツダ管41の接合
部45,46は共にロウ付により接合されてい
る。一方、封止部14は、第6図の縦断面図に示
すように、ヒートパイプ6の端部51を溶接によ
り封止し、さらに各中仕切壁31a,31b,3
1c,31d,31e,31fを除去して、液溜
り部52を形成している。このように構成された
ヒートパイプ6は、作動流体注入後に数回、上と
下とが反対にされ、ヒートパイプ6の一端側のヘ
ツダ管41内の作動流体の液面、他端側の液溜り
部52内の作動流体の液面および吸熱室3側の屈
曲部35に溜つた作動流体の液面がほぼ同一位置
に保持される。
Further, as shown in the longitudinal cross-sectional view of FIG.
1 are connected to form a reservoir of working fluid.
An injection pipe 42 is connected to the header pipe portion 41 , and a working fluid such as Freon or alcohol is injected into the heat pipe 6 from the injection pipe 42 . After injecting the working fluid, the opening of the injection tube 42 is caulked and sealed. In addition, the heat pipe 6 and the header pipe 41
The joint parts 43 and 44 with the header pipe 41 and the joint parts 45 and 46 of the header pipe 41 are both joined by brazing. On the other hand, the sealing part 14 seals the end part 51 of the heat pipe 6 by welding, as shown in the longitudinal cross-sectional view of FIG.
1c, 31d, 31e, and 31f are removed to form a liquid reservoir 52. The heat pipe 6 configured in this way is turned upside down several times after the working fluid is injected, and the liquid level of the working fluid in the header pipe 41 at one end of the heat pipe 6 and the liquid reservoir at the other end are The liquid level of the working fluid in 52 and the liquid level of the working fluid accumulated in the bent portion 35 on the side of the heat absorption chamber 3 are maintained at approximately the same position.

上記のように構成された密閉筐体用熱交換器1
は、第2図に示すように、密閉筐体61の天井に
設置され、熱交換を行なう。すなわち、該密閉筐
体61の天井に設けられた開口62に、仕切板4
下部の吸熱室3が嵌入され、一方、仕切板4上部
の排熱室5は密閉筐体21の上部に配置される。
密閉筐体21内部の加熱空気は、吸熱用送風機1
1の作用により矢印Aで示す方向、すなわち、ヒ
ートパイプ6の偏平方向に吸熱室3内部を流通し
て再び密閉筐体61内部に流出する。この間に、
加熱空気はヒートパイプ6の偏平方向に沿つて円
滑に流通し、該ヒートパイプ6のヘツダ管41、
液溜り部52および吸熱室3側の屈曲部35に貯
留している作動流体に熱を吸収されて冷却され
る。一方、作動流体は蒸発して気相となり、ヒー
トパイプ6内部を上昇する。一方、外部の低温空
気は、排熱用送風機12の作用により矢印Bで示
す方向、すなわち、ヒートパイプ6の偏平方向に
排熱室5内部を流通して再び外部に放出される。
この間に、低温空気は偏平なヒートパイプ6の偏
平方向に沿つて円滑に流通し、該ヒートパイプ6
内部を上昇してくる気相状態にある作動流体を冷
却する。このため、作動流体は低温空気に排熱す
ることにより液相に戻り、ヒートパイプ6の内部
をヘツダ管41、液溜り部52および吸熱室3側
の屈曲部35に向つて流下する。このようなヒー
トパイプ6内の作動流体の相変化の繰り返しによ
り、密閉筐体61内部の加熱空気は所定温度以下
に冷却される。
Heat exchanger 1 for closed case configured as above
As shown in FIG. 2, is installed on the ceiling of the sealed casing 61 to perform heat exchange. That is, the partition plate 4 is inserted into the opening 62 provided in the ceiling of the sealed casing 61.
The heat absorption chamber 3 at the lower part is fitted, while the heat exhaust chamber 5 at the upper part of the partition plate 4 is arranged at the upper part of the sealed casing 21.
The heated air inside the sealed casing 21 is supplied to the heat absorbing blower 1.
1, the heat flows inside the heat absorption chamber 3 in the direction shown by arrow A, that is, in the flat direction of the heat pipe 6, and flows out into the sealed casing 61 again. During this time,
The heated air flows smoothly along the flat direction of the heat pipe 6, and the header pipe 41 of the heat pipe 6,
Heat is absorbed by the working fluid stored in the liquid reservoir portion 52 and the bent portion 35 on the side of the heat absorption chamber 3, and the liquid is cooled. On the other hand, the working fluid evaporates into a gas phase and rises inside the heat pipe 6. On the other hand, the external low-temperature air flows inside the heat exhaust chamber 5 in the direction shown by arrow B, that is, in the flat direction of the heat pipe 6, by the action of the exhaust heat blower 12, and is discharged to the outside again.
During this time, the low temperature air flows smoothly along the flat direction of the flat heat pipe 6.
Cools the working fluid in the gas phase rising inside. Therefore, the working fluid returns to a liquid phase by discharging heat to the low-temperature air, and flows down inside the heat pipe 6 toward the header pipe 41, the liquid reservoir 52, and the bent portion 35 on the side of the heat absorption chamber 3. By repeating the phase change of the working fluid in the heat pipe 6, the heated air inside the sealed casing 61 is cooled to a predetermined temperature or lower.

以上説明したように本第1実施例によれば、偏
平多孔管から形成されたヒートパイプ6を使用
し、その偏平方向に送風することにより、空気の
圧力損失を低減させて熱交換を行なうので、高さ
寸法を従来より短かくしても熱効率が10[%]程
度高い小型の密閉筐体用熱交換器を実現できる。
As explained above, according to the first embodiment, the heat pipe 6 formed of a flat porous tube is used and air is blown in the flat direction to reduce the pressure loss of the air and perform heat exchange. , it is possible to realize a compact heat exchanger for a closed case with a thermal efficiency that is about 10% higher even if the height is shorter than before.

また、高さ寸法が短かいため、設置スペースも
少なくて済むので、省スペースの観点から密閉筐
体への設置性も向上する。
Furthermore, since the height dimension is short, less installation space is required, so installation into a sealed casing is improved from the perspective of space saving.

さらに、偏平なヒートパイプ6の偏平方向に沿
つて空気を流通させるので、空気に作用する抵抗
力の減少により吸熱用送風機11および排熱用送
風機12を小型化しても、熱交換に充分な風量を
得られる。
Furthermore, since air is circulated along the flat direction of the flat heat pipe 6, the resistance force acting on the air is reduced, so even if the heat absorption blower 11 and the heat exhaust blower 12 are downsized, the air volume is sufficient for heat exchange. You can get

また、ヒートパイプ6が偏平多孔管を蛇行状に
形成したものであるから、複数の円管を多段に配
列した場合と比べて、接合部がヘツダ管部13と
封止部14との2箇所と少い。このため、組立工
数を低減でき、製造費用も低減できる。さらに接
合部が少いため、ヒートパイプ6内の作動流体の
リークの可能性を低減できる。
In addition, since the heat pipe 6 is a flat perforated tube formed in a meandering shape, the joints are in two places, the header tube section 13 and the sealing section 14, compared to a case where a plurality of circular tubes are arranged in multiple stages. And a little. Therefore, the number of assembly steps can be reduced, and manufacturing costs can also be reduced. Furthermore, since there are fewer joints, the possibility of leakage of the working fluid within the heat pipe 6 can be reduced.

なおヒートパイプ6は、作動流体注入後に作動
流体がヘツダ管部13、封止部14および吸熱室
側の屈曲部35に均一にゆき渡るよう、数回上下
に振られたが、仮に均一にゆき渡らなかつたとし
ても、内部の作動流体は蒸発的に偏平多孔管内に
均一に行き渡るため、作動流体が例えば一つの吸
熱室側の屈曲部35等に偏つて貯ることがなく、
偏平多孔管内で熱伝達性能を均一にすることがで
きる。更に、ヘツダ管13、封止部14および吸
熱室3側の屈曲部35において、偏平多孔管内の
各管32a〜32gを連通させているので、その
ヘツダ管部13、封止部14および屈曲部35の
夫々に貯留した作動流体の液面を各管32a〜3
2g毎に同位置に保持することができ、偏平多孔
管の各管32a〜32g毎の熱伝達性能を均一に
することができる。従つて、ヒートパイプ6内の
熱伝達性能はどの位置でも均一であり、熱交換器
として安定した性能が確保できる。
After the working fluid was injected, the heat pipe 6 was shaken up and down several times to ensure that the working fluid evenly spread to the header pipe section 13, the sealing section 14, and the bent section 35 on the heat absorption chamber side. Even if it does not cross over, the internal working fluid spreads uniformly within the flat porous tube through evaporation, so the working fluid does not accumulate unevenly in, for example, the bent portion 35 on the side of one endothermic chamber.
Heat transfer performance can be made uniform within the flat porous tube. Furthermore, since each tube 32a to 32g in the flat porous tube is communicated with each other at the header pipe 13, the sealing part 14, and the bending part 35 on the side of the heat absorption chamber 3, the header pipe part 13, the sealing part 14, and the bending part The liquid level of the working fluid stored in each of the pipes 32a to 35 is
It is possible to hold the tubes at the same position every 2g, and it is possible to make the heat transfer performance uniform for each tube 32a to 32g of the flat porous tube. Therefore, the heat transfer performance within the heat pipe 6 is uniform at any position, and stable performance as a heat exchanger can be ensured.

また、ヘツダ管部13と封止部14とにおいて
偏平多孔管内の各管32a〜32gを連通させて
いるので、そのヘツダ管部13と封止部14との
夫々に貯留した作動流体の液面を各管32a〜3
2g毎に同一位置に保持することができ、偏平多
孔管内の各管32a〜32g毎の熱伝達性能も均
一にすることができる。従つて、ヒートパイプ6
内の熱伝達性能はどの位置でも均一であり、熱交
換器として安定した性能が確保できる。
In addition, since the pipes 32a to 32g in the flat porous tube are communicated between the header pipe part 13 and the sealing part 14, the liquid level of the working fluid stored in the header pipe part 13 and the sealing part 14, respectively. Each pipe 32a~3
It is possible to maintain the same position every 2g, and it is possible to make the heat transfer performance uniform for each of the tubes 32a to 32g in the flat porous tube. Therefore, the heat pipe 6
The heat transfer performance inside is uniform at any position, ensuring stable performance as a heat exchanger.

また、仕切板4とヒートパイプ6とをロウ付に
より接合しているので、シール材等を塗布しなく
ても、密閉筐体61外部の水分や油ミスト等が密
閉筐体用熱交換器1を通過して密閉筐体61内部
に侵入するのを防止できる。
In addition, since the partition plate 4 and the heat pipe 6 are joined by brazing, moisture, oil mist, etc. outside the sealed casing 61 can be removed from the sealed casing heat exchanger 1 without applying a sealant or the like. can be prevented from passing through and entering the inside of the sealed casing 61.

さらに、仕切板4、ヒートパイプ6、コルゲー
トフイン10の接合部をロウ付により接続してい
るので、熱伝達率が良好になると共に、簡単なロ
ウ付作業のみで済むので、組立工数の削減により
製造費用も低減できる。
Furthermore, since the joints of the partition plate 4, heat pipe 6, and corrugated fin 10 are connected by brazing, the heat transfer coefficient is improved, and only a simple brazing work is required, which reduces assembly man-hours. Manufacturing costs can also be reduced.

なお、本第1実施例ではヘツダ管部13、封止
部14および吸熱室3側の屈曲部35において偏
平多孔管内の各管32a〜32gを連通させてい
たが、必要に応じて更に排熱室5側の屈曲部にお
いても各管32a〜32gを連通させるように構
成してもよく、このように構成した場合、より各
管32a〜32g毎の熱伝達性能を均一にするこ
とができる。
In the first embodiment, the tubes 32a to 32g in the flat porous tube are communicated at the header tube section 13, the sealing section 14, and the bending section 35 on the side of the heat absorption chamber 3. The tubes 32a to 32g may also be configured to communicate with each other at the bent portion on the side of the chamber 5, and with this configuration, the heat transfer performance of each tube 32a to 32g can be made more uniform.

また、本第1実施例ではコルゲートフイン10
を使用したが、例えば、切り起こしフイン等を使
用しても良い。
In addition, in the first embodiment, the corrugated fin 10
However, for example, a cut-up fin or the like may also be used.

次に、本考案第2実施例である側壁設置型の密
閉筐体用熱交換器を、その正面図である第7図、
右側面図である第8図に基づいて説明する。な
お、各図毎に縮尺は異なる。
Next, FIG. 7 is a front view of a side wall-mounted heat exchanger for a closed case, which is a second embodiment of the present invention.
The explanation will be based on FIG. 8 which is a right side view. Note that the scale differs for each figure.

第7図に示すように、密閉筐体用熱交換器10
1は、フランジ102を備えたケーシング103
内の下部に設けられた吸熱室104、上記ケーシ
ング103内の上部に設けられて上記吸熱室10
4と仕切板105で遮断された排熱室106、蛇
行状に形成された押出偏平多孔管からなり上記仕
切板105を貫通して吸熱室104と排熱室10
6とに渡つて設けられたヒートパイプ107、該
ヒートパイプ107に配設されたコルゲートフイ
ン110、上記吸熱室104内に配設された吸熱
用送風機111および上記排熱室106内に配設
された排熱用送風機112から構成されている。
各部材の材質、接合方法およびヒートパイプ10
7の構造は既述した第1実施例と同様である。即
ち、ヒートパイプ107は、そのヘツダ管部11
3、封止部114および吸熱室104側の屈曲部
115において偏平多孔管内の各管を連通して形
成されている。
As shown in FIG. 7, a heat exchanger 10 for a closed case
1 is a casing 103 equipped with a flange 102
The heat absorption chamber 104 is provided in the lower part of the casing 103, and the heat absorption chamber 10 is provided in the upper part of the casing 103.
4 and a heat exhaust chamber 106 separated by a partition plate 105. The heat absorption chamber 104 and the heat exhaust chamber 106 are made of extruded flat porous tubes formed in a meandering shape and pass through the partition plate 105.
6, a corrugated fin 110 disposed on the heat pipe 107, a heat absorption blower 111 disposed within the heat absorption chamber 104, and a heat absorption blower 111 disposed within the heat exhaust chamber 106. It is composed of an exhaust heat blower 112.
Material of each member, joining method and heat pipe 10
The structure of 7 is the same as that of the first embodiment described above. That is, the heat pipe 107 has its header pipe portion 11
3. The tubes in the flat porous tube are connected to each other at the sealing portion 114 and the bending portion 115 on the endothermic chamber 104 side.

上記のように構成された密閉筐体用熱交換器1
01は、第8図に示すように、密閉筐体121の
側壁に設置され、熱交換を行なう。すなわち、該
密閉筐体121の側壁の吸熱室104に対向する
位置には開口122が設けられている。密閉筐体
121内部の加熱空気は、吸熱用送風機111の
作用により該開口122を介して矢印Cで示す方
向に吸熱室104内部を循環して再び密閉筐体1
21内部に戻る。この間に、加熱空気はヒートパ
イプ107の吸熱室側部分の偏平方向に沿つて円
滑に流通し、該ヒートパイプ107に貯留してい
る作動流体に熱を吸収されて冷却される。作動流
体は蒸発して気相となり、ヒートパイプ107内
部を上昇する。一方、外部の低温空気は、排熱用
送風機112の作用により矢印Dで示す方向に排
熱室106内部を循環して再び外部に放出され
る。この間に、低温空気は偏平なヒートパイプ1
07に沿つて円滑に流通し、該ヒートパイプ10
7の内部を上昇してくる気相状態にある作動流体
を冷却する。このため、作動流体は低温空気に排
熱することにより液相に戻り、ヒートパイプ10
7内部を液溜り部に向つて流下する。このような
ヒートパイプ107内の作動流体の相変化の繰り
返しにより、密閉筐体121内部の加熱空気は所
定温度以下に冷却される。
Heat exchanger 1 for closed case configured as above
01 is installed on the side wall of the sealed casing 121, as shown in FIG. 8, and performs heat exchange. That is, an opening 122 is provided in the side wall of the sealed casing 121 at a position facing the heat absorption chamber 104. The heated air inside the sealed casing 121 circulates inside the endothermic chamber 104 in the direction shown by arrow C through the opening 122 by the action of the endothermic blower 111, and then returns to the sealed casing 1.
21 Return to inside. During this time, the heated air flows smoothly along the flat direction of the heat absorption chamber side portion of the heat pipe 107, heat is absorbed by the working fluid stored in the heat pipe 107, and the heated air is cooled. The working fluid evaporates into a gas phase and rises inside the heat pipe 107 . On the other hand, the external low-temperature air circulates inside the heat exhaust chamber 106 in the direction shown by arrow D by the action of the exhaust heat blower 112 and is discharged to the outside again. During this time, the low temperature air flows through the flat heat pipe 1
07, the heat pipe 10
The working fluid in the gas phase rising inside the chamber 7 is cooled. Therefore, the working fluid returns to the liquid phase by exhausting heat to the low-temperature air, and the heat pipe 10
7 inside toward the liquid reservoir. By repeating the phase change of the working fluid in the heat pipe 107, the heated air inside the sealed casing 121 is cooled to a predetermined temperature or lower.

以上説明した本第2実施例によれば、既述した
第1実施例と同様の効果を奏し、特に、側壁設置
型として、奥行寸法の小さい薄型の熱交換器を実
現できるという優れた効果を奏する。
According to the second embodiment described above, the same effects as those of the first embodiment described above are achieved, and in particular, the excellent effect of realizing a thin heat exchanger with a small depth dimension as a side wall installation type is achieved. play.

以上本考案のいくつかの実施例について説明し
たが、本考案はこのような実施例に何等限定され
るものではなく、本考案の要旨を逸脱しない範囲
内において種々なる態様で実施し得ることは勿論
である。
Although several embodiments of the present invention have been described above, the present invention is in no way limited to these embodiments, and can be implemented in various ways without departing from the gist of the present invention. Of course.

考案の効果 以上詳記したように本考案の密閉筐体用熱交換
器によれば、偏平多孔管から成るヒートパイプを
使用し、その偏平方向に送風して熱交換を行なう
ので、単位体積当りの熱交換能力を高く保つと共
に、ヒートパイプ部分の小型化を実現できるとい
う優れた効果を奏する。
Effects of the Invention As detailed above, according to the heat exchanger for a closed casing of the present invention, a heat pipe made of a flat perforated tube is used and heat exchange is performed by blowing air in the flat direction. This has the excellent effect of maintaining a high heat exchange capacity and making the heat pipe portion smaller.

また、偏平多孔管の偏平方向に沿つて空気を流
通させるため、流通する空気の圧力損失が低減さ
れ、小型送風機により熱交換に充分な風量を供給
できるので、熱交換器の熱効率も向上する。
In addition, since the air is distributed along the flat direction of the flat porous tube, the pressure loss of the circulating air is reduced, and a small blower can supply a sufficient amount of air for heat exchange, so the thermal efficiency of the heat exchanger is also improved.

さらに、ヒートパイプが偏平多孔管を蛇行状に
形成したものであるから、複数の円管を多段に配
列した場合と比べて接合部が少ない。このため、
組立工数を低減できると共に、ヒートパイプ内の
作動流体のリークの可能性を低減することができ
る。
Furthermore, since the heat pipe is a flat porous tube formed in a meandering shape, there are fewer joints than when a plurality of circular tubes are arranged in multiple stages. For this reason,
The number of assembly steps can be reduced, and the possibility of leakage of the working fluid within the heat pipe can be reduced.

更に、偏平多孔管の各孔が端部および吸熱室側
の屈曲部で相互に連通しているから、偏平多孔管
の各孔毎の熱伝達性能を均一にして熱交換能力の
安定を図ることができる。
Furthermore, since each hole of the flat porous tube communicates with each other at the end and the bent portion on the side of the heat absorption chamber, the heat transfer performance of each hole of the flat porous tube is made uniform to stabilize the heat exchange capacity. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案第1実施例の正面図、第2図は
同じくその右側面図、第3図は同じくそのヒート
パイプの第1図におけるX−X線断面図、第4図
は同じくそのヒートパイプの第1図におけるY−
Y線断面図、第5図は同じくそのヘツダ管部の縦
断面図、第6図は同じくその封止部の縦断面図、
第7図は本考案第2実施例の正面図、第8図は同
じくその右側面図、である。 1,101……密閉筐体用熱交換器、3,10
4……吸熱室、4,105……仕切板、5,10
6……排熱室、6,107……ヒートパイプ、1
0,110……コルゲートフイン、11,111
……吸熱用送風機、12,112……排熱用送風
機、35,115……吸熱室側の屈曲部、36…
…連通孔。
FIG. 1 is a front view of the first embodiment of the present invention, FIG. 2 is a right side view thereof, FIG. 3 is a cross-sectional view of the heat pipe taken along line X-X in FIG. 1, and FIG. Y- in Figure 1 of the heat pipe
A Y-line sectional view, FIG. 5 is a longitudinal sectional view of the header pipe portion, and FIG. 6 is a longitudinal sectional view of the sealing portion.
FIG. 7 is a front view of the second embodiment of the present invention, and FIG. 8 is a right side view thereof. 1,101...Heat exchanger for sealed casing, 3,10
4... Endothermic chamber, 4,105... Partition plate, 5,10
6...Exhaust heat chamber, 6,107...Heat pipe, 1
0,110...Colgate Finn, 11,111
...Blower for heat absorption, 12,112...Blower for exhaust heat, 35,115...Bending portion on the side of heat absorption chamber, 36...
...Communication hole.

Claims (1)

【実用新案登録請求の範囲】 密閉筐体に設置され、該密閉筐体内部と外部と
の間の熱交換を行なう密閉筐体用熱交換器であつ
て、 上記密閉筐体内部に連通する吸熱室と、 該吸熱室の上側に設けられ、上記吸熱室と仕切
部材で遮断されて上記密閉筐体外部に開放された
排熱室と、 上記仕切部材を貫通して上記吸熱室と排熱室と
に渡つて設けられ、内部に多数の穴を有する偏平
な偏平多孔管を蛇行状に形成し、更に上記偏平多
孔管の各孔を端部および吸熱室側の屈曲部で相互
に連通して形成したヒートパイプと、 該ヒートパイプに配設されたフインと、 上記吸熱室内もしくは吸熱室と近接する位置に
配設され、上記密閉筐体内部の空気を上記ヒート
パイプの吸熱室側部分の偏平方向に沿つて送風す
る吸熱用送風機と、 上記排熱室内もしくは排熱室と近接する位置に
配設され、上記密閉筐体外部の空気を上記ヒート
パイプの排熱室側部分の偏平方向に沿つて送風す
る排熱用送風機と、 を備えたことを特徴とする密閉筐体用熱交換器。
[Scope of Claim for Utility Model Registration] A heat exchanger for a sealed casing that is installed in a sealed casing and performs heat exchange between the inside of the sealed casing and the outside, the heat exchanger communicating with the inside of the sealed casing. a heat exhaust chamber provided above the heat absorption chamber and isolated from the heat absorption chamber by a partition member and opened to the outside of the sealed casing; and a heat exhaust chamber that penetrates through the partition member to connect the heat absorption chamber and the heat exhaust chamber. A flat perforated tube is formed in a serpentine shape and has a large number of holes therein, and each hole of the flat perforated tube is communicated with each other at an end and a bent portion on the side of the heat absorption chamber. The formed heat pipe, the fins disposed on the heat pipe, and the fins disposed in the heat absorption chamber or in a position close to the heat absorption chamber, which directs the air inside the sealed casing to the flat surface of the heat absorption chamber side portion of the heat pipe. a heat-absorbing blower that blows air along the heat exhaust chamber; A heat exchanger for a closed casing, comprising: an exhaust heat blower that blows air;
JP1299387U 1987-01-30 1987-01-30 Expired JPH046240Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299387U JPH046240Y2 (en) 1987-01-30 1987-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299387U JPH046240Y2 (en) 1987-01-30 1987-01-30

Publications (2)

Publication Number Publication Date
JPS63121492U JPS63121492U (en) 1988-08-05
JPH046240Y2 true JPH046240Y2 (en) 1992-02-20

Family

ID=30801643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299387U Expired JPH046240Y2 (en) 1987-01-30 1987-01-30

Country Status (1)

Country Link
JP (1) JPH046240Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803971B2 (en) * 1993-05-14 1998-09-24 三菱電機株式会社 Cooling device for power converter
JP3893651B2 (en) * 1996-12-19 2007-03-14 株式会社デンソー Boiling cooling device and casing cooling device using the same
JP7430521B2 (en) * 2019-11-28 2024-02-13 株式会社日立製作所 Cooling devices and power conversion devices for mobile objects

Also Published As

Publication number Publication date
JPS63121492U (en) 1988-08-05

Similar Documents

Publication Publication Date Title
US6003319A (en) Thermoelectric refrigerator with evaporating/condensing heat exchanger
CN110243217A (en) A kind of plate loop heat pipe evaporator with enclosed fluid reservoir
CN215062969U (en) Refrigeration module based on semiconductor refrigeration piece
JPH046240Y2 (en)
JP2000310186A (en) Highly efficient steam condenser in vacuum device
JPH046239Y2 (en)
JPH10227554A (en) Cooling apparatus
US20210285665A1 (en) Heat transfer module for dehumidifier and method for manufacturing heat transfer module
JPH0419338Y2 (en)
WO2004048870A1 (en) Heating pipe having dual pipe structure
JP2004153001A (en) Cooling fin and boiling cooler using the same
JPH0942877A (en) Heat exchanger
JP3049453B2 (en) Semiconductor cooling device
JPH10178292A (en) Boiling cooler and housing cooler employing it
CN211854526U (en) Compressor assembly and air conditioner
KR102172969B1 (en) Condenser and Refrigerator having the same
CN215983624U (en) Energy-efficient air source high temperature heat pump drying-machine
JP3810119B2 (en) Boiling cooler
JP2003139417A (en) Cooling system
JPH094994A (en) Ventilating and heat exchanging device
KR200189793Y1 (en) Cabinet cooler
JP2002295983A (en) Heat exchanger and method for improving heat exchanging ability
JP2726941B2 (en) Ventilation heat exchanger
JP3345187B2 (en) refrigerator
CN114705069A (en) Single-channel temperature-equalizing plate