JPH0462396A - Rail gun type accelerator - Google Patents

Rail gun type accelerator

Info

Publication number
JPH0462396A
JPH0462396A JP2172666A JP17266690A JPH0462396A JP H0462396 A JPH0462396 A JP H0462396A JP 2172666 A JP2172666 A JP 2172666A JP 17266690 A JP17266690 A JP 17266690A JP H0462396 A JPH0462396 A JP H0462396A
Authority
JP
Japan
Prior art keywords
plasma
rail
rails
pellet
downstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172666A
Other languages
Japanese (ja)
Other versions
JP2941370B2 (en
Inventor
Masanori Onozuka
小野塚 正紀
Yasutsugu Oda
泰嗣 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2172666A priority Critical patent/JP2941370B2/en
Publication of JPH0462396A publication Critical patent/JPH0462396A/en
Priority to US08/152,697 priority patent/US5386759A/en
Priority to US08/154,791 priority patent/US5417140A/en
Application granted granted Critical
Publication of JP2941370B2 publication Critical patent/JP2941370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers
    • F41B6/006Rail launchers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/15Particle injectors for producing thermonuclear fusion reactions, e.g. pellet injectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To efficiently additionally accelerate a pellet by reducing a distance between rails of rail corners toward the downstream side of moving direction of a plasma in a rail gun type accelerator having a pair of rails and a pair of heat insulators alternately arranged to form a pellet passage of a rail gun. CONSTITUTION:A distance between rails of rail corners of rails 4, 4 is reduced toward the downstream side of moving direction of a plasma (a'>a''), the resistance (r) of the plasma 2 is reduced, a current I flowing to the rails 4, 4 and the plasma 2 is increased toward the downstream side of moving direction of the plasma 2, an electromagnetic force is increased, and a pellet 3 is additionally accelerated. A distance between the rails of rail corners of the rails 4, 4 is reduced toward the downstream side of moving direction of the plasma, and the resistance (r) of the plasma 2 is reduced. Accordingly, as the plasma 2 moves to the downstream side, the current I further easily flows to the plasma 2, and an excess discharge is scarcely generated between the rails 4 and 4 at the rear position of the plasma 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核融合実験装置等に適用するレールガン式加
速装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rail gun type accelerator applied to nuclear fusion experimental equipment and the like.

(従来の技術) 従来のレールガン式加速装置を第7.8図により説明す
ると、(1)が後記レール間に電力を供給すルパルス整
形回路網、(2)がプラズマ、(3)がペレット、 (
6)が後記レールに埋設したニードル(電極)。
(Prior Art) A conventional rail gun type accelerator will be explained with reference to Fig. 7.8. (1) is a Lupulse shaping circuit network that supplies power between the rails, (2) is a plasma, (3) is a pellet, (
6) is the needle (electrode) buried in the rail, which will be described later.

(7)が電源、 (24) (24)がレールガン式加
速装置のレールガン部のレール、 (25) (25)
が同レール(24)(24)の間に介装した絶縁材で、
同各レール(24)と同各絶縁材(25)とにより断面
円形のペレット通路が形成されており、ペレット(3)
がガス銃弐ペレット入射装置(図示せず)により射出さ
れ、初期加速されて、レールガン部のベレッI−J路(
レール(24) (24)と絶縁材(25) (25)
とにより構成されたペレット通路)へ入射され、このペ
レット(3)カニ−ドル部(6)を通過するとき、ペレ
ット(3)の後方にある加速ガス中に通電することによ
り、プラズマ(2)が発生して、このプラズマ(2)に
よりペレット(3)が追加速されるようになっている。
(7) is the power supply, (24) (24) is the rail of the railgun part of the railgun type accelerator, (25) (25)
is an insulating material inserted between the same rails (24) (24),
A pellet passage with a circular cross section is formed by each of the rails (24) and each of the insulating materials (25), and the pellet (3)
is injected by the gas gun's second pellet injection device (not shown), is initially accelerated, and then passes through the barrel I-J path (of the rail gun section).
Rail (24) (24) and insulation material (25) (25)
When the pellet (3) passes through the cannula part (6), the plasma (2) is is generated, and the pellet (3) is accelerated by this plasma (2).

なおペレット(3)の断面形状は、上記ペレット通路の
断面形状と同じである。
Note that the cross-sectional shape of the pellet (3) is the same as the cross-sectional shape of the pellet passage.

(発明が解決しようとする課題) 前記第7.8図に示す従来のレールガン式加速装置では
、負荷される電流と自己磁場とにより生成されるプラズ
マ(2)の電磁力(ローレンッカ)Fは、一般に次式■
により求められ、この電磁力Fがプラズマ(2)及びペ
レット(3)の加速に用いられる。
(Problems to be Solved by the Invention) In the conventional railgun accelerator shown in FIG. Generally, the following formula■
This electromagnetic force F is used to accelerate the plasma (2) and the pellet (3).

F=%LxI2 ・・・・・・・・・・・・■但しL×
:レール(24) (24)の単位長さ当たりのインダ
クタンス、■= レール(24) (24)及びプラズ
マ(2)を流れる電流(パルス整形回路1 (1)から
供給される電流)である。
F=%LxI2 ・・・・・・・・・・・・■However, L×
: inductance per unit length of rail (24) (24), ■ = current flowing through rail (24) (24) and plasma (2) (current supplied from pulse shaping circuit 1 (1)).

またパルス整形回路網(1)から供給されて、レール(
24) (24)及びプラズマ(2)に流れる電流■は
It is also supplied from the pulse shaping network (1) to the rail (
24) What is the current ■ flowing through (24) and plasma (2)?

一般に次式■により求められる。Generally, it is determined by the following formula (■).

■ 但しV:パルス整形回路網(1)から印加される電圧、
R:パルス整形回路網(1)からレール(24)(24
)に電流Iが供給される位置とプラズマ(2)に電流I
が流れる位置との間の距離lのレール(24)(24)
の全抵抗、r:プラズマ(2)の抵抗である。
■ However, V: the voltage applied from the pulse shaping circuit network (1),
R: Pulse shaping circuit network (1) to rail (24) (24
) and the position where the current I is supplied to the plasma (2).
Rail (24) (24) with distance l between the position where the flow occurs
total resistance, r: resistance of plasma (2).

またレール(24) (24)の抵抗Rとプラズマ(2
)の抵抗rとは1次式■■により求められる。
Also, the resistance R of the rail (24) (24) and the plasma (2
) is determined by the linear equation (■■).

ROCf・・・・・・・・・・・・・・・・■rcca
・・・・・・・・・・・・・・・・■但し1:パルス整
形回路網(1)からレール(24)(24)へ電流Iが
供給される位置とプラズマ(2)に電流Iが流れる位置
との間の距離、a:上下レールコーナ部のレール間距離
である。
ROCf・・・・・・・・・・・・・・・■rcca
・・・・・・・・・・・・・・・・■ However, 1: The position where the current I is supplied from the pulse shaping circuit network (1) to the rails (24) (24) and the current to the plasma (2) Distance from the position where I flows, a: Distance between the rails at the upper and lower rail corner portions.

いまインダクタンスLxが一定であれば、電磁力Fは、
電流Iにより支配される。また第8図のように上下レー
ルコーナ部のレール開路Maがレールの長手方向で一定
であれば、プラズマ(2)の抵抗rは一定にであり、電
流Iは、レール(24)(24)の抵抗Rに支配されて
、電磁力Fは、抵抗Rにより支配される。
If the inductance Lx is now constant, the electromagnetic force F is
It is dominated by the current I. Further, if the rail opening Ma at the upper and lower rail corners is constant in the longitudinal direction of the rail as shown in Fig. 8, the resistance r of the plasma (2) is constant, and the current I is The electromagnetic force F is dominated by the resistance R.

この抵抗Rは、プラズマ(2)の位置とパルス整形回路
W4(1)からレール(24) (24)に電流Iが供
給される位置との間の距離lに支配さるため、最終的に
電磁力Fは、距離2により支配されることになる。この
場合、プラズマ(2)が移動することにより、距離!が
大きくなることになって、抵抗Rが大きくなり、電流I
が小さくなって、電磁力Fも小さくなる。電磁力Fが小
さくなることは、プラズマ(2)及びペレット(3)へ
の加速力が小さくなることであって、ペレット(3)が
効率的に追加速されないという問題があった。
This resistance R is determined by the distance l between the position of the plasma (2) and the position where the current I is supplied from the pulse shaping circuit W4 (1) to the rails (24) (24). The force F will be dominated by the distance 2. In this case, by moving the plasma (2), the distance! becomes large, the resistance R becomes large, and the current I
becomes smaller, and the electromagnetic force F also becomes smaller. When the electromagnetic force F becomes smaller, the accelerating force applied to the plasma (2) and the pellet (3) becomes smaller, and there is a problem in that the pellet (3) cannot be efficiently added to the speed.

本発明は前記の問題点に鑑み提案するものであり、その
目的とする処は、ペレットを効率的に追加速できるレー
ルガン式加速装置を提供しようとする点にある。
The present invention has been proposed in view of the above-mentioned problems, and its object is to provide a rail gun type accelerator that can efficiently increase the speed of pellets.

(課題を解決するための手段) 上記の目的を達成するために1本発明は、一対のレール
と一対の断熱材とを交互に配設して、レールガン部のペ
レット通路を形成したレールガン式加速装置において、
前記各レールコーナ部のレール間距離をプラズマの移動
方向下流側に向かい小さくしている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a rail gun acceleration system in which a pair of rails and a pair of heat insulating materials are arranged alternately to form a pellet passage in the rail gun section. In the device,
The distance between the rails at each rail corner portion is made smaller toward the downstream side in the plasma movement direction.

(作用) 本発明のレールガン式加速装置は前記のように各レール
コーナ部のレール間距離をプラズマの移動方向下流側に
向かい小さくしており、プラズマの抵抗が小さくなって
、レール及びプラズマを流れる電流がプラズマの移動方
向下流側に向かい大きくなり、電磁力も大きくなって、
ペレットが効率的に追加速される。
(Function) As described above, in the railgun type accelerator of the present invention, the distance between the rails at each rail corner portion is decreased toward the downstream side in the direction of plasma movement, and the resistance of the plasma is reduced to flow through the rail and the plasma. The current increases toward the downstream side in the direction of plasma movement, and the electromagnetic force also increases.
Pellets are added at an efficient rate.

(実施例) 次に本発明のレールガン式加速装置を第1.23図に示
す一実施例により説明すると、(1)が後記レール間に
電力を供給するパルス整形回路網1(2)がプラズマ、
(3)がベレツ) 、 (6)が後記レールに埋設した
ニードル(電極)、(7)が電源、 (4) (4)が
レールガン式加速装置のレールガン部のレール、(5)
(5)が同レール(4) (4)の間に介装した絶縁材
で。
(Example) Next, the rail gun type accelerator of the present invention will be explained using an example shown in Fig. 1.23. ,
(3) is the rail), (6) is the needle (electrode) buried in the rail described later, (7) is the power source, (4) (4) is the rail of the rail gun part of the rail gun type accelerator, (5)
(5) is the insulating material interposed between the same rail (4) and (4).

同各レール(4)と同各絶縁材(5)とにより断面円形
のペレット通路が形成されている。そして各レールコー
ナ部のレール間距離がプラズマの移動方向下流側に向か
い小さくなっている。即ち、第2図の(a゛)が上記ペ
レット通路入口部における各レールコーナ部のレール間
距離、第3図の(a”)が上記ペレット通路出口部にお
ける各レールコーナ部のレール間距離で、 a’>a“
°になっている。但しペレット通路の断面形状は、ペレ
ット通路の全域で同じである。
A pellet passage having a circular cross section is formed by each of the rails (4) and each of the insulating materials (5). The distance between the rails at each rail corner portion becomes smaller toward the downstream side in the plasma movement direction. That is, (a゛) in Fig. 2 is the distance between the rails at each rail corner at the entrance of the pellet passage, and (a'') in Fig. 3 is the distance between the rails at each rail corner at the outlet of the pellet passage. , a'>a"
°. However, the cross-sectional shape of the pellet passage is the same throughout the pellet passage.

次に前記第1.2.3図に示すレールガン式加速装置の
作用を具体的に説明する。レール(4) (4)の各レ
ールコーナ部のレール間距離がプラズマの移動方向下流
側に向かい小さくなっており(a゛〉a”参照)、プラ
ズマ(2)の抵抗rが小さくなってレール(4) (4
)及びプラズマ(2)を流れる電流Iがプラズマ(2)
の移動方向下流側に向かい大きくなり、電磁力も大きく
なって、ペレット(3)が効率的に追加速される。また
レール(4) (4)の各レールコーナ部のレール間距
離がフラズマの移動方向下流側に向かい小さくなってお
り、プラズマ(2)の抵抗rが小さくなるので、プラズ
マ(2)が下流側に移動するに連れて電流Iがプラズマ
(2)に−層流れ易くなって、プラズマ(2)の後方位
置のレール(4) (4)間において余分な放電等が発
生しに難くなる。
Next, the operation of the railgun type accelerator shown in FIG. 1.2.3 will be specifically explained. Rail (4) The distance between the rails at each rail corner of (4) decreases toward the downstream side in the plasma movement direction (see a゛〉a''), and the resistance r of plasma (2) decreases, causing the rail (4) (4
) and the current I flowing through plasma (2) is plasma (2)
The electromagnetic force increases toward the downstream side in the direction of movement, and the electromagnetic force also increases, effectively increasing the speed of the pellet (3). In addition, the distance between the rails at each rail corner of the rails (4) (4) decreases toward the downstream side in the direction of movement of the plasma, and the resistance r of the plasma (2) decreases, so that the plasma (2) moves toward the downstream side. As the current I moves to the plasma (2), it becomes easier to flow laminarly into the plasma (2), making it difficult for unnecessary discharge to occur between the rails (4) at the rear of the plasma (2).

次に本発明のレールガン式加速装置を第4.5゜6図に
示す一実施例により説明すると、この実施例でも、各レ
ール(14)と各絶縁材(15)とにより断面円形のペ
レット通路が形成されている。そして各レールコーナ部
のレール間距離がプラズマの移動方向下流側に向かい小
さくなっている。即ち、第5図の(a“)が上記ペレッ
ト通路入口部における各レールコーナ部のレール間距離
、第6図の(a”)が上記ペレット通路出口部における
各レールコーナ部のレール間距離で、al>allにな
っている。但しペレット通路の断面積は、プラズマの移
動方向下流側に向かい小さくなっている。
Next, the rail gun type accelerator of the present invention will be explained with reference to an embodiment shown in Fig. 4.5.6. In this embodiment as well, each rail (14) and each insulating material (15) create a pellet passageway with a circular cross section. is formed. The distance between the rails at each rail corner portion becomes smaller toward the downstream side in the plasma movement direction. That is, (a") in FIG. 5 is the distance between the rails at each rail corner at the entrance of the pellet passage, and (a") in FIG. 6 is the distance between the rails at each rail corner at the exit of the pellet passage. , al>all. However, the cross-sectional area of the pellet passage becomes smaller toward the downstream side in the direction of plasma movement.

次に前記第4.5.6図に示すレールガン式加速装置の
作用を具体的に説明する。この実施例でも、レール(1
4) (14)の各レールコーナ部のレール間距離がプ
ラズマの移動方向下流側に向かい小さくなっており(a
’>a”参照)、プラズマ(2)の抵抗rが小さくなっ
て、レール(14) (14)及びプラズマ(2)を流
れる電流■がプラズマ(2)の移動方向下流側に向かい
大きくなり、電磁力も大きくなって、ペレット(3)が
効率的に追加速される。またこの実施例では、ペレット
通路の断面積がプラズマの移動方向下流側に向かい小さ
くなっているので、ペレット(3)がペレット通路内を
移動中に損傷(主に磨耗)しても、ペレット(3)とペ
レット通路との間でシール性が確保され、その結果、ペ
レット(3)後方のプラズマ(2)がペレット(3)と
ペレット通路との間を経てペレット(3)前方に漏れ、
この前方のプラズマ(2)だけが電磁力を受けて加速さ
れて、ペレット(3)が加速されないという事態が不都
合が発生しない。
Next, the operation of the rail gun type accelerator shown in Fig. 4.5.6 will be explained in detail. In this example as well, the rail (1
4) The distance between the rails at each rail corner in (14) decreases toward the downstream side in the plasma movement direction (a
``>a''), the resistance r of the plasma (2) becomes smaller, and the current ■ flowing through the rail (14) (14) and the plasma (2) increases toward the downstream side in the moving direction of the plasma (2). The electromagnetic force also increases, and the pellet (3) is efficiently added to the speed.In addition, in this embodiment, the cross-sectional area of the pellet passage becomes smaller toward the downstream side in the plasma movement direction, so that the pellet (3) Even if the pellet is damaged (mainly by wear) while moving inside the pellet passage, the sealing performance is ensured between the pellet (3) and the pellet passage, and as a result, the plasma (2) behind the pellet (3) 3) and the pellet passage, leaking to the front of the pellet (3),
A situation in which only the plasma (2) in front is accelerated by electromagnetic force and the pellet (3) is not accelerated does not cause any inconvenience.

(発明の効果) 本発明のレールガン式加速装置は前記のように各レール
コーナ部のレール間距離をプラズマの移動方向下流側に
向かい小さくしており、プラズマの抵抗が小さくなるの
で、レール及びプラズマを流れる電流をプラズマの移動
方向下流側に向かい大きくでき、電磁力も大きくできて
、ペレットを効率的に追加速できる効果がある。
(Effects of the Invention) As described above, in the rail gun type accelerator of the present invention, the distance between the rails at each rail corner portion is decreased toward the downstream side in the direction of plasma movement, and the resistance of the plasma is reduced, so that the distance between the rails and the plasma is reduced. The current flowing through the plasma can be increased toward the downstream side in the direction of plasma movement, and the electromagnetic force can also be increased, which has the effect of efficiently adding speed to the pellet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるレールガン式加速装置の一実施
例を示す系統図、第2図は同実施例のレールガン部のペ
レット通路入口部の縦断正面図。 第3図は同実施例のレールガン部のペレット通路出口部
の縦断正面図、第4図は本発明に係わるし一ルガン式加
速装置の他の実施例を示す系統図。 第5図は同実施例のレールガン部のペレット通路入口部
の縦断正面回、第6図は同実施例のレールガン部のペレ
ット通路出口部の縦断正面図、第7図は従来のレールガ
ン式加速装置を示す系統図第8図は同レールガン式加速
装置のレールガン部のペレット通路の縦断正面図である
。 (2)・・・プラズマ、(3)・・・ペレット(4)ま
たは(14)・・・レール、(5)または(15)・・
・絶縁材。 (a”)及び(al)・・・レールコーナ部のレール間
距離。
FIG. 1 is a system diagram showing an embodiment of a rail gun type accelerator according to the present invention, and FIG. 2 is a longitudinal sectional front view of the pellet passage entrance of the rail gun section of the same embodiment. FIG. 3 is a longitudinal sectional front view of the pellet passage outlet of the rail gun section of the same embodiment, and FIG. 4 is a system diagram showing another embodiment of the rail gun type accelerator according to the present invention. FIG. 5 is a vertical cross-sectional front view of the pellet passage entrance of the rail gun section of the same embodiment, FIG. 6 is a vertical cross-sectional front view of the pellet passage exit of the rail gun section of the same embodiment, and FIG. 7 is a conventional rail gun type accelerator. FIG. 8 is a longitudinal sectional front view of the pellet passage in the rail gun section of the rail gun type accelerator. (2)...Plasma, (3)...Pellet (4) or (14)...Rail, (5) or (15)...
·Insulating material. (a”) and (al)...Distance between rails at rail corner portions.

Claims (1)

【特許請求の範囲】[Claims] 一対のレールと一対の断熱材とを交互に配設して、レー
ルガン部のペレット通路を形成したレールガン式加速装
置において、前記各レールコーナ部のレール間距離をプ
ラズマの移動方向下流側に向かい小さくしたことを特徴
とするレールガン式加速装置。
In a rail gun type accelerator in which a pair of rails and a pair of heat insulating materials are arranged alternately to form a pellet passage in the rail gun section, the distance between the rails at each rail corner section is decreased toward the downstream side in the plasma movement direction. A rail gun type accelerator that is characterized by:
JP2172666A 1990-06-28 1990-07-02 Railgun type accelerator Expired - Fee Related JP2941370B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2172666A JP2941370B2 (en) 1990-07-02 1990-07-02 Railgun type accelerator
US08/152,697 US5386759A (en) 1990-06-28 1993-11-16 Flying object acceleration method by means of a rail-gun type two-stage accelerating apparatus
US08/154,791 US5417140A (en) 1990-06-28 1993-11-16 Flying object acceleration method by means of a rail-gun type two-stage accelerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172666A JP2941370B2 (en) 1990-07-02 1990-07-02 Railgun type accelerator

Publications (2)

Publication Number Publication Date
JPH0462396A true JPH0462396A (en) 1992-02-27
JP2941370B2 JP2941370B2 (en) 1999-08-25

Family

ID=15946122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172666A Expired - Fee Related JP2941370B2 (en) 1990-06-28 1990-07-02 Railgun type accelerator

Country Status (1)

Country Link
JP (1) JP2941370B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944376A1 (en) * 2009-01-27 2010-10-15 Damien Aubouet Electrical energy producing device for operating e.g. household apparatus, has acceleration device for accelerating fusion pallet emerging from parallelepiped confinement enclosure that carries fusion chamber
WO2013180791A3 (en) * 2012-03-09 2014-04-10 University Of Washington Through Its Center For Commercialization Electromagnetic matter injector and capsule system
CN104197779A (en) * 2014-09-25 2014-12-10 武汉大学 Energy recovery damper for electromagnetic coil launcher
WO2015184252A1 (en) * 2014-05-29 2015-12-03 Blacklight Power, Inc. Electrical power generation systems and methods regarding same
JP2018524557A (en) * 2015-05-09 2018-08-30 ブリリアント ライト パワー インコーポレーティド Thermophotovoltaic power generator
CN109059630A (en) * 2018-08-20 2018-12-21 北京机械设备研究所 It is a kind of based on micro- tapered electromagnetic railgun track
CN109238004A (en) * 2018-08-24 2019-01-18 北京机械设备研究所 A kind of electromagnetic railgun armature and electromagnetic railgun with elastic component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944376A1 (en) * 2009-01-27 2010-10-15 Damien Aubouet Electrical energy producing device for operating e.g. household apparatus, has acceleration device for accelerating fusion pallet emerging from parallelepiped confinement enclosure that carries fusion chamber
WO2013180791A3 (en) * 2012-03-09 2014-04-10 University Of Washington Through Its Center For Commercialization Electromagnetic matter injector and capsule system
WO2015184252A1 (en) * 2014-05-29 2015-12-03 Blacklight Power, Inc. Electrical power generation systems and methods regarding same
US11230776B2 (en) 2014-05-29 2022-01-25 Brilliant Light Power, Inc. Electrical power generation systems and methods regarding same
US11885034B2 (en) 2014-05-29 2024-01-30 Brilliant Light Power, Inc. Electrical power generation systems and methods regarding same
CN104197779A (en) * 2014-09-25 2014-12-10 武汉大学 Energy recovery damper for electromagnetic coil launcher
CN104197779B (en) * 2014-09-25 2016-01-27 武汉大学 For the energy regenerating damper of solenoid transmitter
JP2018524557A (en) * 2015-05-09 2018-08-30 ブリリアント ライト パワー インコーポレーティド Thermophotovoltaic power generator
CN109059630A (en) * 2018-08-20 2018-12-21 北京机械设备研究所 It is a kind of based on micro- tapered electromagnetic railgun track
CN109238004A (en) * 2018-08-24 2019-01-18 北京机械设备研究所 A kind of electromagnetic railgun armature and electromagnetic railgun with elastic component

Also Published As

Publication number Publication date
JP2941370B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JPH0462396A (en) Rail gun type accelerator
US5417140A (en) Flying object acceleration method by means of a rail-gun type two-stage accelerating apparatus
SE8205880L (en) Nozzle for injection injection
JPS53144689A (en) Thyristor
JPS5677958A (en) Tape cover and its production
GB706186A (en) Improvements in or relating to betatrons
KR100660220B1 (en) Arc spraying gun having second gas spraying nozzle
JP2994697B2 (en) Railgun type accelerator
CN220474371U (en) Cable capable of containing medicine
US3331961A (en) Linear particle accelerators
ATE227349T1 (en) ELECTRIC ARC FURNACE
JPH0460395A (en) Rail gun type accelerator
JP2941369B2 (en) Railgun type accelerator
WO2023210904A1 (en) Powder spraying system and electric furnace including same
Katsnel'Son et al. Spatial effects in a railgun plasma armature
RU95111769A (en) METHOD OF ANESTHESIA IN OPERATIONS IN PATIENTS WITH LERISH'S SYNDROME
Slinker et al. Ion beam transport in a preionized plasma channel
JPS5289851A (en) Expansion valve
Kuriyama et al. Design of a negative-ion-based NBI system for JT-60U
AR002515A1 (en) MELTING PROCEDURE OF A LOAD IN VOLTAIC ARC FURNACES.
JPH03226860A (en) Document generating device
Wang et al. Radiation effects on flash memory based FPGA
KL et al. DEFLECTION BY THE IMAGE CURRENT AND CHARGES OF A BEAM SCRAPER
Ankenbrandt et al. Upgrading the Linac 400 MeV Switchyard
JPS6261782A (en) Electron beam welding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees