JPH0462090A - Optical recording medium and its writing for recording and reading - Google Patents

Optical recording medium and its writing for recording and reading

Info

Publication number
JPH0462090A
JPH0462090A JP2166457A JP16645790A JPH0462090A JP H0462090 A JPH0462090 A JP H0462090A JP 2166457 A JP2166457 A JP 2166457A JP 16645790 A JP16645790 A JP 16645790A JP H0462090 A JPH0462090 A JP H0462090A
Authority
JP
Japan
Prior art keywords
recording
particles
recording medium
surface plasmonic
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166457A
Other languages
Japanese (ja)
Inventor
Chikanobu Matsutame
松為 周信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2166457A priority Critical patent/JPH0462090A/en
Publication of JPH0462090A publication Critical patent/JPH0462090A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase reflection factor and minimize thermal conduction and reflection losses by providing a record reflection layer consisting of surface plasmonic metal supermicroparticles and a recording substance. CONSTITUTION:Surface plasmonic microparticles 7 are capable of high electric conductivity and enhancing a surface plasma due to a light with a wavelength near an electron plasma resonance point. In more positive terms, the particles are metal particles such as gold, silver, aluminum and copper. Further, the recommended particles are such as supermicroparticles having a grain size of 3000Angstrom or less, preferably 1000Angstrom or less. A recording substance 8 is such as an organic color and polymer which become transformed or fused by a laser beam. The ratio of a recording substance 8 in a record reflection layer and the surface plasmonic microparticles 7 should preferably by 1:0.1 to 10 (weight ratio). Data is written using a laser beam of the resonance wavelength range of the surface plasmonic microparticles and is read using a laser beam of a wavelength outside the resonance wavelength area, preferably of a wavelength out of the range.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光記録媒体並びにその記録書き込み及び読み取
り方法に係り、特に記録感度及び記録、再生の安定性、
信頼性に優れた光記録媒体並びにこのような光記録媒体
の有効な記録書き込み方法及び記録読み取り方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording medium and a recording/writing/reading method thereof, and particularly relates to recording sensitivity, recording/reproducing stability,
The present invention relates to an optical recording medium with excellent reliability, and an effective recording/writing method and recording/reading method for such an optical recording medium.

[従来の技術] 従来、光記録媒体として、熱により変成又は融解する記
録物質を含む記録層に、レーザビームを照射して記録物
質の融解又は分解を生じさせ、永久的な穴又は変形した
スポットを作って信号を記録する方式のものがある。こ
の記録物質としては、低融点でしかも高反射性の合金、
熱分解性又は低融点の有機色素が知られている。一方、
結晶−アモルファス転移などの、可逆的又は不可逆的な
相変化を利用して、記録膜に信号を記録する方式のもの
もある。この場合においても、記録層にレーザ光を照射
して温度を高めることが必要である。更に、他の方式の
ものとして、GdTbC。
[Prior Art] Conventionally, as an optical recording medium, a laser beam is irradiated onto a recording layer containing a recording material that is metamorphosed or melted by heat to cause the recording material to melt or decompose, thereby creating permanent holes or deformed spots. There is a method that creates a signal and records the signal. The recording material is an alloy with a low melting point and high reflectivity.
Organic dyes that are thermally decomposable or have low melting points are known. on the other hand,
There is also a method of recording signals on a recording film by utilizing reversible or irreversible phase changes such as crystal-amorphous transition. In this case as well, it is necessary to irradiate the recording layer with laser light to raise the temperature. Furthermore, as another method, GdTbC.

なとの磁性体に外部磁場の中でレーザ光を照射して温度
を高め、磁化方向に反転させ、これによる光の回転角変
化を信号として読み取る光磁気記録媒体がある。上記い
ずれの方式のものにおいても、記録層の温度を高めて信
号を記録する点で共通しており、これらはサーマルモー
ド記録方式と称されている。
There is a magneto-optical recording medium in which a magnetic material is irradiated with laser light in an external magnetic field to raise its temperature, reverse the magnetization direction, and read the resulting change in the rotation angle of the light as a signal. All of the above methods have in common that the temperature of the recording layer is increased to record signals, and these methods are called thermal mode recording methods.

ところで、サーマルモード記録方式では強いレーザ光に
より信号を書き込む。この際、高速書込、即ち、小さな
レーザエネルギーで記録が行なえるように、高感度の記
録物質が必要である。
By the way, in the thermal mode recording method, signals are written using a strong laser beam. In this case, a highly sensitive recording material is required so that high-speed writing, that is, recording can be performed with small laser energy.

方、再生においては読み取り用の弱いレーザ光ヲ照射す
る。この際には、記録された信号が変化したり未記録部
が書き込みされることのないよう、記録層が安定である
ことが要求される。通常の場合、記録レーザ光と再生レ
ーザ光の強度を変えて上記の相反する条件を満足させる
ため、レーザ強度に対して十分大きなしきい値をもつ記
録物質が必要となる。
On the other hand, during reproduction, a weak laser beam for reading is irradiated. At this time, the recording layer is required to be stable so that the recorded signal will not change or unrecorded areas will not be written. Normally, in order to satisfy the above conflicting conditions by varying the intensities of the recording laser beam and the reproducing laser beam, a recording material having a sufficiently large threshold value with respect to the laser intensity is required.

また、記録物質の融解、分解などの変形、又は相変化な
ど、信号が反射率の変化で記録される方式の光記録媒体
並びにその記録書き込み及び読み取り方法においては、
記録時に照射レーザ光エネルギーが有効に吸収されて変
化を生じることが重要であり、一方、再生においては弱
い読み取りレーザ光を有効に反射することが必要である
In addition, in optical recording media in which signals are recorded by changes in reflectance, such as deformation such as melting or decomposition of recording materials, or phase changes, and recording writing and reading methods thereof,
During recording, it is important that the irradiated laser light energy is effectively absorbed to cause a change, while during reproduction, it is necessary to effectively reflect the weak reading laser light.

[発明が解決しようとする課題] しかしながら、一般に、反射率の高い記録物質は伝熱損
失及び反射損失が大きく、上記二つの相反する条件を満
足する記録物質を見出すことは容易ではない。
[Problems to be Solved by the Invention] However, recording materials with high reflectance generally have large heat transfer losses and reflection losses, and it is not easy to find a recording material that satisfies the above two contradictory conditions.

本発明は上記従来の実情に鑑みてなされたものであって
、上記二つの相反する条件を満足する記録層を有し、記
録感度及び記録、再生の安定性、信頼性に優れた光記録
媒体並びにこのような光記録媒体の有効な記録書き込み
方法及び読み取り方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and is an optical recording medium that has a recording layer that satisfies the above two contradictory conditions and has excellent recording sensitivity, recording and reproduction stability, and reliability. Another object of the present invention is to provide an effective recording/writing method and reading method for such an optical recording medium.

[課題を解決するための手段] 請求項(1)の光記録媒体は、表面プラズモン性の金属
超微細粒子及び記録物質を含む記録反射層を備えること
を特徴とする 請求項(2)の光記録媒体は、表面プラズモン性の金属
超微細粒子、該金属超微細粒子の表面プラズモンを増強
させる非線形光学物置及び記録物質を含む記録反射層を
備えることを特徴とする請求項(3)の光記録媒体の記
録書き込み方法は、請求項(1)の光記録媒体の書き込
みにあたり、表面プラズモン性の金属超微細粒子の共鳴
波長領域の書き込み光を用いることを特徴とする請求項
(4)の光記録媒体の記録読み取り方法は、請求項(1
)の光記録媒体の読み取りにあたり、表面プラズモン性
の金属超微細粒子の共鳴波長領域外の波長領域の読み取
り光を用いることを特徴とする 請求項(5)の光記録媒体の記録書き込み方法は、請求
項(2)の光記録媒体の書き込みにあたり、表面プラズ
モン性の金属超微細粒子及び/又は非線形光学物賞の共
鳴波長領域の書き込み光を用いることを特徴とする 請求項(6)の光記録媒体の記録読み取り方法は、請求
項(2)の光記録媒体の読み取りにあたり、表面プラズ
モン性の金属超微細粒子及び/又は非線形光学物置の共
鳴波長領域外の波長領域の読み取り光を用いることを特
徴とする。
[Means for Solving the Problems] The optical recording medium according to claim (1) is characterized in that the optical recording medium according to claim (2) is provided with a recording reflective layer containing surface plasmonic metal ultrafine particles and a recording substance. The optical recording according to claim 3, wherein the recording medium comprises ultrafine metal particles having surface plasmonic properties, a nonlinear optical storage that enhances the surface plasmon of the ultrafine metal particles, and a recording reflective layer containing a recording substance. The optical recording method according to claim (4), wherein the method for recording and writing on a medium uses writing light in the resonant wavelength region of ultrafine metal particles having surface plasmonic properties when writing on the optical recording medium according to claim (1). The recording reading method of the medium is defined in claim (1).
The recording/writing method for an optical recording medium according to claim (5), characterized in that reading light in a wavelength region outside the resonant wavelength region of surface plasmonic metal ultrafine particles is used for reading the optical recording medium according to claim (5). The optical recording according to claim (6), characterized in that when writing on the optical recording medium according to claim (2), writing light in the resonant wavelength region of surface plasmonic metal ultrafine particles and/or nonlinear optical materials is used. A recording/reading method for a medium is characterized in that when reading an optical recording medium according to claim (2), reading light in a wavelength range outside the resonant wavelength range of surface plasmonic metal ultrafine particles and/or a nonlinear optical storage is used. shall be.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例に係る光記録媒体の模式的な
断面図、′i42図及び1J3図は第1図に示す記録層
中の表面プラズモン性の金属超微細粒子(以下「表面プ
ラズモン性微粒子」と称する場合がある。)と記録物質
との複合粒子の例を示す拡大断面図である。第4図は本
発明の光記録媒体の他の実施例を示す模式的な断面図で
ある。
FIG. 1 is a schematic cross-sectional view of an optical recording medium according to an embodiment of the present invention, and FIG. FIG. 2 is an enlarged cross-sectional view showing an example of a composite particle of a recording material and a recording material. FIG. 4 is a schematic cross-sectional view showing another embodiment of the optical recording medium of the present invention.

第1図に示す光記録媒体1は、透明基板2、記録反射層
3及び保護層4が順次積層された構造であって、記録反
射層3は透明ポリマー5をバインダーとして、表面プラ
ズモン性微粒子と記録物質との複合粒子6が均一分散状
態で含有されているものである。
The optical recording medium 1 shown in FIG. 1 has a structure in which a transparent substrate 2, a recording reflective layer 3, and a protective layer 4 are sequentially laminated. Composite particles 6 with a recording material are contained in a uniformly dispersed state.

この複合粒子6の形態には特に制限はなく、第2図に示
す如く、表面プラズモン性微粒子7を核として、その表
面を記録物質8の層で被覆したものであっても、第3図
に示す如く、記録物質8の粒子を核として、これを表面
プラズモン性徴粒子フで被覆したものであっても良い、
なお、第2図に示す如く複合粒子は、例えば金属微粒子
を核として記録物質や非線形光学物質を析出させること
によって、また、第3図に示す複合粒子は、例えば、記
録物質粒子に金属微粒子を静電吸着させることによって
製造される。
There is no particular restriction on the form of this composite particle 6, and even if it has a surface plasmonic fine particle 7 as a nucleus and its surface is coated with a layer of recording material 8 as shown in FIG. 3, as shown in FIG. As shown, the particles of the recording material 8 may be used as cores, which may be coated with surface plasmon characteristic particles.
Note that, as shown in FIG. 2, composite particles can be produced by depositing a recording material or a nonlinear optical material using, for example, metal fine particles as a core, and composite particles shown in FIG. Manufactured by electrostatic adsorption.

第4図に示す光記録媒体IAは、透明基板2に表面プラ
ズモン性微粒子7と記録物質8の微粒子との共蒸着等の
微細構造薄膜層よりなる記録反射層3Aが形成され、そ
の表面が保護層4で被覆されているものである。
In the optical recording medium IA shown in FIG. 4, a recording reflective layer 3A is formed on a transparent substrate 2, and the recording reflective layer 3A is made of a finely structured thin film layer formed by co-evaporation of surface plasmonic fine particles 7 and recording substance 8 fine particles, and the surface thereof is protected. It is coated with layer 4.

なお、第1図〜第4図に示す光記録媒体は、本発明の光
記録媒体の一実施例であって、本発明の光記録媒体の構
成は何ら図示のものに限定されるものではない。
Note that the optical recording medium shown in FIGS. 1 to 4 is an example of the optical recording medium of the present invention, and the structure of the optical recording medium of the present invention is not limited to that shown in the figures. .

本発明において、表面プラズモン性微粒子としては、高
い導電性を有し、電子プラズマ共鳴点近傍の波長をもつ
光により、表面プラズマが増強されるものであって、具
体的には、金、銀、アルミニウム、銅などの金属の微粒
子が挙げられる。これらの金属は高い反射率を有するこ
とが知られているが、共鳴点近傍の波長のレーザ光に対
しては反射率が大きく低下し、吸光性が増大する。
In the present invention, the surface plasmonic fine particles have high conductivity and whose surface plasma is enhanced by light having a wavelength near the electron plasma resonance point, and specifically, gold, silver, Examples include fine particles of metals such as aluminum and copper. Although these metals are known to have high reflectance, the reflectance significantly decreases and light absorption increases for laser light having a wavelength near the resonance point.

なお、表面プラズモン性微粒子は、極超微細粒子である
ほど、系内の表面プラズマ効果が増大し、また、記録物
質と表面プラズマとの相互作用が増大し、吸収されたレ
ーザエネルギーを有効に記録物質の変成又は融解に利用
することが可能とされる。従って、表面プラズモン性微
粒子は好*L、<if粒径3000A以下、より好まし
くは1oooA以下の極超微細粒子であることが望まし
い。このような超微細粒子は、例えば、レーザアブレー
ション、金属蒸気を含むガスの断熱膨張、金属とマトリ
ックス物置のコスバッタや共蒸着などの方法により製造
することができる。
Furthermore, as the surface plasmonic particles become ultra-fine, the surface plasma effect within the system increases, and the interaction between the recording material and the surface plasma increases, making it possible to effectively record the absorbed laser energy. It can be used to transform or melt materials. Therefore, it is desirable that the surface plasmonic fine particles be ultrafine particles with a particle diameter of 3000A or less, more preferably 1oooA or less. Such ultrafine particles can be produced by, for example, methods such as laser ablation, adiabatic expansion of a gas containing metal vapor, co-evaporation of metal and matrix, or co-evaporation.

一方、本発明において、記録物質としては、レーザ加熱
により変成又は融解する有機色素、ポリマー等が挙げら
れる。具体的には、キノシアニン色素、メロシアニン色
素、フタロシアニン色素やナフタロシアニン色素とその
金属錯体、スクアリリウム色素、ジチオール、ジアゾー
ル、メルカプトナフトールなどの金属錯体、縮合芳香族
キノン色素、トリフェニルメタン系色素、アミニウム、
ジインモニウム系色素、アゾ分散染料、インドアニリン
系金属錯体色素や顔料等を用いることができる。
On the other hand, in the present invention, examples of the recording material include organic dyes and polymers that are denatured or melted by laser heating. Specifically, quinocyanine dyes, merocyanine dyes, phthalocyanine dyes, naphthalocyanine dyes and their metal complexes, squarylium dyes, metal complexes such as dithiol, diazole, and mercaptonaphthol, condensed aromatic quinone dyes, triphenylmethane dyes, aminium,
Diimmonium dyes, azo disperse dyes, indoaniline metal complex dyes, pigments, and the like can be used.

本発明の光記録媒体においては、更に記録層中に、表面
プラズモン性微粒子の表面プラズモンを増強させる非線
形光学物質を共存させることにより、その吸収係数をよ
り一層増大させることができる。この場合、非線形光学
物質としては、ポリジアセチレン、ポリフェニレンビニ
レン、ポリチェニレンビニレンなどの共役系高分子及び
その誘導体、シアニン色素、ベンジリデンアニリン、ポ
ルフィリン、フタロシアニン、ナフタロシアニン、4−
ジエチルアミノ−4°−二トロスチルベン、ニトロアニ
リンなどの低分子非線系光学化合物又はその錯体、及び
これらの低分子非線形光学化合物誘導体をポリメタクリ
ル酸エステル、ポリビニルアルコール、ポリアクリル酸
エステルなどの側鎖に付加した非線形光学ポリマーなど
を使用することができる。これらのうち、特に、ポリジ
アセチレン、シアニン色素、アミノニトロスチルベン、
ニトロアニリン、これらの誘導体、これらを主鎖又は側
鎖に含むポリマーが好適である。
In the optical recording medium of the present invention, the absorption coefficient can be further increased by coexisting in the recording layer a nonlinear optical substance that enhances the surface plasmon of the surface plasmonic fine particles. In this case, the nonlinear optical substances include conjugated polymers such as polydiacetylene, polyphenylene vinylene, and polythenylene vinylene, and derivatives thereof, cyanine dyes, benzylideneaniline, porphyrin, phthalocyanine, naphthalocyanine, 4-
Low-molecular nonlinear optical compounds such as diethylamino-4°-nitrostilbene and nitroaniline or their complexes, and derivatives of these low-molecular nonlinear optical compounds with side chains such as polymethacrylic acid ester, polyvinyl alcohol, and polyacrylic acid ester It is possible to use a nonlinear optical polymer added to the molecule. Among these, in particular, polydiacetylene, cyanine dye, aminonitrostilbene,
Nitroaniline, derivatives thereof, and polymers containing these in the main chain or side chain are suitable.

なお、本発明において、記録反射層内の記録物質と表面
プラズモン性微粒子との割合は、記録物質二表面プラズ
モン性微粒子=t:o、i〜1゜(重量比)とするのが
好ましい。即ち、表面プラズモン性微粒子が少な過ぎる
場合には本発明にょるレーザエネルギー効率の十分な改
善効果が得られず、多過ぎると信号強度、S/N比が低
下するので上記範囲に設定するのが好ましい。また、非
線形光学物質を共存させる場合、その使用割合は、記録
物1!t:非線形光学物質=1:0.05〜20(重量
比)とするのが好ましい。
In the present invention, the ratio of the recording material to the surface plasmonic fine particles in the recording reflective layer is preferably such that recording material: two surface plasmonic fine particles = t:o, i~1° (weight ratio). That is, if the surface plasmonic fine particles are too small, the sufficient improvement effect of the laser energy efficiency according to the present invention cannot be obtained, and if the surface plasmonic particles are too large, the signal strength and S/N ratio will decrease, so it is recommended to set the surface plasmonic particles within the above range. preferable. In addition, when a nonlinear optical material is used together, the ratio of its use is 1! It is preferable that t: nonlinear optical material=1:0.05 to 20 (weight ratio).

ところで、前述の如く、表面プラズモン性微粒子は高い
反射率を有するが、共鳴点近傍の波長のレーザ光に対し
ては反射率が大きく低下し、吸光性が増大する。
Incidentally, as described above, surface plasmonic fine particles have a high reflectance, but the reflectance greatly decreases and light absorption increases for laser light having a wavelength near the resonance point.

従って、本発明において、記録物質及び表面プラズモン
性微粒子を含む記録反射層を有する光記録媒体では、表
面プラズモン性微粒子の共鳴波長領域のレーザ光で書き
込みを行ない、該共鳴波長領域外の、好ましくは該領域
から離れたレーザ光で読み取りを行なう。
Therefore, in the present invention, in an optical recording medium having a recording reflective layer containing a recording material and surface plasmonic fine particles, writing is performed with a laser beam in the resonant wavelength region of the surface plasmonic fine particles, and preferably a laser beam outside the resonant wavelength region. Reading is performed using a laser beam that is distant from the area.

また、記録物質、表面プラズモン性微粒子及び非線形光
学物質を含む記録反射層を有する光記録媒体では、表面
プラズモン性微粒子及び/又は非線形光学物質の共鳴波
長領域のレーザ光で書き込みを行ない、該共鳴波長領域
外の、好ましくは該領域から離れた波長領域のレーザ光
で読み取りを行なう。
In addition, in an optical recording medium having a recording reflective layer containing a recording material, surface plasmonic particles, and a nonlinear optical material, writing is performed with a laser beam in the resonant wavelength region of the surface plasmonic particles and/or the nonlinear optical material, and the resonant wavelength is Reading is performed using a laser beam in a wavelength range outside the area, preferably a wavelength range away from the area.

このような書き込み、読み取り方法によれば、良好な記
録、再生が行なえる。
According to such a writing and reading method, good recording and reproduction can be performed.

以下に本発明の光記録媒体を製造する方法について説明
する。
The method for manufacturing the optical recording medium of the present invention will be explained below.

本発明の光記録媒体の記録反射層の作成方法としては、
次の■〜■等の方法を採用することができる。
The method for creating the recording reflective layer of the optical recording medium of the present invention is as follows:
The following methods such as ■ to ■ can be adopted.

■ 記録物質、表面プラズモン性微粒子及び必要に応じ
て非線形光学物質をインク化し、ドープを基板に塗布硬
化させる(例えば、第1図の光記録媒体はこの方法で作
成される。)。
(2) The recording substance, surface plasmonic fine particles, and if necessary, the nonlinear optical substance are made into ink, and the dope is applied to the substrate and cured (for example, the optical recording medium shown in FIG. 1 is prepared by this method).

■ 記録物質、表面プラズモン性微粒子及び必要に応じ
て非線形光学物質の微細構造薄膜を共蒸着又はコスバッ
タ等のPVD法で基板上に形成する(例えば、第4図の
光記録媒体はこの方法で作成される。)。
■ A finely structured thin film of a recording material, surface plasmonic particles, and if necessary a nonlinear optical material is formed on a substrate by a PVD method such as co-evaporation or cosbatter (for example, the optical recording medium shown in Fig. 4 is created by this method). ).

■ 別途作成した記録物質、表面プラズモン性微粒子及
び必要に応じて非線形光学物質を含む記録反射フィルム
或いは基板とは別のベースフィルムに上記■又は■の方
法により形成した記録反射フィルムを、基板に張り合わ
せる。
■ Paste the recording reflective film formed by the method of (1) or (3) above on a recording reflective film containing a separately prepared recording material, surface plasmonic particles, and nonlinear optical material if necessary, or a base film separate from the substrate, to the substrate. Ru.

なお、記録反射層の形成に際しては、予め、基板にガイ
ド用のグループやウォブルなどの位置決め信号を作成し
ておくことができる。また、ROM信号や読出用の制御
信号、セクタ番号などを予め作成しておくこともできる
Note that when forming the recording reflective layer, positioning signals such as guide groups and wobbles can be created on the substrate in advance. Further, ROM signals, read control signals, sector numbers, etc. can be created in advance.

本発明の光記録媒体において、反射層を設ける記録反射
層の透明基板とは反対側に、必要に応じて反射層又は反
射防止層を形成しても良い0反射層を形成する場合には
、例えば、金、銀、銅、アルミニウム又はこれらの合金
などの、高反射率の金属を記録層背後に蒸着又はスパッ
タする。また、別途作成した反射層フィルムを張り合わ
せても良い。反射防止層を形成する場合には、カーボン
黒粒子を混入したポリマーシートなどを張り合わせても
良いし、また、反射防止塗料などを吹き付けても良い。
In the optical recording medium of the present invention, when a reflective layer is formed on the side opposite to the transparent substrate of the recording reflective layer provided with the reflective layer, a reflective layer or an antireflection layer may be formed as necessary. For example, a highly reflective metal such as gold, silver, copper, aluminum or alloys thereof is evaporated or sputtered behind the recording layer. Alternatively, a separately prepared reflective layer film may be laminated together. When forming an antireflection layer, a polymer sheet mixed with carbon black particles may be laminated, or an antireflection paint may be sprayed.

更に、レーザ光エネルギーの閉じ込め用反射層として記
録層より低い屈折率を有する物置の層を蒸着又はスパッ
タにより基板と記録層との間に作成することもできる。
Furthermore, a layer having a lower refractive index than the recording layer can be formed between the substrate and the recording layer by vapor deposition or sputtering as a reflective layer for confining laser light energy.

このような本発明の光記録媒体は光ディスク、光カード
、光テープなど、任意の形態で使用することができる。
Such an optical recording medium of the present invention can be used in any form such as an optical disk, an optical card, or an optical tape.

[作用] 表面プラズモン性微粒子は、一般に照射されるレーザ光
の波長又はレーザ強度に対して、第5図及び!6図に示
す反射率を有する。
[Function] Surface plasmonic fine particles generally react with the wavelength or laser intensity of irradiated laser light as shown in Figures 5 and ! It has the reflectance shown in Figure 6.

即ち、第5図の如く、共鳴波長領域Aで反射率が低い、
即ち、吸収率が高く、その他の領域Bでは反射率が高い
、即ち、吸収率が低い。
That is, as shown in FIG. 5, the reflectance is low in the resonant wavelength region A.
That is, the absorption rate is high, and in the other region B, the reflectance is high, that is, the absorption rate is low.

共鳴波長は表面プラズモン性金属の種類、これと接する
物置の誘電率、寸法、非線形化合物の共存する場合には
その非線形定数などの組合せにより調節することができ
る。
The resonant wavelength can be adjusted by a combination of the type of surface plasmonic metal, the dielectric constant and dimensions of the material in contact with the surface plasmonic metal, and the nonlinear constant of a nonlinear compound when it coexists.

従って、この共鳴波長領域Aのレーザ光を用いて書き込
みを行なうことにより、後述の表面プラズモン性微粒子
の表面プラズマによるレーザ光吸収効率の良好な向上効
果が得られ、良好な記録を行なうことができる。一方、
この共鳴波長領域Aの外の領域Bの波長のレーザ光を用
いて読み取りを行なうことにより、レーザ光は表面プラ
ズモン性微粒子により反射され記録物質に変化が生じる
ことはない、従って安定に再生を行なうことができる。
Therefore, by performing writing using laser light in the resonant wavelength region A, it is possible to obtain a good effect of improving the laser light absorption efficiency by the surface plasma of surface plasmonic particles, which will be described later, and to perform good recording. . on the other hand,
By performing reading using laser light with a wavelength in region B outside of resonance wavelength region A, the laser light is reflected by surface plasmonic particles and no change occurs in the recording material, so stable reproduction is performed. be able to.

また、レーザ光強度に対しては、レーザ強度の小さい領
域Cで反射率が高く、レーザ強度の大きい領域りで反射
率が低い、従って、レーザ強度の高い書き込み光は有効
に吸収されて記録が行なわれるのに対し、レーザ強度の
低い読み取り光は有効に反射されて読み取り信号を与え
、再生時において記録物質に変化が生じることはない。
In addition, with respect to laser light intensity, the reflectance is high in the area C where the laser intensity is low, and the reflectance is low in the area C where the laser intensity is high.Therefore, the writing light with high laser intensity is effectively absorbed and recorded. In contrast, the reading light with low laser intensity is effectively reflected to provide a reading signal, and no change occurs in the recording material during reproduction.

本発明における表面プラズモン性微粒子の作用効果につ
いて、第7図(a)、(b)を参照して、表面プラズモ
ン性微粒子7を核として、これを記録物質8の層で被覆
した複合粒子6の場合を例示して説明する。
Regarding the effects of the surface plasmonic fine particles in the present invention, referring to FIGS. An example case will be explained.

記録層に入射した書き込み用レーザ光10Aは層内で吸
収されて局部的な温度上昇をもたらすと共に、347図
(a)の如く、このレーザ光10Aの照射により、複合
粒子6の表面プラズモン性微粒子7の表面には、強い表
面電場(プラズモン)9が該表面に沿って形成される。
The writing laser beam 10A incident on the recording layer is absorbed within the layer and causes a local temperature rise, and as shown in FIG. 347(a), the surface plasmonic fine particles of the composite particles 6 are On the surface of 7, a strong surface electric field (plasmon) 9 is formed along the surface.

この表面プラズモン9は、レーザ光の強度が高い場合、
非線形的に増大する。特に、第5図に示すプラズマ電子
の共鳴波長領域Aに書き込みレーザ光の波長を合わせる
ことにより、急激な吸収効率の増大があり、高い表面プ
ラズモン強度が得られる。
When the intensity of the laser beam is high, this surface plasmon 9
Increases non-linearly. In particular, by matching the wavelength of the writing laser beam to the resonant wavelength region A of plasma electrons shown in FIG. 5, the absorption efficiency increases rapidly and a high surface plasmon intensity can be obtained.

この表面プラズモンにより、表面プラズモン性徴粒子フ
の表面温度は上昇し、結果的にこれを被覆する記録物質
8の変成ないし融解を促進させる。特に、非線形光学物
質が共存す、る場合には、表面プラズモン性金属微粒子
と非線形光学物質の相互作用を最適線することによって
吸収エネルギーは急激に増大し、記録物質8の変成ない
し融解をより一層促進させる。
This surface plasmon increases the surface temperature of the surface plasmon characteristic particle, and as a result, denaturation or melting of the recording material 8 covering it is promoted. In particular, when a nonlinear optical material coexists, the absorbed energy increases rapidly by optimizing the interaction between the surface plasmonic metal particles and the nonlinear optical material, further inhibiting the metamorphosis or melting of the recording material 8. promote

再生の場合には、第7図(b)に示す如く、読み取り用
レーザ光10Bの強度が、記録用レーザ光10Aの強度
に比べて通常約十分の−と小さ、表面プラズモン効果(
或いは、更に非線形光学物質による自己収束効果)は生
じないため、記録物質8は変化することなく安定に保存
される。更に、読み取りレーザ光の波長を共鳴領域から
離れた波長に設定することにより反射強度が増大し、し
きい値はより一層改善される。
In the case of reproduction, as shown in FIG. 7(b), the intensity of the reading laser beam 10B is usually about ten tenths less than the intensity of the recording laser beam 10A, and the surface plasmon effect (
Furthermore, since the self-focusing effect caused by the nonlinear optical material does not occur, the recording material 8 is stably stored without changing. Furthermore, by setting the wavelength of the reading laser beam to a wavelength far from the resonance region, the reflection intensity is increased and the threshold value is further improved.

[実施例] 以下に実施例を挙げて、本発明をより具体的に説明する
[Example] The present invention will be described in more detail with reference to Examples below.

実施例1 ポリカーボネートのプレグルーブ基板に、アルミニウム
とN、N−ジエチルニトロアニリン(2:1(重量比)
)を共蒸着して記録反射層を作成した。得られた光記録
媒体に、4mW出力の記録用レーザ光(7800m)を
用い、定線速度1.3m/s、500kHzで信号を書
き込んだ。その後、0.5mWの再生用レーザ光(78
0nm)を用いて繰り返し再生を行なった結果、記録が
安定に保持されることが確認された。
Example 1 Aluminum and N,N-diethylnitroaniline (2:1 (weight ratio)
) was codeposited to create a recording reflective layer. Signals were written on the obtained optical recording medium at a constant linear velocity of 1.3 m/s and 500 kHz using a recording laser beam (7800 m) with an output of 4 mW. After that, a 0.5 mW reproduction laser beam (78
As a result of repeated reproduction using 0nm), it was confirmed that recording was stably maintained.

実施例2 20%インジウム−20%錫−銀合金の微粒子(平均粒
径10100nとジエチルアミノニトロスチルベン(2
:1(重量比))をポリウレタンのバインダに練り込ん
で作成したインクを、ポリカーボネート基板にブレード
コートして、記録反射層を形成し、実施例1と同様の条
件で記録、再生テストを行なった。その結果、記録は安
定に保持されていることが確認された。
Example 2 Fine particles of 20% indium-20% tin-silver alloy (average particle size 10100 nm and diethylaminonitrostilbene (2
:1 (weight ratio)) in a polyurethane binder was coated with a blade on a polycarbonate substrate to form a recording reflective layer, and recording and playback tests were conducted under the same conditions as in Example 1. . As a result, it was confirmed that the records were maintained stably.

実施例3 銀の超微細粒子(平均粒径30 nm) 、アルキル側
鎖を有するナフタロシアニンの珪素錯体、インドレニン
系シアニン色素(3:、1:1(重量比))をポリカー
ボネートと溶融混練し、押し出しによりシートを作成し
た。ポリカーボネートのプレグルーブ基板とこのシート
を張り合わせて光ディスクを作成した。この光ディスク
について、実施例1と同様にして、記録、再生テストを
行なったところ、記録は安定に保持されていることが確
認された。
Example 3 Ultrafine silver particles (average particle size 30 nm), a silicon complex of naphthalocyanine having an alkyl side chain, and an indolenine cyanine dye (3:, 1:1 (weight ratio)) were melt-kneaded with polycarbonate. , the sheet was made by extrusion. An optical disc was created by pasting this sheet onto a polycarbonate pregroove substrate. When recording and reproducing tests were performed on this optical disc in the same manner as in Example 1, it was confirmed that recording was stably maintained.

実施例4 側鎖としてパラニトロビフェニルアニリノ−N−アルキ
ルエーテルをつけたポリビニルアルコールに金微粒子(
平均粒径10nm)とシアニン色素を分散しく3:1:
1(重量比))、シートにしたものをポリカーボネート
のプレグルーブ基板に張り合わせて光ディスクを作成し
た。この光ディスクについて、定線速度5.5m/s。
Example 4 Gold fine particles (
(average particle size 10 nm) and cyanine dye in a 3:1 ratio.
1 (weight ratio)), and a sheet was laminated onto a polycarbonate pregroove substrate to create an optical disc. For this optical disc, the constant linear velocity was 5.5 m/s.

6.3MHzとしたこと以外は実施例1と同様にして、
記録、再生テストを行なった。その結果、記録は安定に
保持されていることが確認された。
Same as Example 1 except that the frequency was set to 6.3 MHz,
Recording and playback tests were conducted. As a result, it was confirmed that the records were maintained stably.

[発明の効果] 以上詳述した通り、請求項(1)によれば、高感度で、
記録、再生の安定性、信頼性の高い光記録媒体が提供さ
れる。
[Effect of the invention] As detailed above, according to claim (1), with high sensitivity,
An optical recording medium with high stability and reliability in recording and reproduction is provided.

また、請求項(3)、(4)によれば、このような光記
録媒体の記録、再生を極めて安定かつ効果的に実施する
ことが可能とされる。
Moreover, according to claims (3) and (4), it is possible to perform recording and reproduction of such an optical recording medium extremely stably and effectively.

請求項(2)、(5)及び(6)によれば、より一層優
れた効果が達成される。
According to claims (2), (5) and (6), even better effects are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

′t%1図は本発明の一実施例に係る光記録媒体の模式
的な断面図、′s2図及び′!J3図は第1図に示す光
記録媒体の記録層中の表面プラズモン性の金属超微細粒
子と記録物質との複合粒子の例を示す拡大断面図である
。第4図は本発明の光記録媒体の他の実施例を示す模式
的な断面図である。第5図はレーザ光波長と表面プラズ
モン性微粒子の反射率との関係を示すグラフ、第6図は
レーザ光強度と表面プラズモン性微粒子の反射率との関
係を示すグラフである。第7図は表面プラズモン性微粒
子による作用効果を説明する模式図である。 1、IA・・・光記録媒体、 2・・・透明基板、   3.3A−・・記録反射層、
4・・・保護層、    5・・・透明ポリマー6・・
・複合粒子、 7・・・表面プラズモン性微粒子、 8・・・記録物質。 第1図 特許出願人  宇部興産株式会社 代理人 弁理士  重 野  剛 第2図 第3図 第4図 第5図 第6図 波 長(nm) レープ’i!LII 第7図 (b)
Figure 't%1 is a schematic cross-sectional view of an optical recording medium according to an embodiment of the present invention, Figure 's2 and '! Figure J3 is an enlarged sectional view showing an example of a composite particle of a surface plasmonic metal ultrafine particle and a recording substance in the recording layer of the optical recording medium shown in Figure 1. FIG. 4 is a schematic cross-sectional view showing another embodiment of the optical recording medium of the present invention. FIG. 5 is a graph showing the relationship between the laser beam wavelength and the reflectance of the surface plasmonic fine particles, and FIG. 6 is a graph showing the relationship between the laser beam intensity and the reflectance of the surface plasmonic fine particles. FIG. 7 is a schematic diagram illustrating the effects of surface plasmonic fine particles. 1. IA... Optical recording medium, 2... Transparent substrate, 3.3A-... Recording reflective layer,
4...Protective layer, 5...Transparent polymer 6...
- Composite particle, 7... Surface plasmonic fine particle, 8... Recording substance. Figure 1 Patent Applicant Ube Industries Co., Ltd. Representative Patent Attorney Tsuyoshi Shigeno Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Wavelength (nm) Leb'i! LII Figure 7(b)

Claims (6)

【特許請求の範囲】[Claims] (1)表面プラズモン性の金属超微細粒子及び記録物質
を含む記録反射層を備えることを特徴とする光記録媒体
(1) An optical recording medium characterized by comprising a recording reflective layer containing surface plasmonic ultrafine metal particles and a recording substance.
(2)表面プラズモン性の金属超微細粒子、該金属超微
細粒子の表面プラズモンを増強させる非線形光学物質及
び記録物質を含む記録反射層を備えることを特徴とする
光記録媒体。
(2) An optical recording medium comprising a recording reflective layer containing ultrafine metal particles having surface plasmonic properties, a nonlinear optical substance that enhances the surface plasmon of the ultrafine metal particles, and a recording substance.
(3)表面プラズモン性の金属超微細粒子の共鳴波長領
域の書き込み光を用いることを特徴とする請求項(1)
の光記録媒体の記録書き込み方法。
(3) Claim (1) characterized in that writing light in a resonant wavelength region of surface plasmonic metal ultrafine particles is used.
A recording/writing method for optical recording media.
(4)表面プラズモン性の金属超微細粒子の共鳴波長領
域外の波長領域の読み取り光を用いることを特徴とする
請求項(1)の光記録媒体の記録読み取り方法。
(4) The recording/reading method for an optical recording medium according to claim (1), characterized in that reading light in a wavelength region outside the resonant wavelength region of ultrafine metal particles having surface plasmonic properties is used.
(5)表面プラズモン性の金属超微細粒子及び/又は非
線形光学物質の共鳴波長領域の書き込み光を用いること
を特徴とする請求項(2)の光記録媒体の記録書き込み
方法。
(5) The method for recording and writing on an optical recording medium according to claim (2), characterized in that writing light in a resonant wavelength region of surface plasmonic metal ultrafine particles and/or nonlinear optical material is used.
(6)表面プラズモン性の金属超微細粒子及び/又は非
線形光学物質の共鳴波長領域外の波長領域の読み取り光
を用いることを特徴とする請求項(2)の光記録媒体の
記録読み取り方法。
(6) The method for reading and recording information on an optical recording medium according to claim (2), characterized in that reading light in a wavelength region outside the resonant wavelength region of surface plasmon metal ultrafine particles and/or nonlinear optical material is used.
JP2166457A 1990-06-25 1990-06-25 Optical recording medium and its writing for recording and reading Pending JPH0462090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166457A JPH0462090A (en) 1990-06-25 1990-06-25 Optical recording medium and its writing for recording and reading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166457A JPH0462090A (en) 1990-06-25 1990-06-25 Optical recording medium and its writing for recording and reading

Publications (1)

Publication Number Publication Date
JPH0462090A true JPH0462090A (en) 1992-02-27

Family

ID=15831758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166457A Pending JPH0462090A (en) 1990-06-25 1990-06-25 Optical recording medium and its writing for recording and reading

Country Status (1)

Country Link
JP (1) JPH0462090A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594194A2 (en) * 1992-10-23 1994-04-27 Matsushita Electric Industrial Co., Ltd. A recording and reproducing medium and a recording and reproducing apparatus
US5463609A (en) * 1992-10-23 1995-10-31 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device and a method using the same
EP0819750A1 (en) * 1996-02-01 1998-01-21 Matsushita Electric Industrial Co., Ltd. Heat sensitive color developing material and heat sensitive element using the same
WO2002043061A2 (en) * 2000-11-24 2002-05-30 Thomson Licensing S.A. Means for optically storing digital data in the form of particles deposited on a surface, the dimensions of which are less than the wavelengths of radiation for reading the said data
WO2003085657A1 (en) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording/reproducing apparatus
US6661745B1 (en) 1999-03-29 2003-12-09 Agency Of Industrial Science And Technology Optical reproducing and recording method, recording medium, and optical device
US6697322B2 (en) * 2000-01-26 2004-02-24 Seiko Instruments Inc. Recording medium, optical recording device utilizing recording medium, and method of manufacturing recording medium
WO2004107323A1 (en) * 2003-05-29 2004-12-09 Seagate Technology Llc Patterned media for heat assisted magnetic recording
WO2009088095A1 (en) * 2008-01-11 2009-07-16 Sony Corporation Optical information recording method, optical information recording medium, optical information reproducing device, optical information reproducing method, and optical information recording and reproducing device
US8254227B2 (en) * 2005-05-10 2012-08-28 The Trustees Of The University Of Pennsylvania Frequency-modulated coding and data recording and storage using plasmonic nanostructures
US8345374B2 (en) 2003-05-29 2013-01-01 Seagate Technology, Llc Patterned media for heat assisted magnetic recording

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594194A3 (en) * 1992-10-23 1995-07-05 Matsushita Electric Ind Co Ltd A recording and reproducing medium and a recording and reproducing apparatus.
US5463609A (en) * 1992-10-23 1995-10-31 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device and a method using the same
US5577016A (en) * 1992-10-23 1996-11-19 Matsushita Electric Industrial Co., Ltd. Recording medium having concavo-convex pits with a maximum and a minimum pit depth depending on the wavelength of a laser light
US5582896A (en) * 1992-10-23 1996-12-10 Matsushita Electric Industrial Co., Ltd. Recording and reproducing medium and a recording and reproducing apparatus
US5602819A (en) * 1992-10-23 1997-02-11 Matsushita Electric Industrial Co., Ltd. Optical information system to detect reflection of pit depth by evanescent wave
US5614279A (en) * 1992-10-23 1997-03-25 Matsushita Electric Industrial Co., Ltd. Recording and reproducing medium and a recording and reproducing apparatus
EP0594194A2 (en) * 1992-10-23 1994-04-27 Matsushita Electric Industrial Co., Ltd. A recording and reproducing medium and a recording and reproducing apparatus
EP0819750A1 (en) * 1996-02-01 1998-01-21 Matsushita Electric Industrial Co., Ltd. Heat sensitive color developing material and heat sensitive element using the same
EP0819750A4 (en) * 1996-02-01 2000-01-12 Matsushita Electric Ind Co Ltd Heat sensitive color developing material and heat sensitive element using the same
US6661745B1 (en) 1999-03-29 2003-12-09 Agency Of Industrial Science And Technology Optical reproducing and recording method, recording medium, and optical device
US6697322B2 (en) * 2000-01-26 2004-02-24 Seiko Instruments Inc. Recording medium, optical recording device utilizing recording medium, and method of manufacturing recording medium
FR2817384A1 (en) * 2000-11-24 2002-05-31 Thomson Licensing Sa MEANS FOR THE OPTICAL STORAGE OF DIGITAL DATA IN THE FORM OF PARTICLES DEPOSITED ON A SURFACE WITH DIMENSIONS LESS THAN THE WAVELENGTHS OF A RADIATION FOR READING DATA
WO2002043061A3 (en) * 2000-11-24 2002-07-11 Thomson Licensing Sa Means for optically storing digital data in the form of particles deposited on a surface, the dimensions of which are less than the wavelengths of radiation for reading the said data
WO2002043061A2 (en) * 2000-11-24 2002-05-30 Thomson Licensing S.A. Means for optically storing digital data in the form of particles deposited on a surface, the dimensions of which are less than the wavelengths of radiation for reading the said data
US7345980B2 (en) 2000-11-24 2008-03-18 Thomson Licensing Optically storing digital data in the form of spectrally coded particles
WO2003085657A1 (en) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording/reproducing apparatus
US7313080B2 (en) 2002-04-08 2007-12-25 Matsushita Electric Industrial Co., Ltd. Information recording medium and its production method, and optical information recording reproducing apparatus
WO2004107323A1 (en) * 2003-05-29 2004-12-09 Seagate Technology Llc Patterned media for heat assisted magnetic recording
US8345374B2 (en) 2003-05-29 2013-01-01 Seagate Technology, Llc Patterned media for heat assisted magnetic recording
US8254227B2 (en) * 2005-05-10 2012-08-28 The Trustees Of The University Of Pennsylvania Frequency-modulated coding and data recording and storage using plasmonic nanostructures
WO2009088095A1 (en) * 2008-01-11 2009-07-16 Sony Corporation Optical information recording method, optical information recording medium, optical information reproducing device, optical information reproducing method, and optical information recording and reproducing device
US8116194B2 (en) 2008-01-11 2012-02-14 Sony Corporation Optical information recording method, optical information recording medium, optical information reproducing device, optical information reproducing method and optical information recording and reproducing device

Similar Documents

Publication Publication Date Title
EP0467716A2 (en) Information recording medium and process for the preparation of the same
JPH1153758A (en) Recording and reproducing method
JPH0462090A (en) Optical recording medium and its writing for recording and reading
JPH06262854A (en) Optical recording medium
US5955168A (en) Optical recording medium
NL1013982C2 (en) Optical information recording medium and methods for recording, reading, and deleting information thereon.
EP0836180B1 (en) An optical recording medium with a metallic recording layer
JPH11134715A (en) Optical recording medium
JPH0461638A (en) Optical recording medium
JP3456621B2 (en) Optical recording medium
KR100292378B1 (en) Optical recording medium capable of performing recording/reproducing operations and optical recording method thereof
JP2004001375A (en) Write once photorecording medium and recording agent for the medium
JP3602589B2 (en) Optical recording medium and optical recording method
JP2969638B2 (en) Optical recording medium
JPS60151850A (en) Optical recording medium
JP2866022B2 (en) Optical information recording medium and reproducing method thereof
JPH091934A (en) Optical information recording medium
KR100207581B1 (en) Optical recording medium
JP2951284B2 (en) Information recording method for optical recording medium
JPS60177447A (en) Optical recording medium
Hunt Optical data-storage systems
JPH04192131A (en) Optical information recording medium and its recording method
JP2004253064A (en) Optical recording medium and its manufacturing method
JP2004246984A (en) Optical recording medium and recording and playing back method and recording and playing back apparatus for the same
JP2002362030A (en) Optical recording medium and optical recording method using the same