JPH0461638A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH0461638A
JPH0461638A JP2169487A JP16948790A JPH0461638A JP H0461638 A JPH0461638 A JP H0461638A JP 2169487 A JP2169487 A JP 2169487A JP 16948790 A JP16948790 A JP 16948790A JP H0461638 A JPH0461638 A JP H0461638A
Authority
JP
Japan
Prior art keywords
recording
self
layer
recording layer
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2169487A
Other languages
Japanese (ja)
Inventor
Chikanobu Matsutame
松為 周信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2169487A priority Critical patent/JPH0461638A/en
Publication of JPH0461638A publication Critical patent/JPH0461638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To improve availability of laser light energy, recording sensitivity, recording and reproducing stability, and reliability by allowing a recording material and self-convergent non-linear optical material to coexist in a recording layer. CONSTITUTION:A recording layer 1 containing a recording material and self- convergent nonlinear optical material is formed on a substrate. The self- convergent nonlinear optical material incorporated into the recording layer 1 with the recording material is such a material that shows nonlinear increase in the refractive index with increase in temp. and/or intensity of laser light 2. The laser light 2 for writing entering the recording layer 1 is absorbed by the layer 1 to give local temp. increase. The refractive index of the self- convergent nonlinear optical material in the layer 1 changes according to the temp. increase and/or light-induced polarization, and the refractive index in the center area of the convergent point 3 changes most. Therefore, the incident light is further converged to increase the light intensity and temp. of the center area of the convergent point 3. Thus, availability of laser light energy, recording sensitivity, recording and reproducing stability, and reliability of the medium can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光記録媒体に係り、特に、レーザ光の自己収束
性に優れ、高感度で、記録、再生の安定性、信頼性に優
れた光記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical recording medium, and in particular, an optical recording medium that has excellent self-focusing properties of laser light, high sensitivity, and excellent recording and reproducing stability and reliability. Regarding optical recording media.

[従来の技術] 従来、光記録媒体として、低融点の記録層にレーザ光を
照射して記録層中の記録物質の融解又は分解を生じさせ
、永久的な穴又は変形したスポットを作り、信号を記録
する方式のものがある。一方、結晶−アモルファス転移
などの、可逆的又は不可逆的な相変化を利用して、記録
膜に信号を記録する方式のものもある。この場合におい
ても、記録層にレーザ光を照射して温度を高めることが
必要である。更に、他の方式のものとして、GdTbC
oなとの磁性体に外部磁場の中でレーザ光を照射して温
度を高め、磁化方向を反転させ、これによる光の回転角
変化を信号として読み取る光磁気記録媒体がある。上記
いずれの方式のものにおいても、記録層の温度を高めて
信号を記録する点で共通しており、これらはサーマルモ
ード記録方式と称されている。
[Prior Art] Conventionally, as an optical recording medium, a recording layer with a low melting point is irradiated with laser light to cause the recording material in the recording layer to melt or decompose, thereby creating a permanent hole or a deformed spot, thereby creating a signal. There is a method for recording. On the other hand, there is also a method of recording signals on a recording film by utilizing reversible or irreversible phase changes such as crystal-amorphous transition. In this case as well, it is necessary to irradiate the recording layer with laser light to raise the temperature. Furthermore, as another method, GdTbC
There is a magneto-optical recording medium that irradiates a magnetic material with a laser beam in an external magnetic field to raise its temperature, reverses the direction of magnetization, and reads the resulting change in the rotation angle of the light as a signal. All of the above methods have in common that signals are recorded by increasing the temperature of the recording layer, and these are called thermal mode recording methods.

ところで、サーマルモード記録方式の光記録媒体では、
強いレーザ光により信号を書き込む、この際、高速書込
、即ち、小さなレーザエネルギーで記録が行なえるよう
に、高感度の記録物質が必要である。一方、再生におい
ては読み取り用の弱いレーザ光を照射する。この際には
、記録された信号が変化したり未記録部が書き込みされ
ることのないよう、記録層が安定であることが要求され
る6通常の場合、記録レーザ光と再生レーザ光の強度を
変えて上記の相反する条件を満足させるため、レーザ強
度に対して充分大きなしきい値をもつ記録物質が必要と
なる。
By the way, in the optical recording medium of the thermal mode recording method,
When writing signals using strong laser light, a highly sensitive recording material is required so that high-speed writing, that is, recording can be performed with low laser energy. On the other hand, during reproduction, a weak laser beam for reading is irradiated. In this case, the recording layer must be stable so that the recorded signal does not change or unrecorded areas are written.6 In normal cases, the intensity of the recording laser beam and reproduction laser beam is In order to satisfy the above conflicting conditions by changing the laser intensity, a recording material with a sufficiently large threshold value for the laser intensity is required.

記録物質の融解、分解などの変形、又は相変化など、信
号が反射率の変化で記録される方式の光記録媒体におい
ては、記録時に照射レーザ光エネルギーが有効に吸収さ
れて変化を生じることが必要であるが、反射率の高い記
録物質は伝熱損失及び反射損失が大きく、上記二つの相
反する条件を満足する記録物質を見出すことは容易では
ない。
In optical recording media in which signals are recorded by changes in reflectance, such as deformation such as melting or decomposition of the recording material, or phase change, the energy of the irradiated laser light may be effectively absorbed during recording, causing changes. Although this is necessary, a recording material with high reflectance has large heat transfer loss and reflection loss, and it is not easy to find a recording material that satisfies the above two contradictory conditions.

特開昭63−228439号には、光記録媒体に記録層
とは別に自己収束性物質層を設け、この自己収束性物質
層により入射光を記録層に収束することによりレーザ光
の有効率を高める方法が提案されている。この方法は、
自己収束性物質層を熱レンズとして用い、別に設けた記
録層にレーザ光を集光する方法である。
Japanese Patent Laid-Open No. 63-228439 discloses that a self-focusing material layer is provided in an optical recording medium in addition to a recording layer, and the effective rate of laser light is increased by converging incident light onto the recording layer by this self-focusing material layer. A method to increase this is proposed. This method is
This method uses a self-focusing material layer as a thermal lens to focus laser light onto a separately provided recording layer.

[発明が解決しようとするff題] しかしながら、この方法では自己収束性物質層と記録層
との2つの層の分極又は温度をそれぞれ高める必要があ
り、レーザエネルギーが記録に利用されない部分が木質
的に発生する。また、自己収束性物質層の屈折率の変化
に伴い熱レンズの焦点距離が移動するので、収束点のス
ポット径が変動するという欠点もある。
[ff problem to be solved by the invention] However, in this method, it is necessary to increase the polarization or temperature of the two layers, the self-focusing material layer and the recording layer, and the portion where the laser energy is not used for recording is occurs in Furthermore, since the focal length of the thermal lens moves as the refractive index of the self-focusing material layer changes, there is also a drawback that the spot diameter at the convergence point changes.

本発明は上記従来の問題点を解決し、レーザ光エネルギ
ーの利用率が優れ、高感度で、記録、再生の安定性、信
頼性に優れた光記録媒体を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide an optical recording medium that has excellent utilization efficiency of laser light energy, high sensitivity, and excellent recording and reproducing stability and reliability.

[課題を解決するための手段] 本発明の光記録媒体は、レーザ光で記録層内の記録物質
の温度を高め、相変化、磁気的変化又は形状変化を生じ
させて記録を行なう光記録媒体において、該記録層は、
記録物質と自己収束性非線形光学物質とが共存している
ことを特徴とする。
[Means for Solving the Problems] The optical recording medium of the present invention is an optical recording medium in which recording is performed by increasing the temperature of a recording material in a recording layer with a laser beam to cause a phase change, magnetic change, or shape change. In the recording layer,
It is characterized by the coexistence of a recording material and a self-focusing nonlinear optical material.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の光記録媒体は、基板上に記録物質及び自己収束
性非線形光学物質を含む記録層が形成されたものである
。この記録層は、記録物質及び自己収束性非線形光学物
質が基板上の透明ポリマー層中で均−又は分散状態で含
有されたものでも良く、また、記録層及び自己収束性非
線形光学物質が直接基板に付着しているものであっても
良い。
The optical recording medium of the present invention has a recording layer containing a recording material and a self-focusing nonlinear optical material formed on a substrate. This recording layer may contain a recording material and a self-focusing nonlinear optical material in a uniform or dispersed state in a transparent polymer layer on a substrate. It may be something that is attached to.

本発明において、自己収束性非線形光学物質としては、
自己収束性物置であって、非線形光学特性を有する低分
子ないし高分子化合物が使用される。このような自己収
束性非線形光学物質としては、非線形光学特性を有する
無機物質、例えばカルコゲナイド微粒子や半導体微粒子
、ニオブ酸リチウムやニオブ酸カリウムの微粒子等を使
用することができる。また、非線形光学特性を有する低
分子ないし高分子有機化合物として、パラニトロアニリ
ン、メタニトロアニリン、核又はNfmニトロアニリン
などの置換体、4−アミノ−4゜ニトロスチルベンやそ
の置換体、メロシアニンやベンジリデンアニリンなどの
へテロ誘導体を使用することもできる。また、ポリジア
セチレン、ポリビニレンアリーレン、ポリビニレンチェ
ニレンなどの共役物質とその置換体や、フタロシアニン
、ナフタロシアニン、ポルフィリンなどの化合物及びそ
の置換体並びにこれらの金属錯体も使用することができ
る。更に、ポリメタクリル酸エステル、ポリアクリル酸
エステル、ポリビニルアルコールエステル、ポリビニル
アルコールエーテル、セルロースエステル、セルロース
エーテルなどの高分子側鎖に上記の低分子ないし高分子
有機化合物を適当な原子団又は結合によりつないだ化合
物も使用することができる。
In the present invention, the self-focusing nonlinear optical material includes:
As a self-focusing material, a low-molecular or high-molecular compound having nonlinear optical properties is used. As such a self-focusing nonlinear optical substance, an inorganic substance having nonlinear optical properties, such as chalcogenide fine particles, semiconductor fine particles, lithium niobate, potassium niobate fine particles, etc. can be used. In addition, examples of low-molecular or high-molecular organic compounds having nonlinear optical properties include para-nitroaniline, meta-nitroaniline, nuclear or substituted Nfm nitroaniline, 4-amino-4°nitrostilbene and its substituted products, merocyanine and benzylidene. Heteroderivatives such as aniline can also be used. Further, conjugated substances such as polydiacetylene, polyvinylenearylene, and polyvinylenethienylene and substituted substances thereof, compounds such as phthalocyanine, naphthalocyanine, and porphyrin, substituted substances thereof, and metal complexes thereof can also be used. Furthermore, the above-mentioned low-molecular or high-molecular organic compound is connected to a polymer side chain such as polymethacrylic acid ester, polyacrylic acid ester, polyvinyl alcohol ester, polyvinyl alcohol ether, cellulose ester, or cellulose ether through an appropriate atomic group or bond. Compounds can also be used.

一方、本発明において、記録物質としては、熱分解又は
融解性の有機色素、低融点の金属微粒子、相変化型物質
、例えば相変化型合金微粒子、光磁気記録物質の微粒子
などが使用される。このうち、熱分解又は融解性の記録
用有機色素としては、キノシアニン色素、メロシアニン
色素、フタロシアニン色素、スクアリリウム色素が使用
される。低融点金属微粒子としてはIn、Sn。
On the other hand, in the present invention, as the recording material, thermally decomposable or meltable organic dyes, low melting point metal particles, phase change materials such as phase change alloy particles, magneto-optical recording material particles, etc. are used. Among these, quinocyanine dyes, merocyanine dyes, phthalocyanine dyes, and squarylium dyes are used as thermally decomposable or meltable recording organic dyes. The low melting point metal fine particles include In and Sn.

pb、sbなどの金属及び合金等の微粒子が使用される
。相変化型合金微粒子としてはSe、Teなどの金属及
び合金等の微粒子が使用される。
Fine particles of metals and alloys such as PB and SB are used. As the phase change type alloy fine particles, fine particles of metals and alloys such as Se and Te are used.

本発明においては、更に、光吸収性色素を記録層に共存
させることにより、レーザ光の吸収及び熱変換の促進を
図ることもできる。この場合、光吸収性色素としては、
書き込みレーザ波長で強い吸収をもち、しかも吸収した
光エネルギーの熱への変換過程に有効に作用するものが
望ましい。光吸収性色素として、例えば共役π電子を含
む金属錯体、例えばニッケルビス(ジチオフェニル)誘
導体や同様の構造をもつカテコール、チオフェノール、
アミンフェノール、フェニレンジアミン錯体等を用いる
ことができる。
In the present invention, the absorption of laser light and thermal conversion can also be promoted by coexisting a light-absorbing dye in the recording layer. In this case, the light-absorbing dye is
It is desirable to use a material that has strong absorption at the writing laser wavelength and also effectively acts on the process of converting absorbed light energy into heat. Examples of light-absorbing dyes include metal complexes containing conjugated π electrons, such as nickel bis(dithiophenyl) derivatives, catechol, thiophenol, etc. having similar structures.
Amine phenol, phenylene diamine complex, etc. can be used.

なお、本発明において、記録層内の記録物質と自己収束
性非線形光学物質との割合は、記録物質:自己収束性非
線形光学物質=1:0.1〜10(重量比)とするのが
好ましい。即ち、自己収束性非線形光学物質が少な過ぎ
る場合には本発明によるレーザ光収束性の十分な改善効
果が得られず、多過ぎると信号強度、S/N比が低下す
るので上記範囲に設定するのが好ましい。また、光吸収
性色素を用いる場合、その使用割合は、両者の反射吸収
特性に応じて記録物質:光吸収性色素=1:0.1〜1
 (重量比)とするのが好ましい。
In the present invention, the ratio of the recording material and the self-focusing nonlinear optical material in the recording layer is preferably 1:0.1 to 10 (weight ratio): recording material: self-focusing nonlinear optical material . That is, if the amount of the self-focusing nonlinear optical material is too small, the sufficient improvement effect of the laser beam convergence according to the present invention cannot be obtained, and if it is too large, the signal intensity and S/N ratio will decrease, so it is set within the above range. is preferable. In addition, when using a light-absorbing dye, the ratio of recording material: light-absorbing dye = 1:0.1 to 1 is determined depending on the reflection and absorption characteristics of both.
(weight ratio).

このような本発明の光記録媒体の記録層の作成方法とし
ては、次の■〜■等の方法を採用することができる。
As a method for forming the recording layer of the optical recording medium of the present invention, the following methods (1) to (4) can be adopted.

■ 記録物質、自己収束性非線形光学物質及び必要に応
じて光吸収性色素をインク化し、ドープを基板に塗布硬
化させる。
(2) A recording material, a self-focusing nonlinear optical material, and, if necessary, a light-absorbing dye are made into ink, and the dope is applied to a substrate and cured.

■ 別途作成した記録物質、自己収束性非線形光学物質
及び必要に応じて光吸収性色素を含む記録シートを基板
に張り合わせる。
■ A recording sheet containing a separately prepared recording material, a self-focusing nonlinear optical material, and, if necessary, a light-absorbing dye is attached to the substrate.

■ 記録物質、自己収束性非線形光学物質及び必要に応
じて光吸収性色素をスパッタ、蒸着等のPVD法で基板
上に薄膜化する。
(2) A recording material, a self-focusing nonlinear optical material, and, if necessary, a light-absorbing dye are formed into a thin film on a substrate by a PVD method such as sputtering or vapor deposition.

なお、記録層の形成に際しては、予め、基板にガイド用
のグループやウォブルなどの位置決め信号を作成してお
くことかでざる。また、ROM信号や読出用の制御信号
、セクタ番号などを予め作成しておくこともできる。
Note that when forming the recording layer, it is necessary to create positioning signals such as guide groups and wobbles on the substrate in advance. Further, ROM signals, read control signals, sector numbers, etc. can be created in advance.

本発明の光記録媒体において、反射層を設ける場合には
、金、銀、銅、アルミニウムまたはこれらの合金など、
高反射率の金属を基板の記録層形成面と反対の側に蒸着
又はスパッタするか、或いは、別途作成したこれらの反
射層のフィルムを張り合わせる。なお、レーザ光エネル
ギーの閉じ込め用反射層として、記録層より低い屈折率
を有する物質の層を、蒸着又はスパッタにより基板と記
録層との間に作成することもできる。
In the optical recording medium of the present invention, when a reflective layer is provided, gold, silver, copper, aluminum or an alloy thereof, etc.
A highly reflective metal is vapor-deposited or sputtered on the side of the substrate opposite to the surface on which the recording layer is formed, or a separately prepared reflective layer film is laminated thereon. Note that as a reflective layer for confining laser light energy, a layer of a substance having a lower refractive index than the recording layer can be formed between the substrate and the recording layer by vapor deposition or sputtering.

このような本発明の光記録媒体は、光ディスク、光カー
ド、光テープなど、任意の形態で使用することができる
Such an optical recording medium of the present invention can be used in any form such as an optical disk, an optical card, or an optical tape.

[作用コ 本発明の光記録媒体において、記録層内に記録物質と共
に含有される自己収束性非線形光学物質の作用について
、図面を参照して説明する。
[Function] The function of the self-focusing nonlinear optical material contained together with the recording material in the recording layer in the optical recording medium of the present invention will be explained with reference to the drawings.

自己収束性非線形光学物質は、レーザ強度及び/又は温
度増大につれて屈折率が非線形的に増大する物質である
。第1図に示す如く、記録物質及び自己収束性非線形光
学物質が共存する記録層1に入射した書き込み用レーザ
光2は、該記録層1内で吸収されて局部的な温度上昇を
もたらす。温度上昇及び/又は光誘起分極により記録層
1内の自己収束性非線形光学物質の屈折率が変化するが
、その際、レーザ光2は、第3図に示す如く、中央が最
も高く、周辺は弱い強度分布4をもつため、収束点3の
中心部の屈折率が最も増大する。
A self-focusing nonlinear optical material is a material whose refractive index nonlinearly increases as laser intensity and/or temperature increases. As shown in FIG. 1, a writing laser beam 2 incident on a recording layer 1 in which a recording material and a self-focusing nonlinear optical material coexist is absorbed within the recording layer 1, causing a local temperature rise. The refractive index of the self-focusing nonlinear optical material in the recording layer 1 changes due to temperature rise and/or photo-induced polarization, but at this time, the laser beam 2 is highest at the center and at the periphery, as shown in FIG. Since it has a weak intensity distribution 4, the refractive index at the center of the convergence point 3 increases the most.

このため、入射光は更にしぼられて、中心部の光強度と
温度が増大する。そして、最終的には、第2図及びN4
図に示す如く、収束点3°は更にしぼられ、増強された
レーザ強度のビーク4°が得られる。このため、この収
束点3′の中心に存在する記録物質のみが融解、相変化
などを生じ、これを核として周辺に向けて変化が広がっ
てゆくようになり、良好な記録がなされる。
Therefore, the incident light is further restricted, and the light intensity and temperature at the center increase. And finally, Figure 2 and N4
As shown in the figure, the convergence point of 3° is further narrowed down and a peak of 4° of enhanced laser intensity is obtained. Therefore, only the recording material present at the center of the convergence point 3' undergoes melting, phase change, etc., and the change spreads toward the periphery with this as a core, resulting in good recording.

これに対し、自己収束性非線形光学物質を含有していな
い記録層では、このような屈折率の変化は生じないため
、第1図及び第3図の状態のままであり、レーザ光の収
束性は小さい。
On the other hand, in a recording layer that does not contain a self-focusing nonlinear optical material, such a change in refractive index does not occur, so the states shown in Figures 1 and 3 remain, and the convergence of the laser beam is is small.

このようなことから、記録層内に自己収束性非線形光学
物質を含む本発明の光記録媒体では、自己収束性非線形
光学物質を含まない場合に比べて高温が発生し易く、記
録層のみかけ感度が改善されたことになる。しかも、自
己収束性非線形光学物質は記録物質と共に記録層内に共
存しているため、レーザ光は有効に記録物質の温度を高
めるために利用される。
For this reason, in the optical recording medium of the present invention containing a self-focusing nonlinear optical material in the recording layer, high temperatures are more likely to occur than in the case where the self-focusing nonlinear optical material is not included, and the apparent sensitivity of the recording layer is has been improved. Moreover, since the self-focusing nonlinear optical material coexists with the recording material in the recording layer, the laser beam is effectively used to increase the temperature of the recording material.

なお、再生の場合には、読み取り用レーザ光強度が記録
用レーザ光強度に比べて数十分の−と小さく、自己収束
性非線形光学物質の自己収束性効果が生じないので、記
録は変化することなく安定に保存、再生される。
In addition, in the case of reproduction, the reading laser light intensity is several tens of minutes lower than the recording laser light intensity, and the self-focusing effect of the self-focusing nonlinear optical material does not occur, so the recording changes. It can be stored and played stably without any problems.

[実施例] 以下に実施例を挙げて、本発明をより具体的に説明する
[Example] The present invention will be described in more detail with reference to Examples below.

実施例1 ポリカーボネートのプレグルーブ基板に、インジウム、
ゲルマニウム、4−メチルニトロアニリンを重量比で2
:1 :1の割合となるように共蒸着して記録層を作成
した。得られた光記録媒体に、8mW出力の記録用レー
ザ光を用い、定線速度1 、3 m / s 、 50
0 k Hzで信号を書き込んだ。その後、0.5mW
の再生用レーザ光を用いて繰り返し再生を行なった結果
、記録が安定に保持されていることが確認された。
Example 1 Indium, polycarbonate pregroove substrate,
germanium, 4-methylnitroaniline in a weight ratio of 2
A recording layer was prepared by codeposition at a ratio of :1:1. Using a recording laser beam with an output of 8 mW, the obtained optical recording medium was subjected to a constant linear velocity of 1.3 m/s, 50 m/s.
Signals were written at 0 kHz. Then 0.5mW
As a result of repeated reproduction using a reproduction laser beam, it was confirmed that the recording was stably maintained.

実施例2 インジウム−錫−銀合金(組成、In20wt%、Sn
20wt%、残部銀)の微粒子及びジエチルアミノニト
ロスチルベンを重量比で10=1の割合にて100重量
部用意した。これを50重量部のポリウレタンのバイン
ダに練り込んで作成したインクを、ポリカーボネート基
板にブレードコートして記録層を作成し、実施例1と同
様の条件で記録、再生テストを行なった。その結果、記
録は安定に保持されていることが確認された。
Example 2 Indium-tin-silver alloy (composition, In20wt%, Sn
100 parts by weight of fine particles (20 wt %, balance silver) and diethylaminonitrostilbene were prepared in a weight ratio of 10=1. An ink prepared by kneading this ink into 50 parts by weight of a polyurethane binder was blade coated onto a polycarbonate substrate to prepare a recording layer, and recording and reproduction tests were conducted under the same conditions as in Example 1. As a result, it was confirmed that the records were maintained stably.

実施例3 アルキル側鎖を有するフタロシアニンの珪素錯体及びイ
ンドレニン系シアニン色素を重量比で4:1の割合にて
100重量部用意した。これを400重量部のポリカー
ボネートと溶融混練し、押し出しによりシートを作成し
た。ポリカーボネートのプレグルーブ基板とこのシート
を張り合わせ、背後に金蒸着したポリカーボネートシー
トを積層して光ディスクを作成した。この光ディスクに
ついて、実施例1と同様の条件で記録、再生テストを行
なった結果、記録は安定に保持されていることが確認さ
れた。
Example 3 100 parts by weight of a phthalocyanine silicon complex having an alkyl side chain and an indolenine cyanine dye were prepared in a weight ratio of 4:1. This was melt-kneaded with 400 parts by weight of polycarbonate and extruded to form a sheet. An optical disk was created by laminating this sheet onto a polycarbonate pregroove substrate and laminating a gold-deposited polycarbonate sheet behind it. Recording and reproduction tests were performed on this optical disc under the same conditions as in Example 1, and as a result, it was confirmed that recording was stably maintained.

実施例4 側鎖にバラニトロビフェニルアニリノ−N−アルキルエ
ーテルを付加したポリビニルアルコール100重量部に
5e−Te合金(組成、Se20wt%、残部Te)9
粒子を150重量部の割合で分散し、厚さ25μmのシ
ート状としたものを、ポリカーボネートのプレグルーブ
基板に張り合わせて、光ディスクを作成した。この光デ
ィスクについて、定線速度5.5m/s、6.3MHz
としたこと以外は実施例1と同様にして記録、再生テス
トを行なった。その結果、記録は安定に保持されている
ことが確認された。
Example 4 5e-Te alloy (composition, Se 20 wt%, balance Te) 9 to 100 parts by weight of polyvinyl alcohol with varanitrobiphenylanilino-N-alkyl ether added to the side chain
An optical disk was prepared by dispersing the particles in a proportion of 150 parts by weight and forming a sheet having a thickness of 25 μm and pasting it on a polycarbonate pregroove substrate. Regarding this optical disc, constant linear velocity 5.5 m/s, 6.3 MHz
Recording and reproduction tests were conducted in the same manner as in Example 1 except for the following. As a result, it was confirmed that the records were maintained stably.

実施例5 側鎖にバラトニトロビフェニルエーテルエトキシエステ
ルを付加したメタクリル酸エステル100重量部と、B
1−Feガーネットの微粒子30重量部とを混練して、
厚さ50μmのシートとしたものをポリメタクリル酸メ
チルのプレグルーブ基板と張り合わせて光磁気記録媒体
を作成した。この光磁気記録媒体について、実施例1と
同様にして記録、再生テストを行なったところ、記録は
安定に保持されていることが確認された。
Example 5 100 parts by weight of methacrylic acid ester with baratonitrobiphenyl ether ethoxy ester added to the side chain, and B
By kneading 30 parts by weight of fine particles of 1-Fe garnet,
A magneto-optical recording medium was prepared by laminating a 50 μm thick sheet to a polymethyl methacrylate pregroove substrate. When recording and reproducing tests were performed on this magneto-optical recording medium in the same manner as in Example 1, it was confirmed that recording was stably maintained.

[発明の効果] 以上詳述した通り、本発明の光記録媒体によれば、レー
ザ光の収束性に優れ、従って、高感度で、記録、再生の
安定性、信頼性の高い光記録媒体が提供される。
[Effects of the Invention] As detailed above, the optical recording medium of the present invention has excellent convergence of laser light, and therefore has high sensitivity, stable recording and reproduction, and high reliability. provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の光記録媒体の記録層のレー
ザ光の収束状態を示す模式図であり、第1図はレーザ光
照射初期を、第2図はレーザ光照射終期を示す。第3図
及び第4図はレーザ光収束点におけるレーザ強度を示す
図であって、第3図は第1図の状態におけるレーザ強度
を示し、第4図は第2図の状態におけるレーザ強度を示
す。 1・・・記録層、    2・・・レーザ光、33°・
・・収束点。 特許出願人  宇部興産株式会社 代理人 弁理士  重 野  剛 第3 第2図 第4図
1 and 2 are schematic diagrams showing the convergence state of laser light on the recording layer of the optical recording medium of the present invention, with FIG. 1 showing the initial stage of laser light irradiation and FIG. 2 showing the final stage of laser light irradiation. . 3 and 4 are diagrams showing the laser intensity at the laser beam convergence point, where FIG. 3 shows the laser intensity in the state of FIG. 1, and FIG. 4 shows the laser intensity in the state of FIG. 2. show. 1... Recording layer, 2... Laser light, 33°.
...Convergence point. Patent Applicant Ube Industries Co., Ltd. Agent Patent Attorney Tsuyoshi Shigeno No. 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)レーザ光で記録層内の記録物質の温度を高め、相
変化、磁気的変化又は形状変化を生じさせて記録を行な
う光記録媒体において、該記録層は、記録物質と自己収
束性非線形光学物質とが共存していることを特徴とする
光記録媒体。
(1) In an optical recording medium in which recording is performed by increasing the temperature of a recording material in a recording layer with a laser beam to cause a phase change, magnetic change, or shape change, the recording layer has a self-focusing nonlinear An optical recording medium characterized by coexisting with an optical substance.
JP2169487A 1990-06-27 1990-06-27 Optical recording medium Pending JPH0461638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169487A JPH0461638A (en) 1990-06-27 1990-06-27 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169487A JPH0461638A (en) 1990-06-27 1990-06-27 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH0461638A true JPH0461638A (en) 1992-02-27

Family

ID=15887443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169487A Pending JPH0461638A (en) 1990-06-27 1990-06-27 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH0461638A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314740B2 (en) 2002-04-26 2008-01-01 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
US7393668B2 (en) 2003-01-20 2008-07-01 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
US7435567B2 (en) 2004-03-04 2008-10-14 Kaneka Corporation Method for degradation of nucleic acids and use thereof
US7435566B2 (en) 2002-09-30 2008-10-14 Kaneka Corporation Method of purifying 3-hyroxyalkanoic acid copolymer
WO2021246434A1 (en) 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 Method of manufacturing polymer molded product including pretreatment by heating
WO2021246433A1 (en) 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 Method for producing polymer molded product
WO2022092014A1 (en) 2020-10-26 2022-05-05 三菱瓦斯化学株式会社 Bioabsorbable fiber-like medical material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314740B2 (en) 2002-04-26 2008-01-01 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
US7435566B2 (en) 2002-09-30 2008-10-14 Kaneka Corporation Method of purifying 3-hyroxyalkanoic acid copolymer
US7393668B2 (en) 2003-01-20 2008-07-01 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
US7435567B2 (en) 2004-03-04 2008-10-14 Kaneka Corporation Method for degradation of nucleic acids and use thereof
WO2021246434A1 (en) 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 Method of manufacturing polymer molded product including pretreatment by heating
WO2021246433A1 (en) 2020-06-02 2021-12-09 三菱瓦斯化学株式会社 Method for producing polymer molded product
WO2022092014A1 (en) 2020-10-26 2022-05-05 三菱瓦斯化学株式会社 Bioabsorbable fiber-like medical material

Similar Documents

Publication Publication Date Title
US5491003A (en) Method for manufacturing an optical recording film composed of a metal and an oxide which can undergo an oxidation-reduction reaction upon exposure to a laser beam
JPH1153758A (en) Recording and reproducing method
JPH04252440A (en) Optical information recording medium
JPH0461638A (en) Optical recording medium
JPS62219247A (en) Optical recording medium and optical recording method thereof
JPH0462090A (en) Optical recording medium and its writing for recording and reading
US5503890A (en) Optical recording medium
JPS5816888A (en) Lasers-recording film
JPH0528535A (en) Optical recording medium
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
KR100292378B1 (en) Optical recording medium capable of performing recording/reproducing operations and optical recording method thereof
JP3199713B2 (en) How to record and play back information
JP2003303447A (en) Optical recording medium
JPH02235789A (en) Optical data recording member and recording regeneration part thereof
JP2002109786A (en) Optical recording medium
JP3602589B2 (en) Optical recording medium and optical recording method
JP4040280B2 (en) Optical recording medium
JP2998845B2 (en) Optical information recording medium
KR100207582B1 (en) Optical recording medium
JP2972435B2 (en) Information optical recording medium and recording / reproducing method thereof
JP3257470B2 (en) Optical recording medium
KR100207581B1 (en) Optical recording medium
KR100257890B1 (en) Organic optical recording medium
JPH07287870A (en) Optical recording medium
JPS60204394A (en) Information-recording medium