JPH0462026B2 - - Google Patents

Info

Publication number
JPH0462026B2
JPH0462026B2 JP3482784A JP3482784A JPH0462026B2 JP H0462026 B2 JPH0462026 B2 JP H0462026B2 JP 3482784 A JP3482784 A JP 3482784A JP 3482784 A JP3482784 A JP 3482784A JP H0462026 B2 JPH0462026 B2 JP H0462026B2
Authority
JP
Japan
Prior art keywords
peroxidase
reaction
solution
coloring
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3482784A
Other languages
Japanese (ja)
Other versions
JPS60178354A (en
Inventor
Kanemasa Inamoto
Hiroji Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3482784A priority Critical patent/JPS60178354A/en
Publication of JPS60178354A publication Critical patent/JPS60178354A/en
Publication of JPH0462026B2 publication Critical patent/JPH0462026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は安定な過酞化物質たたは過酞化酵玠掻
性枬定詊薬甚発色剀組成物に関し、さらに詳しく
は過酞化物質たたは過酞化酵玠および発色剀等を
甚いた酞化発色による枬定系に甚いる発色剀の安
定化法に関する。 過酞化物質、特に過酞化氎玠の枬定は最近、臚
床怜査の分野においお重芁性を増し぀぀ある。䜓
液成分、䟋えばブドり糖、尿酞、コレステロヌ
ル、モノアミンはグルコヌスオキシダヌれ、りリ
カヌれ、コルステロヌルオキシダヌれ、モノアミ
ンオキシダヌれずの酵玠反応によ぀お過酞化氎玠
が生成する。生成した過酞化氎玠は発色剀および
過酞化酵玠を甚いお定量するこずによ぀お、各々
の䜓液成分の含量を知るこずができる。 たた、過酞化酵玠の掻性枬定はベルオキシダヌ
れを暙識物質ずした酵玠免疫枬定法においお重芁
性を増し぀぀ある。䞀般に酵玠免疫枬定法におい
おは、暙識抗䜓たたは暙識抗原のベルオキシダヌ
れ掻性を枬定するこずにより、生䜓生理掻性物質
あるいは生䜓成分、䟋えば、むンスリン、甲状腺
刺激ホルモン等の成長ホルモン、α−プトプロ
テむン、カルチノ、゚ンブリオニツク、アンチゲ
ン、免疫グロブリンIgE、プリチン、β2−
マむクログロブリン等の極埮量の血枅タンパク質
の枬定を行なうこずができる。 ずころで、過酞化物質、特に過酞化氎玠の定量
法ずしおは発色剀ずしお、−ゞアニシゞンを甚
いる方法たたは−アミノアンチピリンずプノ
ヌルを甚いる方法等が知られおいる怜査ず技術
Vol.9、No.11、−867〜8711981。しかしなが
ら、前者は還元性物質、䟋えば、アルデヒト類ず
反応する性質があるため、その反応が過酞化氎玠
に特異的でない欠点を持぀おいる。たた、埌者
は、感床が十分でないため、血枅等の貎重な詊料
が倚量必芁ずなる。たた、それがために、枬定時
に、共存物質の圱響を受けやすい欠点を有しおい
た。 䞀方、過酞化酵玠の掻性枬定方法ずしおは、過
酞化物質を基質ずし、−ゞアニシゞンあるいは
ピロガロヌルおよびプニレンゞアミン誘導䜓を
発色剀ずしお甚いる方法が知らおいる。しかしな
がら、−ゞアニシゞンをもちいる方法は前述の
ごずく、反応が非特異的である。たた、ピロガロ
ヌルを䜿甚する枬定方法は酵玠反応埌の呈色生成
物質の生成のしやすい゚チル・゚ヌテルを䜿甚
し、抜出操䜜をくりかえすために、粟床が芁求さ
れる等の䞍䟿さを有する。たた、それがために、
実甚性にずがしい。プニレンゞアミン誘導䜓、
䟋えば、−プニレンゞアミンを䜿甚する枬定
法は䞀般に良く䜿甚され、感床の点では申し分が
ない。しかし、−プニレンゞアミンは光酞化
を受けやすく、䞍安定で非特異的反応による発色
がみられるために取扱いには现心の泚意が必芁で
ある。それゆえに、光酞化等の非特異的反応をお
さえるために、暗所で取扱぀たりする必芁がある
等の䞍䟿さを有しおいる。 埓来から発色剀の安定化法ずしおは、遮光する
方法、EDTAを添加する方法等が甚いられるけ
れども、必ずしも、効果的で有利な方法ずは蚀え
ない。さらに、酞化発色系に還元性物質を添加す
るず発色反応を劚害するこずは公知の事実である
怜査ず技術Vol.9、No.11、−867〜871′81。 本発明者らは氎溶液䞭での酞化反応の怜蚎を進
めおいく過皋で、酞化反応の特殊性䟋えば酞玠
ラゞカルの反応性、酞玠むオンの反応性、さらに
は、溶存した分子状酞玠の反応性等を鋭意怜蚎
するこずにより、−プニレンゞアミンの酞化
発色系においお、修酞又はその塩が過酞化酵玠、
䟋えば、ペルオキシダヌれによる酞化反応を阻害
しないばかりか、安定な呈色を達成できるこずが
わかり本発明を完成した。 すなわち、本発明はプニレンゞアミンたたは
その誘導䜓、修酞たたはその塩および氎溶性高分
子化合物を含むこずを特城ずする安定な過酞化物
質たたは過酞化酵玠掻性枬定詊薬甚発色剀組成物
である。 修酞たたはその塩ずしおは蓚酞およびそのナト
リりム、カリりム、リチりム等のアルカリ金属
塩、マグネシりム、カルシりム等のアルカリ土類
金属塩、さらにはそれらのアンモニりム塩等を挙
げるこずができる。 たた、本発明に䜿甚されるプニレンゞアミン
たたはその誘導䜓ずは、䟋えば、oo−プニレ
ンゞアミン、−プニレンゞアミン、−プ
ニレンゞアミン、−プニレンゞアミン、−
プニレンゞアミンおよびそれらの硫酞塩、塩酞
塩たたは蓚酞塩、さらに、−アミノ−−
ゞメチルアニリン、−アミノ−−ゞ゚チ
ルアニリン、−アミノ−−ゞプロピルア
ニリン、−アミノトルむゞン、−アミノ−
−ゞ゚チル−−トルむゞン、−アミノ
−−゚チル−−β−ヒドロキシ゚チル−−
トルむゞン等を挙げるこずができる。 過酞化酵玠ずしおは䟋えば、ペルオキシダヌ
れ、ラクトペルオキシダヌれ、チトクロヌムペル
オキシダヌれ等がある。 さらに、氎溶性高分子物質ずしおはポリ゚チレ
ングリコヌル以䞋PEGず略す、しよ糖、ポリ
ビニルアルコヌル等を䜿甚しうる。 本発明の発色剀組成物におい、修酞たたはその
塩は通垞0.1〜5M、奜たしくは〜1M
であり、プニレンゞアミンたたはその誘導䜓は
〜100である。さらに、氎溶性高分子
物質は、氎溶液に察しお0.001〜10重量、奜た
しくは〜重量含たれる。たた、PHは〜
の範囲であるこずが奜たしい。 本発明の発色剀組成物には、過酞化物質たたは
過酞化酵玠、氎たたは緩衝液が含たれおいおもよ
い。さらに必芁により他の安定剀、防腐剀等が含
たれおいおもよい。 本発明の発色剀組成物および過酞化酵玠を䜿甚
した枬定䟋ずしおは、䟋えば、ブドり糖、尿酞、
コレステロヌル、モノアミン等の䜓液成分、むン
スリン、甲状腺刺激ホルモン等の成長ホルモン、
α−プトプロテむン、カルチノ・゚ンブリオニ
ツク・アンチゲン、免疫グロブリンIgE、フ
゚リチン、β2−マむクログロブリン等の極埮量の
血枅タンパク質等があげられる。本発明の発色剀
組成物および過酞化氎玠を䜿甚した枬定䟋ずしお
は、䟋えばむンスリン、甲状腺刺激ホルモン等の
成長ホルモン、α−プトプロテむン、カルチ
ノ・゚ンブリオニツク・アンチゲン、免疫グロブ
リンIgE、プリチン、β2−マむクログロブ
リン等の極埮量の血枅タンパク質等があげられ
る。過酞化氎玠たたはペルオキシダヌれの掻性を
枬定するに際しおは修酞たたはその塩を通垞、
0.1〜5M、奜たしくは〜1Mをプニ
レンゞアミン誘導䜓を〜100、さらに
は、氎溶性高分子物質、䟋えばPEG+4000を〜
重量含む緩衝液およびペルオキシダヌれを任
意の順序にたたは、同時に、詊料に添加する。 PHは〜の範囲の任意のPHである。〜60
℃、奜たしくは〜40℃の反応枩床で暗所たたは
明所で酵玠反応を行なわせるず、生成した過酞化
氎玠量あるいは存圚しおいるペルオキシダヌれ量
に応じお呈色物質が生成する。生成した呈色物質
の吞収極倧倀の波長における吞光床を枬定する。
䞀方、濃床既知の過酞化氎玠たたはペルオキシダ
ヌれの掻性倀を同様に反応させお怜量線を䜜成
し、この怜量線ず察比しお詊料䞭の過酞化氎玠た
たはペルオキシダヌれ掻性を枬定する。 酵玠暙識抗䜓たたは酵玠暙識抗原を甚いる方法
においおは、濃床既知の抗原量たたは抗䜓量を甚
いお䜜成した怜量線ず察比しお詊料䞭の抗原たた
は抗䜓を算出するこずができる。 本発明では呈色反応は暗所においおも、さらに
は明所においおも取扱うこずができ、非特異的反
応を最小限におさえお、感床よく枬定するこずが
できる。 本発明の発色剀組成物にはプニレンゞアミン
たたはその誘導䜓、修酞たたはその塩および氎溶
性高分子物質のほかに必芁により過酞化酵玠が含
たれるが、さらに、緩衝液、暙準液等、通垞䜿甚
される詊薬を含むこずができる。 本発明の発色剀組成物は修酞たたはその塩を含
むこずにより、光に察する安定性が改良され、非
特異的反応をおさえるこずが可胜ずなる。 さらには、氎溶性高分子物質を含めるこずによ
り、発色剀組成物の取扱いやすさが容易ずなる。
すなわち、氎溶性高分子物質がなくおも、発色剀
組成物は凍結也燥できるが、氎溶性高分子物質を
添加するこずにより、振動に察する圢状安定性が
倧幅に改良される。 さらに本発明の発色剀組成物を甚いお、過酞化
酵玠および過酞化氎玠を枬定するに圓り、修酞た
たはその塩および、氎溶性高分子物質は酵玠反応
を阻害しない特城を有する。 たた本発明の発色剀組成物は呈色埌の経時倉化
においおも優れる。 次に、本発明を実斜䟋によりさらに、具䜓的に
説明するが、本発明はこれらにより限定されるも
のではない。 実斜䟋 非特異的反応の怜蚎 −プニレンゞアミン・塩酞塩を0.02の
過酞化氎玠を含むりん酞−ク゚ン酞緩衝液PH
5.7に、0.3になるように加え、さらに、
PEG+4000をになるように加え、溶解した。
さらに、各皮有機還元剀を添加剀ずしお加え、溶
解埌、詊隓管12mmφ×7.5cmに0.5mlず぀分泚
し、発色液ずなした。各皮条件䞋に攟眮埌、1N
−硫酞をml添加した埌、492nmでの吞光床を枬
定し、非特異的反応を評䟡した。 その結果を衚−に瀺す。
The present invention relates to a stable coloring agent composition for a reagent for measuring peroxidant or peroxidase activity, and more specifically to a stable coloring agent composition for use in a measurement system based on oxidative color development using a peroxidant or peroxidase and a coloring agent. Concerning the law. The measurement of peroxides, particularly hydrogen peroxide, has recently become increasingly important in the field of clinical testing. Hydrogen peroxide is produced by an enzymatic reaction between body fluid components such as glucose, uric acid, cholesterol, and monoamines with glucose oxidase, uricase, cholesterol oxidase, and monoamine oxidase. By quantifying the generated hydrogen peroxide using a coloring agent and peroxidase, the content of each body fluid component can be determined. Furthermore, the measurement of peroxidase activity is becoming increasingly important in enzyme immunoassay using peroxidase as a labeling substance. Generally, in enzyme immunoassay, by measuring the peroxidase activity of labeled antibodies or labeled antigens, biologically active substances or biological components, such as insulin, growth hormones such as thyroid-stimulating hormone, α-fetoprotein, carcinolin, etc. , embryonic, antigen, immunoglobulin E (IgE), ferritin, β 2 −
It is possible to measure extremely small amounts of serum proteins such as microglobulin. By the way, as a method for quantifying peroxide substances, particularly hydrogen peroxide, methods using o-dianisidine or methods using 4-aminoantipyrine and phenol as coloring agents are known (Inspection and Technology).
Vol.9, No.11, P-867-871 (1981)). However, since the former has the property of reacting with reducing substances such as aldehydes, it has the disadvantage that its reaction is not specific to hydrogen peroxide. Furthermore, since the latter method does not have sufficient sensitivity, it requires a large amount of valuable samples such as serum. Moreover, it also has the disadvantage that it is easily influenced by coexisting substances during measurement. On the other hand, as a method for measuring peroxidase activity, a method is known in which a peroxide substance is used as a substrate and o-dianisidine or pyrogallol and a phenylenediamine derivative are used as coloring agents. However, as described above, the reaction using o-dianisidine is nonspecific. Furthermore, the measurement method using pyrogallol uses ethyl ether, which tends to produce colored substances after enzymatic reaction, and has the inconvenience of requiring precision because the extraction operation is repeated. Also, because of that,
Not very practical. phenylenediamine derivative,
For example, a measurement method using o-phenylenediamine is commonly used and has satisfactory sensitivity. However, o-phenylenediamine is susceptible to photo-oxidation, is unstable, and develops color due to non-specific reactions, so it must be handled with great care. Therefore, it has some inconveniences, such as the need to handle it in a dark place in order to suppress non-specific reactions such as photo-oxidation. Conventionally, methods for stabilizing color formers include blocking light, adding EDTA, etc., but these methods cannot necessarily be said to be effective or advantageous. Furthermore, it is a well-known fact that adding a reducing substance to an oxidative coloring system interferes with the coloring reaction (Inspection and Technology Vol. 9, No. 11, P-867-871 ('81)). In the process of investigating oxidation reactions in aqueous solutions, the present inventors discovered the specificities of oxidation reactions (e.g., the reactivity of oxygen radicals, the reactivity of oxygen ions, and the reactivity of dissolved molecular oxygen). etc.), we found that in the oxidative coloring system of o-phenylenediamine, oxalic acid or its salt is a peroxidase,
For example, it was found that not only did the oxidation reaction by peroxidase not be inhibited, but also stable coloration could be achieved, and the present invention was completed. That is, the present invention is a stable coloring agent composition for a peroxidant or peroxidase activity measuring reagent, which is characterized by containing phenylenediamine or a derivative thereof, oxalic acid or a salt thereof, and a water-soluble polymer compound. Examples of oxalic acid or its salts include oxalic acid and its alkali metal salts such as sodium, potassium, and lithium, alkaline earth metal salts such as magnesium and calcium, and ammonium salts thereof. Further, the phenylene diamine or its derivative used in the present invention includes, for example, oo-phenylene diamine, m-phenylene diamine, p-phenylene diamine, m-phenylene diamine, p-
phenylenediamines and their sulfates, hydrochlorides or oxalates, as well as 4-amino-N,N-
Dimethylaniline, 4-amino-N,N-diethylaniline, 4-amino-N,N-dipropylaniline, 4-aminotoluidine, 4-amino-
N,N-diethyl-m-toluidine, 4-amino-N-ethyl-N-β-hydroxyethyl-m-
Examples include toluidine. Examples of peroxidases include peroxidase, lactoperoxidase, and cytochrome peroxidase. Further, as the water-soluble polymer substance, polyethylene glycol (hereinafter abbreviated as PEG), sucrose, polyvinyl alcohol, etc. can be used. In the color former composition of the present invention, oxalic acid or its salt is usually 0.1mM to 5M, preferably 1mM to 1M.
and phenylenediamine or its derivative is 1mM to 100mM. Further, the water-soluble polymer substance is contained in an amount of 0.001 to 10% by weight, preferably 1 to 2% by weight, based on the aqueous solution. Also, the pH is 4-9
It is preferable that it is in the range of . The color former composition of the present invention may contain a peroxidant or a peroxidase, water, or a buffer. Furthermore, other stabilizers, preservatives, etc. may be included if necessary. Examples of measurements using the color former composition and peroxidase of the present invention include, for example, glucose, uric acid,
Body fluid components such as cholesterol and monoamines, growth hormones such as insulin and thyroid stimulating hormone,
Examples include minute amounts of serum proteins such as α-fetoprotein, carcinogenic antigen, immunoglobulin E (IgE), ferritin, and β 2 -microglobulin. Measurement examples using the color former composition of the present invention and hydrogen peroxide include, for example, insulin, growth hormones such as thyroid stimulating hormone, α-phetoprotein, carcinoid embryonic antigen, immunoglobulin E (IgE), Examples include trace amounts of serum proteins such as ferritin and β 2 -microglobulin. When measuring hydrogen peroxide or peroxidase activity, oxalic acid or its salt is usually used.
0.1mM to 5M, preferably 1mM to 1M, a phenylenediamine derivative of 1mM to 100mM, and further a water-soluble polymeric substance, such as PEG + 4000, of 1 to 1M.
Buffer and peroxidase containing 2% by weight are added to the sample in any order or simultaneously. PH is any PH in the range of 4-9. 260
When the enzymatic reaction is carried out in the dark or in the light at a reaction temperature of 2 to 40 DEG C., a colored substance is produced depending on the amount of hydrogen peroxide produced or the amount of peroxidase present. The absorbance at the wavelength of the maximum absorption value of the produced colored substance is measured.
On the other hand, a calibration curve is created by similarly reacting the activity values of hydrogen peroxide or peroxidase with known concentrations, and the hydrogen peroxide or peroxidase activity in the sample is measured by comparing with this calibration curve. In a method using an enzyme-labeled antibody or enzyme-labeled antigen, the amount of antigen or antibody in a sample can be calculated by comparing it with a standard curve prepared using an amount of antigen or antibody whose concentration is known. In the present invention, the color reaction can be handled both in the dark and in the light, and can be measured with high sensitivity while minimizing non-specific reactions. In addition to phenylenediamine or a derivative thereof, oxalic acid or a salt thereof, and a water-soluble polymer substance, the color former composition of the present invention contains peroxidase if necessary, and further contains buffer solutions, standard solutions, etc. It can include the reagents used. By containing oxalic acid or a salt thereof, the color former composition of the present invention has improved stability against light and can suppress non-specific reactions. Furthermore, by including a water-soluble polymeric substance, the color former composition becomes easier to handle.
That is, although the color former composition can be freeze-dried without a water-soluble polymeric substance, the shape stability against vibration is significantly improved by adding a water-soluble polymeric substance. Furthermore, when measuring peroxidase and hydrogen peroxide using the color former composition of the present invention, oxalic acid or its salt and the water-soluble polymer substance have the characteristic that they do not inhibit the enzymatic reaction. Furthermore, the color former composition of the present invention is also excellent in changes over time after coloring. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Examination of non-specific reactions O-phenylenediamine dihydrochloride was added to a phosphate-citrate buffer (PH
5.7), add it to 0.3%, and further,
PEG + 4000 was added to 1% and dissolved.
Furthermore, various organic reducing agents were added as additives, and after dissolving, 0.5 ml each was dispensed into test tubes (12 mmφ x 7.5 cm) to obtain a coloring solution. 1N after being left under various conditions
- After adding 2 ml of sulfuric acid, the absorbance at 492 nm was measured to evaluate non-specific reactions. The results are shown in Table-1.

【衚】 衚−より、PEG+4000を添加した系におい
お、無添加に比范しお修酞たたはその塩、アスコ
ルビン酞、ヒドロキシル・アミン・硫酞塩、グル
コヌス等の還元性物質が非特異的反応をおさえる
こずがわか぀た。 実斜䟋 各皮還元性物質添加系におけるペルオ
キシダヌれによる酵玠反応の怜蚎 −プニレンゞアミン・塩酞塩を0.02の
過酞化氎玠を含むリン酞−ク゚ン酞緩衝液PH
5.7に0.3になるように加え、さらに、
PEG+4000をになるように加え、溶解した。
さらに、各皮濃床の還元性物質を加え溶解埌、詊
隓管12mmφ×7.5cmに0.5mlず぀分泚し、発色
液を䜜成した。次に、ペルオキシダヌれを0.15
mlになるように0.1BSA氎溶液で溶解し、
酵玠溶液ずした。この酵玠溶液を䞊蚘にお準備し
た発色液に50Όを加え、宀枩にお30分間、明所
で反応した。反応終了埌、1N・硫酞をml添加
し、反応停止埌、492nmでの吞光床を枬定し、各
皮還元性物質共存䞋における酵玠反応の阻害䜜甚
を怜蚎した。 その結果を衚−に瀺す。
[Table] Table 1 shows that in the system with PEG + 4000 added, reducing substances such as oxalic acid or its salts, ascorbic acid, hydroxyl/amine/sulfate, glucose, etc. reacted nonspecifically compared to the system without addition. I found out that I can control it. Example 2 Examination of enzymatic reactions by peroxidase in various reducing substance addition systems
5.7) to be 0.3%, and further,
PEG + 4000 was added to 1% and dissolved.
Furthermore, various concentrations of reducing substances were added and dissolved, and 0.5 ml each was dispensed into test tubes (12 mmφ x 7.5 cm) to prepare a coloring solution. Next, add peroxidase to 0.15 m
Dissolve in 0.1% BSA aqueous solution at U/ml,
It was made into an enzyme solution. 50Ό of this enzyme solution was added to the coloring solution prepared above and reacted in the light at room temperature for 30 minutes. After the reaction was completed, 2 ml of 1N sulfuric acid was added to stop the reaction, and the absorbance at 492 nm was measured to examine the inhibitory effect on enzyme reactions in the presence of various reducing substances. The results are shown in Table-2.

【衚】 ※ −は溶解䞍胜のため、枬定しなか぀た。
衚−より明らかなように、修酞たたはその塩
は酵玠反応系に添加しいおも、党く酵玠反応を阻
害しないこずがわか぀た。アスコルビン酞等は濃
床に倧きく䟝存するけれども、䜎濃床の添加域で
は若干の発色がみられるものの、酵玠反応を著し
く阻害した。 実斜䟋 発色剀組成物の凍結也燥 衚−に瀺すような発色剀組成物を凍結也燥し
た。なお、凍結也燥は30mlのか぀色バむダルビン
を䜿甚し、mlづ぀分泚埌、すみやかに垞法によ
り凍結也燥した。なお、凍結也燥終了埌窒玠眮換
した。衚−䞭の色調は目芖芳察し、圢状安定性
はバむダルビンを回転させ、粉末のでやすさで、
そのこわれやすさを衚瀺した。なお、凍結也燥前
の溶液調敎時、蒞留氎たたは、0.01M−ク゚ン酞
−りん酞緩衝液PH5.0を䜿甚した。
[Table] * - was not measured because it could not be dissolved.
As is clear from Table 2, it was found that even when oxalic acid or its salt was added to the enzyme reaction system, it did not inhibit the enzyme reaction at all. Ascorbic acid and the like greatly depend on the concentration, but at low concentrations, some color development was observed, but the enzyme reaction was significantly inhibited. Example 3 Freeze-drying of color former composition A color former composition shown in Table 3 was freeze-dried. For freeze-drying, a 30-ml colored vial was used, and after dispensing 6 ml each, the solution was immediately freeze-dried using a conventional method. Note that after the freeze-drying was completed, the atmosphere was replaced with nitrogen. The color tone in Table 3 was visually observed, the shape stability was determined by rotating the vial, and the ease with which the powder came out.
It displayed its fragility. In addition, when preparing the solution before freeze-drying, distilled water or 0.01M citric acid-phosphate buffer (PH: 5.0) was used.

【衚】【table】

【衚】 泚− 圢態安定性はロヌラヌ䞊で、バむダルビ
ンを暪にしお、埮振動を䞎えながら回転さ
せ、最初に粉末が分離しおくるたでの回転
数を求め、圢状のこわれやすさを衚瀺し
た。 枬定䟋 凍結也燥品の保存安定性詊隓 実斜䟋で䜜成した凍結也燥品の℃での保存
安定性詊隓を実斜した。すなわち、℃に所定時
間保存埌、バむダルビン圓り、0.02の過酞化氎
玠を含むク゚ン酞−リン酞緩衝液PH5.720
mlを加え、完党溶解䜆し、No.は40mlを加え溶
解した。溶解埌、詊隓管12mmφ×7.5cmに
0.5mlづ぀分泚し、発色液ずなし、宀枩、明所の
条件䞋に時間攟眮埌、芏定の硫酞をml添加
した埌、492nmでの吞光床を枬定し、ブランク発
色の皋床から保存安定性を評䟡した。なお、察照
ずしお、実隓No.ず同䞀組成ずなるように、−
プニレン・ゞアミン・塩酞塩mgml、蓚酞
アンモニりム3.5、PEG+4000 0.5mgmlの濃
床に、それぞれ秀量し、ク゚ン酞−リン酞緩衝液
PH5.7に溶解した。その結果は衚−に瀺し
おいる。衚−より明らかなように、無添加系に
比范しお、有機還元剀添加系はブランク発色が小
さく、たた、長期保存埌においおも、ブランク発
色はほずんど䞊昇しなか぀た。
[Table] Note 1: Shape stability is determined by rotating the vial horizontally on a roller while applying slight vibrations, and determining the number of revolutions until the powder first separates, which indicates the fragility of the shape. did. Measurement Example 1 Storage Stability Test of Freeze-Dried Product A storage stability test of the freeze-dried product prepared in Example 3 at 4°C was conducted. That is, after storing at 4°C for a specified period of time, citric acid-phosphate buffer (PH: 5.7) containing 0.02% hydrogen peroxide was added per vial.
ml was added and completely dissolved (however, No. 5 was dissolved by adding 40 ml). After dissolving, transfer to test tube (12mmφ x 7.5cm)
Dispense 0.5 ml each to make a coloring solution, leave it at room temperature in a bright place for 1 hour, add 2 ml of 1N sulfuric acid, measure the absorbance at 492 nm, and check the degree of blank color development to determine storage stability. The gender was evaluated. As a control, o-
Phenylene diamine dihydrochloride 3 mg/ml, ammonium oxalate 3.5 mM, and PEG + 4000 0.5 mg/ml were each weighed and dissolved in citric acid-phosphate buffer (PH: 5.7). The results are shown in Table-4. As is clear from Table 4, compared to the additive-free system, the organic reducing agent-added system showed less blank color development, and the blank color development hardly increased even after long-term storage.

【衚】 枬定䟋 むンスリン分析詊隓 実斜䟋の結果を利甚しお、サンドむツチ
法EIAによりむンスリンを分析した。 むンスリン枬定甚䞍溶化詊隓の補造 抗ブタむンスリン抗血枅モルモツトより45
飜和硫安にお分画埌、DEAE−セフアロ−スカ
ラムにお粟補し、抗䜓画分を埗た。この抗䜓画分
を0.01Mリン酞緩衝液PH7.20.15MNaCl含
有を甚い、濃床がml圓りmgずなるように垌
釈した溶液50mlに、十分掗浄した粗面化ポリスチ
レンボヌル400個を浞挬し、宀枩で時間静眮し
た。その埌、ポリスチレンボヌルを浞挬液より分
離し、牛血枅アルブミンを含有する0.01Mリ
ン酞緩衝液PH7.20.15MNaCl含有を甚い
お回掗浄した埌、同䞀緩衝液䞭に保存した。 ペルオキシダヌれ暙識抗䜓の調補 酵玠ずしお10mgのペルオキシダヌれ西掋ワサ
ビ由来を䜿甚し、過よう玠酞架橋法によ぀お
mgの抗ブタむンスリン抗䜓にペルオキシダヌれを
結合させ、セフアデツクス−200によるゲル
過によ぀お粟補埌、コロゞオンバツクで濃瞮し、
ペルオキシダヌれ暙識抗䜓ずした。抗䜓ぞのペル
オキシダヌれの結合方法は、ナカネ等ザ・ゞ
ダヌナル・オブ・ヒストケミストリヌ・アンド・
サむトケミストリヌ、第22巻、第12号、−1084
〜10911974幎に蚘茉されおいる。埗られたペ
ルオキシダヌれ暙識抗䜓は䜿甚盎前に牛血枅
アルブミンを含有する0.01Mリン酞緩衝液PH
7.20.15M NaCl含有で2000倍附近たで垌釈し
䜿甚した。 むンスリンの枬定方法 詊隓管12mmφ×7.5cmに緩衝液−0.5
牛血枅アルブミン含有0.01リン酞緩衝液PH
7.20.15M NaCl含有0.4mlおよびWHOのナ
ンバヌ66304を基準にしお䜜成した暙準むンス
リン溶液〜320ÎŒUml0.1mlを添加し、よ
く混合しおから枬定䟋−のの項で䜜成した䞍
溶化詊薬個を入れ、37℃で時間、加枩した。
加枩終了埌、詊隓管内の反応液を吞匕陀去し、緩
衝液−のmlを加えお掗浄した。この操䜜を
回繰りかえした埌、枬定䟋−の項で埗たペル
オキシダヌれ暙識抗䜓250Όを加え、37℃で
時間、加枩した。加枩終了埌、前蚘ず同様に反応
液を吞匕陀去し、回掗浄埌、実斜䟋で䜜成し
た凍結也燥発色剀組成物から、枬定䟋−で瀺し
た方法に埓぀お䜜成した発色液にボヌルのみを移
し、各皮条件䞋で酵玠反応を実斜した。酵玠反応
終了埌、1N硫酞mlを添加しお反応を停止埌、
赀か぀色の色玠を492nmで枬定した。 酵玠反応条件を倉えた時の怜量線の倉化の怜
蚎 の枬定方法に埓぀お、むンスリン暙準品を枬
定し、怜量線を䜜成した。なお、発色液は実斜䟋
で䜜成した凍結也燥品を䜿甚した。たた、凍結
也燥品には70の蓚酞アンモニりムを添加しお
凍結也燥したものず、無添加で凍結也燥した発色
剀の堎合に぀いお酵玠反応を行な぀た。たた、酵
玠反応は宀枩、明所、時間および℃、倜攟
眮で行ない、前者の結果は第図に、埌者の結果
は第図に瀺しおいる。これらの図より明らかな
ように、むンスリン䜎濃床偎においお、感床が倧
幅に改良されるず共に、非特異的反応がおさえら
れおいるこずがわかる。 呈色埌の経時倉化に぀いおの怜蚎 の枬定方法に埓぀お、むンスリン暙準品を枬
定した。なお、呈色安定性は各皮還元性物質の添
加の有無によ぀お、呈色安定性はどのように倉化
するか怜蚎し、その結果を衚−に瀺した。た
た、反応停止盎埌の吞光床492nmを100ずし
た時の経時倉化によ぀お瀺しおいる。
[Table] Measurement Example 2 Insulin Analysis Test Utilizing the results of Examples 1 and 2, insulin was analyzed by Sand-Germany EIA. Manufacture of insolubilization test for insulin measurement 45 from anti-porcine insulin antiserum (guinea pig)
After fractionation using saturated ammonium sulfate, the antibody fraction was purified using a DEAE-Sepharose column to obtain an antibody fraction. This antibody fraction was diluted with 0.01M phosphate buffer (PH: 7.2; containing 0.15M NaCl) and 400 thoroughly washed roughened polystyrene balls were immersed in 50ml of a solution with a concentration of 1mg per ml. The mixture was left standing at room temperature for 8 hours. Thereafter, the polystyrene balls were separated from the immersion solution, washed three times with 0.01M phosphate buffer (PH: 7.2; containing 0.15M NaCl) containing 1% bovine serum albumin, and then stored in the same buffer. . Preparation of peroxidase-labeled antibody Using 10 mg of peroxidase (derived from horseradish) as the enzyme, 5
mg of anti-porcine insulin antibody was conjugated with peroxidase, purified by gel filtration using Sephadex G-200, concentrated in a collodion bag,
It was used as a peroxidase-labeled antibody. A method for attaching peroxidase to antibodies is described by P., Nakane et al.: The Journal of Histochemistry and
Cytochemistry, Volume 22, No. 12, P-1084
~1091 (1974). The obtained peroxidase-labeled antibody was added to 0.01M phosphate buffer (PH:
7.2; containing 0.15M NaCl) and diluted to approximately 2000 times before use. Insulin measurement method: Add buffer solution (0.5%) to a test tube (12mmφ x 7.5cm)
0.01 phosphate buffer containing bovine serum albumin <PH:
7.2; Contains 0.15M NaCl>) 0.4ml and 0.1ml of standard insulin solution (5-320ΌU/ml) prepared based on WHO number 66/304, mix well, and then proceed to Measurement Example-2. One insolubilizing reagent prepared in Section 1 was added and heated at 37°C for 1 hour.
After heating, the reaction solution in the test tube was removed by suction, and 1 ml of buffer solution was added for washing. Perform this operation 3
After repeating the test several times, add 250Ό of the peroxidase-labeled antibody obtained in Measurement Example-2, and
Warmed for an hour. After heating, the reaction solution was removed by suction in the same manner as above, and after washing three times, a coloring solution was prepared from the freeze-dried coloring agent composition prepared in Example 3 according to the method shown in Measurement Example-1. The enzyme reaction was carried out under various conditions. After the enzymatic reaction is complete, add 2 ml of 1N sulfuric acid to stop the reaction,
Red and colored pigments were measured at 492 nm. A standard insulin product was measured and a calibration curve was created according to the measurement method described in ``Examination of changes in the calibration curve when enzyme reaction conditions are changed''. Note that the lyophilized product prepared in Example 3 was used as the coloring liquid. In addition, an enzyme reaction was performed on the lyophilized product with the addition of 70 mM ammonium oxalate and the lyophilized color former without any additive. The enzymatic reaction was carried out at room temperature in the light for 1 hour and at 4° C. overnight, and the former results are shown in FIG. 1 and the latter results are shown in FIG. 2. As is clear from these figures, on the low insulin concentration side, sensitivity is significantly improved and non-specific reactions are suppressed. Insulin standard products were measured according to the measurement method described in ``Study of changes over time after color development''. The color stability was examined to see how it changes depending on the presence or absence of the addition of various reducing substances, and the results are shown in Table 5. It also shows the change over time when the absorbance (492 nm) immediately after the reaction is stopped is taken as 100.

【衚】 衚−より明らかなように、還元性物質、特に
修酞たたはその塩を酵玠反応系に添加しおいお
も、呈色安定性はそこなわれないこずがわか぀
た。 枬定䟋 過酞化氎玠の定量 0.3−プニレンゞアミン・塩酞塩、
PEG+4000および30の蓚酞ナトリりムを含む
リン酞緩衝液PH5.0500Όに、20Umlの
ペルオキシダヌれ氎溶液を50Ό加え、さらに過
酞化氎玠溶液濃床、10、20mgml25ÎŒ
を加え、37℃、30分間酵玠反応終了埌、1Nç¡«é…ž
mlで反応停止埌、492nmでの吞光床を枬定し、
怜量線を䜜成した。なお、蓚酞ナトリりムを含た
ない䞊蚘緩衝液を察照ずしお枬定した。その結果
は第図に瀺しおいる。この図より明らかなよう
に、非特異的反応がおさえられ、感床においおも
改良されおいるこずがわかる。
[Table] As is clear from Table 5, it was found that the color stability was not impaired even when a reducing substance, especially oxalic acid or its salt, was added to the enzyme reaction system. Measurement example 3 Quantification of hydrogen peroxide 0.3% o-phenylenediamine dihydrochloride 1%,
Add 50Ό of 20U/ml peroxidase aqueous solution to 500Ό of phosphate buffer (PH: 5.0) containing PEG + 4000 and 30mM sodium oxalate, and add 25Ό of hydrogen peroxide solution (concentration: 0, 10, 20mg/ml).
After the enzymatic reaction was completed at 37℃ for 30 minutes, the reaction was stopped with 2 ml of 1N sulfuric acid, and the absorbance at 492 nm was measured.
A calibration curve was created. Note that the above buffer solution containing no sodium oxalate was used as a control for measurement. The results are shown in Figure 3. As is clear from this figure, non-specific reactions are suppressed and sensitivity is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、凍結也燥発色剀−プニレンゞ
アミン・塩酞塩10mgml、蓚酞アンモニり
ム70、PEG+400010mgmlよりなる凍結
也燥品に0.02過酞化氎玠を含むク゚ン酞−り
ん酞緩衝液PH5.720mlで溶解埌発色液ずな
し、宀枩、明所、時間の酵玠反応をするこずに
よ぀お、埗られたむンスリンの怜量線である。察
照ずしお、蓚酞アンモニりムを含たない凍結也燥
発色剀から調補した発色液で埗られたむンスリン
の怜量線を瀺す。第図は第図ず発色液を同䞀
にしお、酵玠反応条件を℃、倜行な぀たもの
である。さらに、第図は発色剀ずしお、30
の蓚酞ナトリりムおよびPEG+4000を含有す
る。−プニレンゞアミン・塩酞塩を䜿甚
し、酵玠ずしおペルオキシダヌれを甚いた過酞化
氎玠定量甚の怜量線である。なお、発色剀に蓚酞
ナトリりムを含たないものを察照ずしお枬定し
た。 第〜図においお、○†ぐ
Figure 1 shows a lyophilized color former (lyophilized product consisting of o-phenylenediamine dihydrochloride: 10 mg/ml, ammonium oxalate: 70 mM, PEG + 4000: 10 mg/ml) containing 0.02% hydrogen peroxide. This is a calibration curve for insulin obtained by dissolving in 20 ml of citric acid-phosphate buffer (PH: 5.7), preparing a coloring solution, and performing an enzyme reaction at room temperature in the light for 1 hour. As a control, a calibration curve for insulin obtained with a coloring solution prepared from a freeze-dried coloring agent that does not contain ammonium oxalate is shown. In Figure 2, the enzyme reaction was carried out overnight at 4°C using the same coloring solution as in Figure 1. Furthermore, Figure 3 shows 30mM as a coloring agent.
of sodium oxalate and 1% PEG + 4000. This is a calibration curve for hydrogen peroxide determination using o-phenylenediamine dihydrochloride and peroxidase as the enzyme. Note that the measurement was performed using a coloring agent that did not contain sodium oxalate as a control. In Figures 1 to 3, ○†g

Claims (1)

【特蚱請求の範囲】[Claims]  プニレンゞアミンたたはその誘導䜓、修酞
たたはその塩および氎溶性高分子化合物を含むこ
ずを特城ずする安定な過酞化物質たたは過酞化酵
玠掻性枬定詊薬甚発色剀組成物。
1. A stable coloring agent composition for a peroxidant or a peroxidase activity measuring reagent, which comprises phenylenediamine or a derivative thereof, oxalic acid or a salt thereof, and a water-soluble polymer compound.
JP3482784A 1984-02-25 1984-02-25 Stable color forming composition Granted JPS60178354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3482784A JPS60178354A (en) 1984-02-25 1984-02-25 Stable color forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3482784A JPS60178354A (en) 1984-02-25 1984-02-25 Stable color forming composition

Publications (2)

Publication Number Publication Date
JPS60178354A JPS60178354A (en) 1985-09-12
JPH0462026B2 true JPH0462026B2 (en) 1992-10-02

Family

ID=12425027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3482784A Granted JPS60178354A (en) 1984-02-25 1984-02-25 Stable color forming composition

Country Status (1)

Country Link
JP (1) JPS60178354A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2920471C (en) * 2013-08-16 2021-03-16 Hach Company A chlorine analytical test element and a stabilized n,n-diethyl-p-phenylenediamine solution

Also Published As

Publication number Publication date
JPS60178354A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
CA1320115C (en) Diagnostic assay employing signal producing agent on support
US4647532A (en) Method for determination of hydrogen peroxide by chemiluminescence analysis
US3979262A (en) Compositions and methods for the determination of oxidizing agents
US4121975A (en) Pretreatment of samples for polyiodothyronine assays
JPS63500672A (en) Colorimetric assay for substances that can bind
US3595755A (en) Detection of hydrogen peroxide
Morin et al. Single Glucose Oxidase—Peroxidase reagent for two-minute determination of serum glucose
JP2935578B2 (en) Competitive binding assay with improved linearity
JP4214648B2 (en) Glycated protein measurement reagent
JPS60184385A (en) Stabilized enzyme conjugate composition
US5096812A (en) Assay method for gamma glutamyltransferase (GGT) in liquid blood and dried blood
JPH0462026B2 (en)
JP3003152B2 (en) Method for measuring free hemoglobin and reagent kit for measuring free hemoglobin used therefor
US4467030A (en) Determination of the thyroxine-binding index in serum
US3278394A (en) Method and composition for diagnosing glucose
JPH0248237B2 (en)
JPS6178385A (en) Stable peroxidase composition
Rani et al. Discrete analysis of bile acid in serum and bile with 3⍺-hydroxysteroid dehydrogenase and diaphorase immobilized onto alkylamine glass beads
JPH01104198A (en) Method for increase analytical accuracy
JPS61249399A (en) Diagnostic assay using microperoxidase
JP2585723B2 (en) How to stop the reaction of the detection system
JPH0638757B2 (en) Peroxidase or H ▲ lower 2 â–Œ O ▲ lower 2 â–Œ measuring method
JPS58143268A (en) Determination of immunity suppresing acidic protein and kit thereof
CN117825707A (en) TAT detection kit and preparation method thereof
JP2521074B2 (en) How to regulate the immune response